for Journals by Title or ISSN
for Articles by Keywords
help
Followed Journals
Journal you Follow: 0
 
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Journals are published.
Already have an account? Sign In to see the journals you follow.
Journal Cover Future Internet
  [147 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Print) 1999-5903
   Published by MDPI Homepage  [156 journals]
  • Future Internet, Vol. 9, Pages 54: Energy-Aware Adaptive Weighted Grid
           Clustering Algorithm for Renewable Wireless Sensor Networks

    • Authors: Nelofar Aslam, Kewen Xia, Muhammad Haider, Muhammad Hadi
      First page: 54
      Abstract: Wireless sensor networks (WSNs), built from many battery-operated sensor nodes are distributed in the environment for monitoring and data acquisition. Subsequent to the deployment of sensor nodes, the most challenging and daunting task is to enhance the energy resources for the lifetime performance of the entire WSN. In this study, we have attempted an approach based on the shortest path algorithm and grid clustering to save and renew power in a way that minimizes energy consumption and prolongs the overall network lifetime of WSNs. Initially, a wireless portable charging device (WPCD) is assumed which periodically travels on our proposed routing path among the nodes of the WSN to decrease their charge cycle time and recharge them with the help of wireless power transfer (WPT). Further, a scheduling scheme is proposed which creates clusters of WSNs. These clusters elect a cluster head among them based on the residual energy, buffer size, and distance of the head from each node of the cluster. The cluster head performs all data routing duties for all its member nodes to conserve the energy supposed to be consumed by member nodes. Furthermore, we compare our technique with the available literature by simulation, and the results showed a significant increase in the vacation time of the nodes of WSNs.
      Citation: Future Internet
      PubDate: 2017-09-23
      DOI: 10.3390/fi9040054
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 55: Botnet Detection Technology Based on
           DNS

    • Authors: Xingguo Li, Junfeng Wang, Xiaosong Zhang
      First page: 55
      Abstract: With the help of botnets, intruders can implement a remote control on infected machines and perform various malicious actions. Domain Name System (DNS) is very famous for botnets to locate command and control (C and C) servers, which enormously strengthens a botnet’s survivability to evade detection. This paper focuses on evasion and detection techniques of DNS-based botnets and gives a review of this field for a general summary of all these contributions. Some important topics, including technological background, evasion and detection, and alleviation of botnets, are discussed. We also point out the future research direction of detecting and mitigating DNS-based botnets. To the best of our knowledge, this topic gives a specialized and systematic study of the DNS-based botnet evading and detecting techniques in a new era and is useful for researchers in related fields.
      Citation: Future Internet
      PubDate: 2017-09-25
      DOI: 10.3390/fi9040055
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 56: Review on Semi-Fragile Watermarking
           Algorithms for Content Authentication of Digital Images

    • Authors: Xiaoyan Yu, Chengyou Wang, Xiao Zhou
      First page: 56
      Abstract: With the popularity of network and the continuous development of multimedia technology, saving of network bandwidth and copyright protection of multimedia content have gradually attracted people’s attention. The fragile watermark for integrity authentication of image data and protection of copyright has become a hotspot. In the storage and transmission process, image data must be compressed to save network bandwidth. As a result, semi-fragile watermarking techniques, which can be used to distinguish common image processing operations from malicious tampering, are emerging. In this paper, semi-fragile watermarking algorithms for image authentication are surveyed. The basic principles and characteristics about semi-fragile watermarking algorithms are introduced, and several kinds of attack behaviors are also included. Aiming at several typical image-authentication algorithms, advantages and disadvantages are analyzed, and evaluation indexes of various algorithms are compared. Finally, we analyze the key points and difficulties in the study on semi-fragile watermarking algorithms, and the direction about future development is prospected.
      Citation: Future Internet
      PubDate: 2017-09-25
      DOI: 10.3390/fi9040056
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 57: TSKT-ORAM: A Two-Server k-ary Tree
           Oblivious RAM without Homomorphic Encryption

    • Authors: Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, Daji Qiao
      First page: 57
      Abstract: This paper proposes TSKT-oblivious RAM (ORAM), an efficient multi-server ORAM construction, to protect a client’s access pattern to outsourced data. TSKT-ORAM organizes each of the server storages as a k-ary tree and adopts XOR-based private information retrieval (PIR) and a novel delayed eviction technique to optimize both the data query and data eviction process. TSKT-ORAM is proven to protect the data access pattern privacy with a failure probability of 2 - 80 when system parameter k ≥ 128 . Meanwhile, given a constant-size local storage, when N (i.e., the total number of outsourced data blocks) ranges from 2 16 – 2 34 , the communication cost of TSKT-ORAM is only 22–46 data blocks. Asymptotic analysis and practical comparisons are conducted to show that TSKT-ORAM incurs lower communication cost, storage cost and access delay in practical scenarios than the compared state-of-the-art ORAM schemes.
      Citation: Future Internet
      PubDate: 2017-09-27
      DOI: 10.3390/fi9040057
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 58: Access Control with Delegated
           Authorization Policy Evaluation for Data-Driven Microservice Workflows

    • Authors: Davy Preuveneers, Wouter Joosen
      First page: 58
      Abstract: Microservices offer a compelling competitive advantage for building data flow systems as a choreography of self-contained data endpoints that each implement a specific data processing functionality. Such a ‘single responsibility principle’ design makes them well suited for constructing scalable and flexible data integration and real-time data flow applications. In this paper, we investigate microservice based data processing workflows from a security point of view, i.e., (1) how to constrain data processing workflows with respect to dynamic authorization policies granting or denying access to certain microservice results depending on the flow of the data; (2) how to let multiple microservices contribute to a collective data-driven authorization decision and (3) how to put adequate measures in place such that the data within each individual microservice is protected against illegitimate access from unauthorized users or other microservices. Due to this multifold objective, enforcing access control on the data endpoints to prevent information leakage or preserve one’s privacy becomes far more challenging, as authorization policies can have dependencies and decision outcomes cross-cutting data in multiple microservices. To address this challenge, we present and evaluate a workflow-oriented authorization framework that enforces authorization policies in a decentralized manner and where the delegated policy evaluation leverages feature toggles that are managed at runtime by software circuit breakers to secure the distributed data processing workflows. The benefit of our solution is that, on the one hand, authorization policies restrict access to the data endpoints of the microservices, and on the other hand, microservices can safely rely on other data endpoints to collectively evaluate cross-cutting access control decisions without having to rely on a shared storage backend holding all the necessary information for the policy evaluation.
      Citation: Future Internet
      PubDate: 2017-09-30
      DOI: 10.3390/fi9040058
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 59: Extensions and Enhancements to “the
           Secure Remote Update Protocol”

    • Authors: Andrew Poulter, Steven Johnson, Simon Cox
      First page: 59
      Abstract: This paper builds on previous work introducing the Secure Remote Update Protocol (SRUP), a secure communications protocol for Command and Control applications in the Internet of Things, built on top of MQTT. This paper builds on the original protocol and introduces a number of additional message types: adding additional capabilities to the protocol. We also discuss the difficulty of proving that a physical device has an identity corresponding to a logical device on the network and propose a mechanism to overcome this within the protocol.
      Citation: Future Internet
      PubDate: 2017-09-30
      DOI: 10.3390/fi9040059
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 60: A Design Space for
           Virtuality-Introduced Internet of Things

    • Authors: Kota Gushima, Tatsuo Nakajima
      First page: 60
      Abstract: Augmented reality (AR) and virtual reality (VR) technologies have been dramatically expanded in recent years. In the near future, we expect that diverse digital services that employ Internet of Things (IoT) technologies enhanced with AR and VR will become more popular. Advanced information technologies will enable the physical world to be fused with the virtual world. These digital services will be advanced via virtuality, which means that things that do not physically exist make people believe in their existence. We propose a design space for digital services that are enhanced via virtuality based on insights extracted from three case studies that we have developed and from discussions in focus groups that analyze how existing commercial IoT products proposed in a commercial crowdfunding platform, Kickstarter, could be enhanced through virtuality. The derived design space offers three dimensions to design a digital service to fuse IoT technologies with virtuality: (1) Taxonomy of IoT; (2) Visualizing Level, and (3) Virtuality Level. The design space will help IoT-based digital service designers to develop advanced future IoT products that incorporate virtuality.
      Citation: Future Internet
      PubDate: 2017-10-02
      DOI: 10.3390/fi9040060
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 61: An Integrated Dictionary-Learning
           Entropy-Based Medical Image Fusion Framework

    • Authors: Guanqiu Qi, Jinchuan Wang, Qiong Zhang, Fancheng Zeng, Zhiqin Zhu
      First page: 61
      Abstract: Image fusion is widely used in different areas and can integrate complementary and relevant information of source images captured by multiple sensors into a unitary synthetic image. Medical image fusion, as an important image fusion application, can extract the details of multiple images from different imaging modalities and combine them into an image that contains complete and non-redundant information for increasing the accuracy of medical diagnosis and assessment. The quality of the fused image directly affects medical diagnosis and assessment. However, existing solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that consists of three steps. First, the input image information is decomposed into low-frequency and high-frequency components by using a Gaussian filter. Second, low-frequency components are fused by weighted average algorithm and high-frequency components are fused by the dictionary-learning based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency components are combined to obtain the final fusion results. The results and analyses of comparative experiments demonstrate that the proposed medical image fusion framework has better performance than existing solutions.
      Citation: Future Internet
      PubDate: 2017-10-06
      DOI: 10.3390/fi9040061
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 62: A Practical Resource Management Scheme
           for Cellular Underlaid D2D Networks

    • Authors: Tae-Won Ban
      First page: 62
      Abstract: In this paper, we investigate a resource management scheme for cellular underlaid device-to-device (D2D) communications, which are an integral part of mobile caching networks. D2D communications are allowed to share radio resources with cellular communications as long as the generating interference of D2D communications satisfies an interference constraint to secure cellular communications. Contrary to most of the other studies, we propose a distributed resource management scheme for cellular underlaid D2D communications focusing on a practical feasibility. In the proposed scheme, the feedback of channel information is not required because all D2D transmitters use a fixed transmit power and every D2D transmitter determines when to transmit data on its own without centralized control. We analyze the average sum-rates to evaluate the proposed scheme and compare them with optimal values, which can be achieved when a central controller has the perfect entire channel information and the full control of all D2D communications. Our numerical results show that the average sum-rates of the proposed scheme approach the optimal values in low or high signal-to-noise power ratio (SNR) regions. In particular, the proposed scheme achieves almost optimal average sum-rates in the entire SNR values in practical environments.
      Citation: Future Internet
      PubDate: 2017-10-13
      DOI: 10.3390/fi9040062
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 63: Collaborative Web Service Discovery and
           Recommendation Based on Social Link

    • Authors: Lijun Duan, Hao Tian
      First page: 63
      Abstract: With the increasing application of web services in varying fields, the demand of effective Web service discovery approaches is becoming unprecedentedly strong. To improve the performance of service discovery, this paper proposes a collaborative Web service discovery and recommendation mechanism based on social link by extracting the latent relationships behind users and services. The presented approach can generate a set of candidate services through a complementary manner, in which service discovery and service recommendation could collaborate according to the formalized social link. The experimental results reveal that the proposed mechanism can effectively improve the efficiency and precision of Web service discovery.
      Citation: Future Internet
      PubDate: 2017-10-13
      DOI: 10.3390/fi9040063
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 64: IAACaaS: IoT Application-Scoped Access
           Control as a Service

    • Authors: Álvaro Alonso, Federico Fernández, Lourdes Marco, Joaquín Salvachúa
      First page: 64
      Abstract: access control is a key element when guaranteeing the security of online services. However, devices that make the Internet of Things have some special requirements that foster new approaches to access control mechanisms. Their low computing capabilities impose limitations that make traditional paradigms not directly applicable to sensors and actuators. In this paper, we propose a dynamic, scalable, IoT-ready model that is based on the OAuth 2.0 protocol and that allows the complete delegation of authorization, so that an as a service access control mechanism is provided. Multiple tenants are also supported by means of application-scoped authorization policies, whose roles and permissions are fine-grained enough to provide the desired flexibility of configuration. Besides, OAuth 2.0 ensures interoperability with the rest of the Internet, yet preserving the computing constraints of IoT devices, because its tokens provide all the necessary information to perform authorization. The proposed model has been fully implemented in an open-source solution and also deeply validated in the scope of FIWARE, a European project with thousands of users, the goal of which is to provide a framework for developing smart applications and services for the future Internet. We provide the details of the deployed infrastructure and offer the analysis of a sample smart city setup that takes advantage of the model. We conclude that the proposed solution enables a new access control as a service paradigm that satisfies the special requirements of IoT devices in terms of performance, scalability and interoperability.
      Citation: Future Internet
      PubDate: 2017-10-17
      DOI: 10.3390/fi9040064
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 65: An Effective Grouping Method for
           Privacy-Preserving Bike Sharing Data Publishing

    • Authors: A S M Hasan, Qingshan Jiang, Chengming Li
      First page: 65
      Abstract: Bike sharing programs are eco-friendly transportation systems that are widespread in smart city environments. In this paper, we study the problem of privacy-preserving bike sharing microdata publishing. Bike sharing systems collect visiting information along with user identity and make it public by removing the user identity. Even after excluding user identification, the published bike sharing dataset will not be protected against privacy disclosure risks. An adversary may arrange published datasets based on bike’s visiting information to breach a user’s privacy. In this paper, we propose a grouping based anonymization method to protect published bike sharing dataset from linking attacks. The proposed Grouping method ensures that the published bike sharing microdata will be protected from disclosure risks. Experimental results show that our approach can protect user privacy in the released datasets from disclosure risks and can keep more data utility compared with existing methods.
      Citation: Future Internet
      PubDate: 2017-10-18
      DOI: 10.3390/fi9040065
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 66: Deep Classifiers-Based License Plate
           Detection, Localization and Recognition on GPU-Powered Mobile Platform

    • Authors: Syed Rizvi, Denis Patti, Tomas Björklund, Gianpiero Cabodi, Gianluca Francini
      First page: 66
      Abstract: The realization of a deep neural architecture on a mobile platform is challenging, but can open up a number of possibilities for visual analysis applications. A neural network can be realized on a mobile platform by exploiting the computational power of the embedded GPU and simplifying the flow of a neural architecture trained on the desktop workstation or a GPU server. This paper presents an embedded platform-based Italian license plate detection and recognition system using deep neural classifiers. In this work, trained parameters of a highly precise automatic license plate recognition (ALPR) system are imported and used to replicate the same neural classifiers on a Nvidia Shield K1 tablet. A CUDA-based framework is used to realize these neural networks. The flow of the trained architecture is simplified to perform the license plate recognition in real-time. Results show that the tasks of plate and character detection and localization can be performed in real-time on a mobile platform by simplifying the flow of the trained architecture. However, the accuracy of the simplified architecture would be decreased accordingly.
      Citation: Future Internet
      PubDate: 2017-10-21
      DOI: 10.3390/fi9040066
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 67: SDMw: Secure Dynamic Middleware for
           Defeating Port and OS Scanning

    • Authors: Dalal Hanna, Prakash Veeraraghavan, Ben Soh
      First page: 67
      Abstract: Fingerprinting is a process of identifying the remote network devices and services running on the devices, including operating systems (OS) of the devices, and hosts running different OSs. Several research proposals and commercial products are available in the market to defeat fingerprinting. However, they have performance limitations and expose themselves to attackers. In this paper, we utilize some real-time fault-tolerance concepts (viz. real-time/dynamic, detection/locating, confinement/localizing and masking/decoy) to propose a plug-and-play adaptive middleware architecture called Secure Dynamic Middleware (SDMw) with a view to defeat attackers fingerprinting the network, without exposing itself to the attackers. We verify that the proposed scheme works seamlessly and requires zero-configuration at the client side.
      Citation: Future Internet
      PubDate: 2017-10-21
      DOI: 10.3390/fi9040067
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 68: Challenges When Using Jurimetrics in
           Brazil—A Survey of Courts

    • Authors: Bruna Armonas Colombo, Pedro Buck, Vinicius Miana Bezerra
      First page: 68
      Abstract: Jurimetrics is the application of quantitative methods, usually statistics, to law. An important step to implement a jurimetric analysis is to extract raw data from courts and organize that data in a way that can be processed. Most of the raw data is unstructured and written in natural language, which stands as a challenge to Computer Science experts. As it requires expertise in law, statistics, and computer science, jurimetrics is a multidisciplinary field. When trying to implement a jurimetric system in Brazil, additional challenges were identified due to the heterogeneity of the different court systems, the lack of standards, and how the open data laws in Brazil are interpreted and implemented. In this article, we present a survey of Brazilian courts in terms of readiness to implement a jurimetric system. Analyzing a sample of data, we have found, in light of Brazil’s open data regulation, privacy issues and technical issues. Finally, we propose a roadmap that encompasses both technology and public policy to meet those challenges.
      Citation: Future Internet
      PubDate: 2017-10-25
      DOI: 10.3390/fi9040068
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 69: Signal Consensus in TSP of the Same
           Grid in Road Network

    • Authors: Dongyuan Li, Chengshuai Li, Zidong Wang, Deqiang Wang, Jianping Xing, Bo Zhang
      First page: 69
      Abstract: In this paper, we propose a consensus algorithm with input constraints for traffic light signals in transit signal priority (TSP). TSP ensures control strategy of traffic light signals can be adjusted and applied according to the real-time traffic status, and provides priority for buses. We give the convergence conditions of the consensus algorithms with and without input constraints in TSP respectively and analyze the convergence performance of them by using matrix theory and graph theory, and PTV-VISSIM is used to simulate the traffic accident probability of three cases at intersections. Simulation results are presented that a consensus is asymptotically reached for all weights of priority; the algorithm with input constraints is more suitable for TSP than the algorithm without input constraints, and the traffic accident rate is reduced.
      Citation: Future Internet
      PubDate: 2017-10-24
      DOI: 10.3390/fi9040069
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 70: Exploring Data Model Relations in
           OpenStreetMap

    • Authors: Hippolyte Pruvost, Peter Mooney
      First page: 70
      Abstract: The OpenStreetMap (OSM) geographic data model has three principal object types: nodes (points), ways (polygons and polylines), and relations (logical grouping of all three object types to express real-world geographical relationships). While there has been very significant analysis of OSM over the past decade or so, very little research attention has been given to OSM relations. In this paper, we provide an exploratory overview of relations in OSM for four European cities. In this exploration, we undertake analysis of relations to assess their complexity, composition and flexibility within the OSM data model. We show that some of the patterns discovered by researchers related to OSM nodes and ways also exist in relations. We find some other interesting aspects of relations which we believe can act as a catalyst for a more sustained future research effort on relations in OSM. These aspects include: the potential influence of bulk imports of geographical data to OSM, tagging of relations, and contribution patterns of edits to OSM relations.
      Citation: Future Internet
      PubDate: 2017-10-24
      DOI: 10.3390/fi9040070
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 71: FttC-Based Fronthaul for 5G
           Dense/Ultra-Dense Access Network: Performance and Costs in Realistic
           Scenarios

    • Authors: Franco Mazzenga, Romeo Giuliano, Francesco Vatalaro
      First page: 71
      Abstract: One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes) at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.
      Citation: Future Internet
      PubDate: 2017-10-27
      DOI: 10.3390/fi9040071
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 72: Throughput-Aware Cooperative
           Reinforcement Learning for Adaptive Resource Allocation in
           Device-to-Device Communication

    • Authors: Muhidul Khan, Muhammad Alam, Yannick Moullec, Elias Yaacoub
      First page: 72
      Abstract: Device-to-device (D2D) communication is an essential feature for the future cellular networks as it increases spectrum efficiency by reusing resources between cellular and D2D users. However, the performance of the overall system can degrade if there is no proper control over interferences produced by the D2D users. Efficient resource allocation among D2D User equipments (UE) in a cellular network is desirable since it helps to provide a suitable interference management system. In this paper, we propose a cooperative reinforcement learning algorithm for adaptive resource allocation, which contributes to improving system throughput. In order to avoid selfish devices, which try to increase the throughput independently, we consider cooperation between devices as promising approach to significantly improve the overall system throughput. We impose cooperation by sharing the value function/learned policies between devices and incorporating a neighboring factor. We incorporate the set of states with the appropriate number of system-defined variables, which increases the observation space and consequently improves the accuracy of the learning algorithm. Finally, we compare our work with existing distributed reinforcement learning and random allocation of resources. Simulation results show that the proposed resource allocation algorithm outperforms both existing methods while varying the number of D2D users and transmission power in terms of overall system throughput, as well as D2D throughput by proper Resource block (RB)-power level combination with fairness measure and improving the Quality of service (QoS) by efficient controlling of the interference level.
      Citation: Future Internet
      PubDate: 2017-11-01
      DOI: 10.3390/fi9040072
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 73: Quality of Service Based NOMA Group D2D
           Communications

    • Authors: Asim Anwar, Boon-Chong Seet, Xue Li
      First page: 73
      Abstract: Non-orthogonal multiple access (NOMA) provides superior spectral efficiency and is considered as a promising multiple access scheme for fifth generation (5G) wireless systems. The spectrum efficiency can be further enhanced by enabling device-to-device (D2D) communications. In this work, we propose quality of service (QoS) based NOMA (Q-NOMA) group D2D communications in which the D2D receivers (DRs) are ordered according to their QoS requirements. We discuss two possible implementations of proposed Q-NOMA group D2D communications based on the two power allocation coefficient policies. In order to capture the key aspects of D2D communications, which are device clustering and spatial separation, we model the locations of D2D transmitters (DTs) by Gauss–Poisson process (GPP). The DRs are then considered to be clustered around DTs. Multiple DTs can exist in proximity of each other. In order to characterize the performance, we derive the Laplace transform of the interference at the probe D2D receiver and obtain a closed-form expression of its outage probability using stochastic geometry tools. The performance of proposed Q-NOMA group D2D communications is then evaluated and benchmarked against conventional paired D2D communications.
      Citation: Future Internet
      PubDate: 2017-11-01
      DOI: 10.3390/fi9040073
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 74: Efficient Traffic Engineering
           Strategies for Improving the Performance of TCP Friendly Rate Control
           Protocol

    • Authors: Nalavala Reddy, Pakanati Reddy, Mokkala Padmavathamma
      First page: 74
      Abstract: Multimedia services will play a prominent role in the next generation of internet. With increasing real time requirements, internet technology has to provide Quality of Service (QoS) for various kinds of real time streaming services. When the bandwidth required exceeds the available network resources, network paths can get congested, which results in a delay in packet delivery and packet loss. This situation leads to the design of new strategies for congestion avoidance and control. One of the popular and appropriate congestion control mechanisms that is useful in transmitting multimedia applications in the transport layer is TCP Friendly Rate Control Protocol (TFRC). However, TFRC still suffers from packet loss and delay due to long distance heavy traffic and network fluctuations. This paper introduces a number of key concerns like enhanced Round Trip Time (RTT) and Retransmission Time Out (RTO) calculations, Enhanced Average Loss Interval (ALI) methods and improved Time to Live (TTL) features are applied to TFRC to enhance the performance of TFRC over wired networks.
      Citation: Future Internet
      PubDate: 2017-11-01
      DOI: 10.3390/fi9040074
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 75: Creation and Staging of Android Theatre
           “Sayonara”towards Developing Highly Human-Like Robots

    • Authors: Takenobu Chikaraishi, Yuichiro Yoshikawa, Kohei Ogawa, Oriza Hirata, Hiroshi Ishiguro
      First page: 75
      Abstract: Even after long-term exposures, androids with a strikingly human-like appearance evoke unnatural feelings. The behavior that would induce human-like feelings after long exposures is difficult to determine, and it often depends on the cultural background of the observers. Therefore, in this study, we generate an acting performance system for the android, in which an android and a human interact in a stage play in the real world. We adopt the theatrical theory called Contemporary Colloquial Theatre Theory to give the android natural behaviors so that audiences can comfortably observe it even after long-minute exposure. A stage play is created and shown in various locations, and the audiences are requested to report their impressions of the stage and their cultural and psychological backgrounds in a self-evaluating questionnaire. Overall analysis indicates that the audience had positive feelings, in terms of attractiveness, towards the android on the stage even after 20 min of exposure. The singularly high acceptance of the android by Japanese audiences seems to be correlated with a high animism tendency, rather than to empathy. We also discuss how the stage play approach is limited and could be extended to contribute to realization of human–robot interaction in the real world.
      Citation: Future Internet
      PubDate: 2017-11-02
      DOI: 10.3390/fi9040075
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 76: Understanding the Digital Marketing
           Environment with KPIs and Web Analytics

    • Authors: José Ramón Saura, Pedro Palos-Sánchez, Luis Manuel Cerdá Suárez
      First page: 76
      Abstract: In the practice of Digital Marketing (DM), Web Analytics (WA) and Key Performance Indicators (KPIs) can and should play an important role in marketing strategy formulation. It is the aim of this article to survey the various DM metrics to determine and address the following question: What are the most relevant metrics and KPIs that companies need to understand and manage in order to increase the effectiveness of their DM strategies' Therefore, to achieve these objectives, a Systematic Literature Review has been carried out based on two main themes (i) Digital Marketing and (ii) Web Analytics. The search terms consulted in the databases have been (i) DM and (ii) WA obtaining a result total of n = 378 investigations. The databases that have been consulted for the extraction of data were Scopus, PubMed, PsyINFO, ScienceDirect and Web of Science. In this study, we define and identify the main KPIs in measuring why, how and for what purpose users interact with web pages and ads. The main contribution of the study is to lay out and clarify quantitative and qualitative KPIs and indicators for DM performance in order to achieve a consensus on the use and measurement of these indicators.
      Citation: Future Internet
      PubDate: 2017-11-04
      DOI: 10.3390/fi9040076
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 77: A Comprehensive Survey on Real-Time
           Applications of WSN

    • Authors: Ahmad Ali, Yu Ming, Sagnik Chakraborty, Saima Iram
      First page: 77
      Abstract: Nowadays, the investigation of the Wireless Sensor Network (WSN) has materialized its functional area ubiquitously such as environmental engineering, industrial and business applications, military, feedstock and habitat, agriculture sector, seismic detection, intelligent buildings, smart grids, and predictive maintenance, etc. Although some challenges still exist in the wireless sensor network, in spite of the shortcoming, it has been gaining significant attention among researchers and technologists due to its versatility and robustness. WSN is subject to a high potential technology that has been successfully implemented and tested in real-time scenarios, as well as deployed practically in various applications. In this paper, we have carried out an extensive survey in real-time applications of wireless sensor network deployment in a practical scenario such as the real-time intelligent monitoring of temperature, criminal activity in borders and surveillance on traffic monitoring, vehicular behavior on roads, water level and pressure, and remote monitoring of patients. The application of the Wireless Sensor Network in the assorted field of research areas has been widely deliberated. WSN is found to be the most effective solution in remote areas which are not yet explored due to its perilous nature and unreachable places. Here, in this study, we have cited the recent and updated research on the ubiquitous usage of WSN in diverse fields in an extensive and comprehensive approach.
      Citation: Future Internet
      PubDate: 2017-11-07
      DOI: 10.3390/fi9040077
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 78: Proposed Fuzzy-NN Algorithm with
           LoRaCommunication Protocol for Clustered Irrigation Systems

    • Authors: Sotirios Kontogiannis, George Kokkonis, Soultana Ellinidou, Stavros Valsamidis
      First page: 78
      Abstract: Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS) architecture that spatially clusters the irrigation process into autonomous irrigation sections.
      Authors ’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.
      Citation: Future Internet
      PubDate: 2017-11-07
      DOI: 10.3390/fi9040078
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 79: Malicious Cognitive User Identification
           Algorithm in Centralized Spectrum Sensing System

    • Authors: Jingbo Zhang, Lili Cai, Shufang Zhang
      First page: 79
      Abstract: Collaborative spectral sensing can fuse the perceived results of multiple cognitive users, and thus will improve the accuracy of perceived results. However, the multi-source features of the perceived results result in security problems in the system. When there is a high probability of a malicious user attack, the traditional algorithm can correctly identify the malicious users. However, when the probability of attack by malicious users is reduced, it is almost impossible to use the traditional algorithm to correctly distinguish between honest users and malicious users, which greatly reduces the perceived performance. To address the problem above, based on the β function and the feedback iteration mathematical method, this paper proposes a malicious user identification algorithm under multi-channel cooperative conditions (β-MIAMC), which involves comprehensively assessing the cognitive user’s performance on multiple sub-channels to identify the malicious user. Simulation results show under the same attack probability, compared with the traditional algorithm, the β-MIAMC algorithm can more accurately identify the malicious users, reducing the false alarm probability of malicious users by more than 20%. When the attack probability is greater than 7%, the proposed algorithm can identify the malicious users with 100% certainty.
      Citation: Future Internet
      PubDate: 2017-11-08
      DOI: 10.3390/fi9040079
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 80: A Framework for Cloud Based
           E-Government from the Perspective of Developing Countries

    • Authors: Pusp Joshi, Shareeful Islam, Syed Islam
      First page: 80
      Abstract: Despite significant efforts to initiate electronic government projects, developing countries are still struggling to reap the benefits of using e-government services. An effective implementation of e-government infrastructure is necessary to increase the efficiency and transparency of the government services. There are several studies that observed causes like lack of infrastructure support, lack of payment gateway and improper e-government service delivery channel as main barriers to a wider adoption of e-government services. The main contribution of this research is to propose a cloud-based G2G (Government-to-government) e-government framework for a viable e-government solution from the perspective of developing countries. We have introduced a list of concepts and a systematic process to guide the implementation of e-government project based on the government’s vision, goals, chosen services through the service delivery channel to the appropriate cloud service and deployment model. We have used Nepal as a context of the case study and applied the framework to a real e-government project of driving licensing department using action research methodology. The results from the study show that the G2G approach of e-government implementation would be the best for providing effective government services to the stakeholders of developing countries. The proposed framework also supports a smooth integration of government services and reduces the time of the overall project.
      Citation: Future Internet
      PubDate: 2017-11-09
      DOI: 10.3390/fi9040080
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 81: Network Intrusion Detection through
           Discriminative Feature Selection by Using Sparse Logistic Regression

    • Authors: Reehan Shah, Yuntao Qian, Dileep Kumar, Munwar Ali, Muhammad Alvi
      First page: 81
      Abstract: Intrusion detection system (IDS) is a well-known and effective component of network security that provides transactions upon the network systems with security and safety. Most of earlier research has addressed difficulties such as overfitting, feature redundancy, high-dimensional features and a limited number of training samples but feature selection. We approach the problem of feature selection via sparse logistic regression (SPLR). In this paper, we propose a discriminative feature selection and intrusion classification based on SPLR for IDS. The SPLR is a recently developed technique for data analysis and processing via sparse regularized optimization that selects a small subset from the original feature variables to model the data for the purpose of classification. A linear SPLR model aims to select the discriminative features from the repository of datasets and learns the coefficients of the linear classifier. Compared with the feature selection approaches, like filter (ranking) and wrapper methods that separate the feature selection and classification problems, SPLR can combine feature selection and classification into a unified framework. The experiments in this correspondence demonstrate that the proposed method has better performance than most of the well-known techniques used for intrusion detection.
      Citation: Future Internet
      PubDate: 2017-11-10
      DOI: 10.3390/fi9040081
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 82: A Combinational Buffer Management
           Scheme in Mobile Opportunistic Network

    • Authors: Peiyan Yuan, Hai Yu
      First page: 82
      Abstract: Nodes in Mobile Opportunistic Network (MON) have to cache packets to deal with the intermittent connection. The buffer management strategy obviously impacts the performance of MON, and it attracts more attention recently. Due to the limited storage capacity of nodes, traditional buffer management strategies just drop messages based on the property of message, and they neglect the collaboration between neighbors, resulting in an ineffective performance improvement. Therefore, effective buffer management strategies are necessary to ensure that each node has enough buffer space to store the message when the node buffer is close to congestion. In this paper, we propose a buffer management strategy by integrating the characteristics of messages and nodes, and migrate the redundant messages to the neighbor to optimize the total utility, instead of deleting them. The simulation experiment results show that it can obviously improve the delivery ratio, the overhead ratio and the average delays, and reduce the amount of hops compared with the traditional ones.
      Citation: Future Internet
      PubDate: 2017-11-14
      DOI: 10.3390/fi9040082
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 83: Request Expectation Index Based Cache
           Replacement Algorithm for Streaming Content Delivery over ICN

    • Authors: Haipeng Li, Hidenori Nakazato, Syed Ahmed
      First page: 83
      Abstract: Since the content delivery unit over Information-Centric Networking (ICN) has shifted from files to the segments of a file named chunks, solely either file-level or chunk-level request probability is insufficient for ICN cache management. In this paper, a Request Expectation Index (RXI) based cache replacement algorithm for streaming content delivery is proposed. In this algorithm, RXI is introduced to serve as a fine-grained and unified estimation criteria of possible future request probability for cached chunks. RXI is customized for streaming content delivery by adopting both file-level and chunk-level request probability and considering the dynamically varied request status at each route as well. Compared to prior work, the proposed algorithm evicts the chunk with the minimum expectation of future request to maintain a high cache utilization. Additionally, simulation results demonstrate that the RXI-based algorithm can remarkably enhance the streaming content delivery performance and can be deployed in complex network scenarios. The proposed results validate that, by taking fine-grained request probability and request status into consideration, the customized in-network caching algorithm can improve the ICN streaming content delivery performance by high cache utilization, fast content delivery, and lower network traffic.
      Citation: Future Internet
      PubDate: 2017-11-14
      DOI: 10.3390/fi9040083
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 84: Energy-Efficient Resource and Power
           Allocation for Underlay Multicast Device-to-Device Transmission

    • Authors: Fan Jiang, Honglin Wang, Hao Ren, Shuai Xu
      First page: 84
      Abstract: In this paper, we present an energy-efficient resource allocation and power control scheme for D2D (Device-to-Device) multicasting transmission. The objective is to maximize the overall energy-efficiency of D2D multicast clusters through effective resource allocation and power control schemes, while considering the quality of service (QoS) requirements of both cellular users (CUs) and D2D clusters. We first build the optimization model and a heuristic resource and power allocation algorithm is then proposed to solve the energy-efficiency problem with less computational complexity. Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of throughput per energy consumption.
      Citation: Future Internet
      PubDate: 2017-11-14
      DOI: 10.3390/fi9040084
      Issue No: Vol. 9, No. 4 (2017)
       
  • Future Internet, Vol. 9, Pages 23: Security Enhancement for Data Migration
           in the Cloud

    • Authors: Jean Ngnie Sighom, Pin Zhang, Lin You
      First page: 23
      Abstract: In today’s society, cloud computing has significantly impacted nearly every section of our lives and business structures. Cloud computing is, without any doubt, one of the strategic directions for many companies and the most dominating infrastructure for enterprises as long as end users. Instead of buying IT equipment (hardware and/or software) and managing it themselves, many organizations today prefer to buy services from IT service providers. The number of service providers increase dramatically and the cloud is becoming the tools of choice for more cloud storage services. However, as more personal information and data are moved to the cloud, into social media sites, DropBox, Baidu WangPan, etc., data security and privacy issues are questioned. Daily, academia and industry seek to find an efficient way to secure data migration in the cloud. Various solution approaches and encryption techniques have been implemented. In this work, we will discuss some of these approaches and evaluate the popular ones in order to find the elements that affect system performance. Finally, we will propose a model that enhances data security and privacy by combining Advanced Encryption Standard-256, Information Dispersal Algorithms and Secure Hash Algorithm-512. Our protocol achieves provable security assessments and fast execution times for medium thresholds.
      PubDate: 2017-06-22
      DOI: 10.3390/fi9030023
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 24: A Novel Iterative Thresholding
           Algorithm Based on Plug-and-Play Priors for Compressive Sampling

    • Authors: Lingjun Liu, Zhonghua Xie, Cui Yang
      First page: 24
      Abstract: We propose a novel fast iterative thresholding algorithm for image compressive sampling (CS) recovery using three existing denoisers—i.e., TV (total variation), wavelet, and BM3D (block-matching and 3D filtering) denoisers. Through the use of the recently introduced plug-and-play prior approach, we turn these denoisers into CS solvers. Thus, our method can jointly utilize the global and nonlocal sparsity of images. The former is captured by TV and wavelet denoisers for maintaining the entire consistency; while the latter is characterized by the BM3D denoiser to preserve details by exploiting image self-similarity. This composite constraint problem is then solved with the fast composite splitting technique. Experimental results show that our algorithm outperforms several excellent CS techniques.
      PubDate: 2017-06-24
      DOI: 10.3390/fi9030024
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 25: Banking on Blockchain: Costs Savings
           Thanks to the Blockchain Technology

    • Authors: Luisanna Cocco, Andrea Pinna, Michele Marchesi
      First page: 25
      Abstract: This paper looks at the challenges and opportunities of implementing blockchain technology across banking, providing food for thought about the potentialities of this disruptive technology. The blockchain technology can optimize the global financial infrastructure, achieving sustainable development, using more efficient systems than at present. In fact, many banks are currently focusing on blockchain technology to promote economic growth and accelerate the development of green technologies. In order to understand the potential of blockchain technology to support the financial system, we studied the actual performance of the Bitcoin system, also highlighting its major limitations, such as the significant energy consumption due to the high computing power required, and the high cost of hardware. We estimated the electrical power and the hash rate of the Bitcoin network, over time, and, in order to evaluate the efficiency of the Bitcoin system in its actual operation, we defined three quantities: “economic efficiency”, “operational efficiency”, and “efficient service”. The obtained results show that by overcoming the disadvantages of the Bitcoin system, and therefore of blockchain technology, we could be able to handle financial processes in a more efficient way than under the current system.
      PubDate: 2017-06-27
      DOI: 10.3390/fi9030025
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 26: Cryptographic Key Management in Delay
           Tolerant Networks: A Survey

    • Authors: Sofia Anna Menesidou, Vasilios Katos, Georgios Kambourakis
      First page: 26
      Abstract: Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs) have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with (a) security initialization, (b) key establishment, and (c) key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research.
      PubDate: 2017-06-27
      DOI: 10.3390/fi9030026
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 27: A Security Framework for the Internet
           of Things in the Future Internet Architecture

    • Authors: Xiruo Liu, Meiyuan Zhao, Sugang Li, Feixiong Zhang, Wade Trappe
      First page: 27
      Abstract: The Internet of Things (IoT) is a recent trend that extends the boundary of the Internet to include a wide variety of computing devices. Connecting many stand-alone IoT systems through the Internet introduces many challenges, with security being front-and-center since much of the collected information will be exposed to a wide and often unknown audience. Unfortunately, due to the intrinsic capability limits of low-end IoT devices, which account for a majority of the IoT end hosts, many traditional security methods cannot be applied to secure IoT systems, which open a door for attacks and exploits directed both against IoT services and the broader Internet. This paper addresses this issue by introducing a unified IoT framework based on the MobilityFirst future Internet architecture that explicitly focuses on supporting security for the IoT. Our design integrates local IoT systems into the global Internet without losing usability, interoperability and security protection. Specifically, we introduced an IoT middleware layer that connects heterogeneous hardware in local IoT systems to the global MobilityFirst network. We propose an IoT name resolution service (IoT-NRS) as a core component of the middleware layer, and develop a lightweight keying protocol that establishes trust between an IoT device and the IoT-NRS.
      PubDate: 2017-06-28
      DOI: 10.3390/fi9030027
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 28: Design and Development of a Real-Time
           Monitoring System for Multiple Lead–Acid Batteries Based on Internet of
           Things

    • Authors: Ashish Rauniyar, Mohammad Irfan, Oka Saputra, Jin Kim, Ah Lee, Jae Jang, Soo Shin
      First page: 28
      Abstract: In this paper, real-time monitoring of multiple lead-acid batteries based on Internet of things is proposed and evaluated. Our proposed system monitors and stores parameters that provide an indication of the lead acid battery’s acid level, state of charge, voltage, current, and the remaining charge capacity in a real-time scenario. To monitor these lead–acid battery parameters, we have developed a data acquisition system by building an embedded system, i.e., dedicated hardware and software. The wireless local area network is used as the backbone network. The information collected from all the connected battery clients in the system is analyzed in an asynchronous transmission control protocol/user datagram protocol-based C♯ server program running on a personal computer (server) to determine important parameters like the state of charge of the individual battery, and if required, appropriate action can be taken in advance to prevent excessive impairment to the battery. Further, data are also displayed on an Android mobile device and are stored in an SQL server database. We have developed a real prototype to devise an end product for our proposed system.
      PubDate: 2017-06-29
      DOI: 10.3390/fi9030028
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 29: Deducing Energy Consumer Behavior from
           Smart Meter Data

    • Authors: Emad Ebeid, Rune Heick, Rune Jacobsen
      First page: 29
      Abstract: The ongoing upgrade of electricity meters to smart ones has opened a new market of intelligent services to analyze the recorded meter data. This paper introduces an open architecture and a unified framework for deducing user behavior from its smart main electricity meter data and presenting the results in a natural language. The framework allows a fast exploration and integration of a variety of machine learning algorithms combined with data recovery mechanisms for improving the recognition’s accuracy. Consequently, the framework generates natural language reports of the user’s behavior from the recognized home appliances. The framework uses open standard interfaces for exchanging data. The framework has been validated through comprehensive experiments that are related to an European Smart Grid project.
      Citation: Future Internet
      PubDate: 2017-07-06
      DOI: 10.3390/fi9030029
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 30: Feasibility Study of a Socially
           Assistive Humanoid Robot for Guiding Elderly Individuals during Walking

    • Authors: Chiara Piezzo, Kenji Suzuki
      First page: 30
      Abstract: The impact of the world-wide ageing population has commenced with respect to society in developed countries. Several researchers focused on exploring new methods to improve the quality of life of elderly individuals by allowing them to remain independent and healthy to the maximum possible extent. For example, new walking aids are designed to allow elderly individuals to remain mobile in a safe manner because the importance of walking is well-known. The aim of the present study involves designing a humanoid robot guide as a walking trainer for elderly individuals. It is hypothesized that the same service robot provides an assistive and social contribution with respect to interaction between elderly users by motivating them to walk more and simultaneously provides assistance, such as physical assistance and gait monitoring, while walking. This study includes a detailed statement of the research problem as well as a literature review of existing studies related to walking companion robots. A user-centred design approach is adopted to report the results of the current first feasibility study by using a commercially available humanoid robot known as Pepper developed by Softbank-Aldebaran. A quantitative questionnaire was used to investigate all elements that assess intrinsic motivation in users while performing a given activity. Conversely, basic gait data were acquired through a video analysis to test the capability of the robot to modify the gait of human users. The results in terms of the feedback received from elderly subjects and the literature review improve the design of the walking trainer for elderly individuals.
      Citation: Future Internet
      PubDate: 2017-07-08
      DOI: 10.3390/fi9030030
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 31: NB-IoT for D2D-Enhanced Content
           Uploading with Social Trustworthiness in 5G Systems †

    • Authors: Leonardo Militano, Antonino Orsino, Giuseppe Araniti, Antonio Iera
      First page: 31
      Abstract: Future fifth-generation (5G) cellular systems are set to give a strong boost to the large-scale deployment of Internet of things (IoT). In the view of a future converged 5G-IoT infrastructure, cellular IoT solutions such as narrowband IoT (NB-IoT) and device-to-device (D2D) communications are key technologies for supporting IoT scenarios and applications. However, some open issues still need careful investigation. An example is the risk of threats to privacy and security when IoT mobile services rely on D2D communications. To guarantee efficient and secure connections to IoT services involving exchange of sensitive data, reputation-based mechanisms to identify and avoid malicious devices are fast gaining ground. In order to tackle the presence of malicious nodes in the network, this paper introduces reliability and reputation notions to model the level of trust among devices engaged in an opportunistic hop-by-hop D2D-based content uploading scheme. To this end, social awareness of devices is considered as a means to enhance the identification of trustworthy nodes. A performance evaluation study shows that the negative effects due to malicious nodes can be drastically reduced by adopting the proposed solution. The performance metrics that proved to benefit from the proposed solution are data loss, energy consumption, and content uploading time.
      Citation: Future Internet
      PubDate: 2017-07-08
      DOI: 10.3390/fi9030031
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 32: User Modelling Validation over the
           Security Awareness of Digital Natives

    • Authors: Vasileios Gkioulos, Gaute Wangen, Sokratis Katsikas
      First page: 32
      Abstract: Young generations make extensive use of mobile devices, such as smart-phones, tablets and laptops, for a variety of daily tasks with potentially critical impact, while the number of security breaches via portable devices increases exponentially. A plethora of security risks associated with these devices are induced by design shortcomings and vulnerabilities related to user behavior. Therefore, deploying suitable risk treatments requires the investigation of how security experts perceive the digital natives (young people, born in the digital era), when utilizing their user behavior models in the design and analysis of related systems. In this article, we present the results of a survey performed across a multinational sample of security professionals, in comparison to our earlier study over the security awareness of digital natives. Through this study, we seek to identify divergences between user behavior and the conceptual user-models that security experts utilise in their professional tasks. Our results indicate that the experts understanding over the user behaviour does not follow a solidified user-model, while influences from personal perceptions and randomness are also noticeable.
      Citation: Future Internet
      PubDate: 2017-07-10
      DOI: 10.3390/fi9030032
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 33: Robust Image Embedded Watermarking
           Using DCT and Listless SPIHT

    • Authors: J. Shivani, Ranjan Senapati
      First page: 33
      Abstract: This paper presents a DCT-based (DCT: discrete cosine transform) listless set partitioning in hierarchical trees (SPIHT) digital watermarking technique that is robust against several common attacks such as cropping, filtering, sharpening, noise, inversion, contrast manipulation, and compression. The proposed technique is made further robust by the incorporation of the Chinese remainder theorem (CRT) encryption technique. Our scheme is compared with the recently proposed CRT-based DCT technique, CRT-based spatial domain watermarking, and DCT-based inter block correlation techniques. Extensive simulation experiments show better robustness in common image manipulations and, at the same time, the proposed technique successfully makes the watermark perceptually invisible. A better Tamper Assessment Function (TAF) value of 2–15% and a better Normalized Correlation (NC) is achieved compared to some of the above techniques. In particular, the proposed technique shows better robustness on compression attacks at moderate to higher compression ratios. It is possible to maintain the imperceptibility and low TAF for various values by doubling the capacity of the watermark.
      Citation: Future Internet
      PubDate: 2017-07-12
      DOI: 10.3390/fi9030033
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 34: G-Networks with Adders

    • Authors: Jean-Michel Fourneau, Erol Gelenbe
      First page: 34
      Abstract: : Queueing networks are used to model the performance of the Internet, of manufacturing and job-shop systems, supply chains, and other networked systems in transportation or emergency management. Composed of service stations where customers receive service, and then move to another service station till they leave the network, queueing networks are based on probabilistic assumptions concerning service times and customer movement that represent the variability of system workloads. Subject to restrictive assumptions regarding external arrivals, Markovian movement of customers, and service time distributions, such networks can be solved efficiently with “product form solutions” that reduce the need for software simulators requiring lengthy computations. G-networks generalise these models to include the effect of “signals” that re-route customer traffic, or negative customers that reject service requests, and also have a convenient product form solution. This paper extends G-networks by including a new type of signal, that we call an “Adder”, which probabilistically changes the queue length at the service center that it visits, acting as a load regulator. We show that this generalisation of G-networks has a product form solution.
      Citation: Future Internet
      PubDate: 2017-07-10
      DOI: 10.3390/fi9030034
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 35: Combining Adaptive Holonic Control and
           ISA-95 Architectures to Self-Organize the Interaction in a
           Worker-Industrial Robot Cooperative Workcell

    • Authors: Ahmed Sadik, Bodo Urban
      First page: 35
      Abstract: Self-Organization is a spontaneous trend which exists in nature among different organisms. Self-organization refers to the process where some form of an overall order arises in a group due to the local interaction among the members of this group. In manufacturing, a similar definition of a Reconfigurable Manufacturing System (RMS) can be found. RMS is a system where the production components and functions can be modified, rearranged and/or interchanged in a timely and cost-effective manner to quickly respond to the production requirements. The definition of the RMS concept implies that the self-organization is an important key factor to fulfil that concept. A case study where a cooperation among a variable number of Industrial Robots (IRs) and workers is studied to show the importance of the research problem. The goal of the paper is to offer a suitable generic control and interaction architecture solution model, which obtains the self-organization from the RMS point of view. Ultimately, applying the proposed solution concept to the case study.
      Citation: Future Internet
      PubDate: 2017-07-14
      DOI: 10.3390/fi9030035
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 36: An Extended Framework for Recovering
           From Trust Breakdowns in Online Community Settings

    • Authors: Ruchdee Binmad, Mingchu Li, Zhen Wang, Nakema Deonauth, Chettupally Carie
      First page: 36
      Abstract: The violation of trust as a result of interactions that do not proceed as expected gives rise to the question as to whether broken trust can possibly be recovered. Clearly, trust recovery is more complex than trust initialization and maintenance. Trust recovery requires a more complex mechanism to explore different factors that cause the decline of trust and identify the affected individuals of trust violation both directly and indirectly. In this study, an extended framework for recovering trust is presented. Aside from evaluating whether there is potential for recovery based on the outcome of a forgiveness mechanism after a trust violation, encouraging cooperation between interacting parties after a trust violation through incentive mechanisms is also important. Furthermore, a number of experiments are conducted to validate the applicability of the framework and the findings show that the e-marketplace incorporating our proposed framework results in improved efficiency of trading, especially in long-term interactions.
      Citation: Future Internet
      PubDate: 2017-07-17
      DOI: 10.3390/fi9030036
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 37: A Novel Hybrid-Copy Algorithm for Live
           Migration of Virtual Machine

    • Authors: Zhou Lei, Exiong Sun, Shengbo Chen, Jiang Wu, Wenfeng Shen
      First page: 37
      Abstract: Live migration of virtual machines is an important approach for dynamic resource scheduling in cloud environment. The hybrid-copy algorithm is an excellent algorithm that combines the pre-copy algorithm with the post-copy algorithm to remedy the defects of the pre-copy algorithm and the post-copy algorithm. Currently, the hybrid-copy algorithm only copies all memory pages once in advance. In a write-intensive workload, copy memory pages once may be enough. However, more iterative copy rounds can significantly reduce the page faults in a read-intensive workload. In this paper, we propose a new parameter to decide the appropriate time to stop the iterative copy phase based on real-time situation. We use a Markov model to forecast the memory access pattern. Based on the predicted results and the analysis of the actual situation, the memory page transfer order would be adjusted to reduce the invalid transfers. The novel hybrid-copy algorithm is implemented on the Xen platform. The experimental results demonstrate that our mechanism has good performance both on read-intensive workloads and write-intensive workloads.
      Citation: Future Internet
      PubDate: 2017-07-18
      DOI: 10.3390/fi9030037
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 38: Interference-Aware Opportunistic
           Dynamic Energy Saving Mechanism for Wi-Fi Enabled IoTs

    • Authors: Il-Gu Lee
      First page: 38
      Abstract: The wireless local area network (WLAN) is one of the most popular wireless technologies offering connectivity today, and one of the candidates for the internet of things (IoTs). However, WLAN’s inefficiency in terms of complexity and relatively large power consumption compared with other wireless standards has been reported as a major barrier for IoTs applications. This paper proposes an interference-aware opportunistic dynamic energy saving mechanism to improve energy efficiency for Wi-Fi enabled IoTs. The proposed scheme optimizes operating clock frequencies adaptively for signal processing when the mobile station transmits packets in partial sub-channels. Evaluation results demonstrate that the proposed scheme improves energy efficiency by approximately 34%.
      Citation: Future Internet
      PubDate: 2017-07-18
      DOI: 10.3390/fi9030038
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 39: Azure-Based Smart Monitoring System for
           Anemia-Like Pallor

    • Authors: Sohini Roychowdhury, Paul Hage, Joseph Vasquez
      First page: 39
      Abstract: Increasing costs of diagnostic healthcare have necessitated the development of hardware independent non-invasive Point of Care (POC) systems. Although anemia prevalence rates in global populations vary between 10% and 60% in various demographic groups, smart monitoring systems have not yet been developed for screening and tracking anemia-like pallor. In this work, we present two cloud platform-hosted POC applications that are directed towards smart monitoring of anemia-like pallor through eye and tongue pallor site images. The applications consist of a front-end graphical user interface (GUI) module and two different back-end image processing and machine learning modules. Both applications are hosted on a browser accessible tomcat server ported to an Azure Virtual Machine (VM). We observe that the first application spatially segments regions of interest from pallor site images with higher pallor classification accuracy and relatively longer processing times when compared to the lesser accurate yet faster second application. Also, both applications achieve 65%–98% accuracy in separating normal images from images with pallor or abnormalities. The optimized front-end module is significantly light-weight with a run-through time ratio of 10−5 with respect to the back-end modules. Thus, the proposed applications are portable and hardware independent, allowing for their use in pallor monitoring and screening tasks.
      Citation: Future Internet
      PubDate: 2017-07-26
      DOI: 10.3390/fi9030039
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 40: Visual Interface Evaluation for
           Wearables Datasets: Predicting the Subjective Augmented Vision Image QoE
           and QoS

    • Authors: Brian Bauman, Patrick Seeling
      First page: 40
      Abstract: As Augmented Reality (AR) applications become commonplace, the determination of a device operator’s subjective Quality of Experience (QoE) in addition to objective Quality of Service (QoS) metrics gains importance. Human subject experimentation is common for QoE relationship determinations due to the subjective nature of the QoE. In AR scenarios, the overlay of displayed content with the real world adds to the complexity. We employ Electroencephalography (EEG) measurements as the solution to the inherent subjectivity and situationality of AR content display overlaid with the real world. Specifically, we evaluate prediction performance for traditional image display (AR) and spherical/immersive image display (SAR) for the QoE and underlying QoS levels. Our approach utilizing a four-position EEG wearable achieves high levels of accuracy. Our detailed evaluation of the available data indicates that less sensors would perform almost as well and could be integrated into future wearable devices. Additionally, we make our Visual Interface Evaluation for Wearables (VIEW) datasets from human subject experimentation publicly available and describe their utilization.
      Citation: Future Internet
      PubDate: 2017-07-28
      DOI: 10.3390/fi9030040
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 41: Study on a Quality Evaluation Method
           for College English Classroom Teaching

    • Authors: Mao-hua Sun, Yuan-gang Li, Bing He
      First page: 41
      Abstract: A quality evaluation method is an important means and the main basis on which to evaluate the college English classroom teaching quality of teachers. To overcome the one-sided subjectivity and resulting imprecision of the traditional classroom teaching quality evaluation method, a scientific and reasonable quality evaluation index system for college English classroom teaching is constructed. The fuzzy comprehensive evaluation method and the analytic hierarchy process method are combined to propose an improved multi-level fuzzy comprehensive evaluation model for obtaining a new college English classroom teaching quality evaluation method. In the proposed method, according to the fuzzy characteristics of a college English classroom teaching quality evaluation, the fuzzy comprehensive evaluation method is used to transform the qualitative evaluation indexes into limited quantitative evaluation indexes, then a judgment matrix is constructed to determine the weights among different levels by using the analytic hierarchy process method. Additionally, the college English classroom teaching quality is evaluated in detail. Finally, an actual case of college English classroom teaching is used to verify the effectiveness of the college English classroom teaching quality evaluation method. The results show that the proposed college English classroom teaching method can overcome the subjectivity and randomness shortcomings of the traditional classroom teaching quality evaluation methods, and improve the reliability, accuracy, and objectivity of fuzzy comprehensive evaluation. It is an effective method to evaluate college English classroom teaching quality.
      Citation: Future Internet
      PubDate: 2017-07-30
      DOI: 10.3390/fi9030041
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 42: A Multimodal Perception Framework for
           Users Emotional State Assessment in Social Robotics

    • Authors: Lorenzo Cominelli, Nicola Carbonaro, Daniele Mazzei, Roberto Garofalo, Alessandro Tognetti, Danilo De Rossi
      First page: 42
      Abstract: In this work, we present an unobtrusive and non-invasive perception framework based on the synergy between two main acquisition systems: the Touch-Me Pad, consisting of two electronic patches for physiological signal extraction and processing; and the Scene Analyzer, a visual-auditory perception system specifically designed for the detection of social and emotional cues. It will be explained how the information extracted by this specific kind of framework is particularly suitable for social robotics applications and how the system has been conceived in order to be used in human-robot interaction scenarios.
      Citation: Future Internet
      PubDate: 2017-08-01
      DOI: 10.3390/fi9030042
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 43: A Survey of Denial-of-Service and
           Distributed Denial of Service Attacks and Defenses in Cloud Computing

    • Authors: Adrien Bonguet, Martine Bellaiche
      First page: 43
      Abstract: Cloud Computing is a computing model that allows ubiquitous, convenient and on-demand access to a shared pool of highly configurable resources (e.g., networks, servers, storage, applications and services). Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are serious threats to the Cloud services’ availability due to numerous new vulnerabilities introduced by the nature of the Cloud, such as multi-tenancy and resource sharing. In this paper, new types of DoS and DDoS attacks in Cloud Computing are explored, especially the XML-DoS and HTTP-DoS attacks, and some possible detection and mitigation techniques are examined. This survey also provides an overview of the existing defense solutions and investigates the experiments and metrics that are usually designed and used to evaluate their performance, which is helpful for the future research in the domain.
      Citation: Future Internet
      PubDate: 2017-08-05
      DOI: 10.3390/fi9030043
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 44: Multicell Interference Management in
           Device to Device Underlay Cellular Networks

    • Authors: Georgios Katsinis, Eirini Tsiropoulou, Symeon Papavassiliou
      First page: 44
      Abstract: In this paper, the problem of interference mitigation in a multicell Device to Device (D2D) underlay cellular network is addressed. In this type of network architectures, cellular users and D2D users share common Resource Blocks (RBs). Though such paradigms allow potential increase in the number of supported users, the latter comes at the cost of interference increase that in turn calls for the design of efficient interference mitigation methodologies. To treat this problem efficiently, we propose a two step approach, where the first step concerns the efficient RB allocation to the users and the second one the transmission power allocation. Specifically, the RB allocation problem is formulated as a bilateral symmetric interaction game. This assures the existence of a Nash Equilibrium (NE) point of the game, while a distributed algorithm, which converges to it, is devised. The power allocation problem is formulated as a linear programming problem per RB, and the equivalency between this problem and the total power minimization problem is shown. Finally, the operational effectiveness of the proposed approach is evaluated via numerical simulations, while its superiority against state of the art approaches existing in the recent literature is shown in terms of increased number of supported users, interference reduction and power minimization.
      Citation: Future Internet
      PubDate: 2017-08-07
      DOI: 10.3390/fi9030044
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 45: A Robust Image Watermarking Scheme
           Based on SVD in the Spatial Domain

    • Authors: Heng Zhang, Chengyou Wang, Xiao Zhou
      First page: 45
      Abstract: With the development of image processing technology, the copyright protection of digital images has become an urgent problem to be solved. As an effective method, the robust digital watermarking technique emerges at a historic moment. Currently, most robust watermarking schemes are performed in the transform domains, such as the discrete cosine transform (DCT) and singular value decomposition (SVD). Compared with spatial domain watermarking schemes, these methods have achieved good performance, such as better robustness and higher security. However, the computational complexity increases with the use of forward and reverse transforms. In this paper, we analyze the SVD-based watermarking scheme and its impact on the spatial domain. Based on this analysis and the mathematical characteristics of SVD, we present a robust image watermarking scheme where a binary watermark is embedded into the largest singular value of each image block in the spatial domain. Several experiments are conducted to verify the performance of the proposed watermarking scheme. The experimental results show that compared with the existing SVD domain watermarking schemes, our proposed method has maintained good robustness against various attacks. Moreover, it avoids the false positive problem existing in traditional SVD-based watermarking schemes and has lower computational complexity.
      Citation: Future Internet
      PubDate: 2017-08-07
      DOI: 10.3390/fi9030045
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 46: Digital Pre-Distortion of Carrier
           Frequency Offset for Reliable Wi-Fi Enabled IoTs

    • Authors: Il-Gu Lee
      First page: 46
      Abstract: The Internet of Things (IoTs) will change the requirements for wireless connectivity significantly, mainly with regard to service coverage, data rate, and energy efficiency. Therefore, to improve robustness and reliability, WiFi-enabled IoT devices have been developed to use narrowband communication. However, narrowband transmission in WiFi such as IEEE 802.11ah causes relatively higher frequency error due to the reduced subcarrier space, which is larger than legacy wireless local area networks (WLANs) in 2.4/5 GHz frequencies. In a direct conversion receiver, this error degrades the signal quality due to the presence of direct current (DC) offset cancellation circuits. In this paper, a digital carrier frequency offset (CFO) predistortion scheme is proposed for a reliable communication link in dense networks. Evaluation results demonstrate that the proposed scheme can improve received signal quality in terms of packet error rate and error vector magnitude.
      Citation: Future Internet
      PubDate: 2017-08-09
      DOI: 10.3390/fi9030046
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 47: Cost-Aware IoT Extension of DISSECT-CF

    • Authors: Andras Markus, Attila Kertesz, Gabor Kecskemeti
      First page: 47
      Abstract: In the age of the Internet of Things (IoT), more and more sensors, actuators and smart devices get connected to the network. Application providers often combine this connectivity with novel scenarios involving cloud computing. Before implementing changes in these large-scale systems, an in-depth analysis is often required to identify governance models, bottleneck situations, costs and unexpected behaviours. Distributed systems simulators help in such analysis, but they are often problematic to apply in this newly emerging domain. For example, most simulators are either too detailed (e.g., need extensive knowledge on networking), or not extensible enough to support the new scenarios. To overcome these issues, we discuss our IoT cost analysis oriented extension of DIScrete event baSed Energy Consumption simulaTor for Clouds and Federations (DISSECT-CF). Thus, we present an in-depth analysis of IoT and cloud related pricing models of the most widely used commercial providers. Then, we show how the fundamental properties (e.g., data production frequency) of IoT entities could be linked to the identified pricing models. To allow the adoption of unforeseen scenarios and pricing schemes, we present a declarative modelling language to describe these links. Finally, we validate our extensions by analysing the effects of various identified pricing models through five scenarios coming from the field of weather forecasting.
      Citation: Future Internet
      PubDate: 2017-08-14
      DOI: 10.3390/fi9030047
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 48: Flow Shop Scheduling Problem and
           Solution in Cooperative Robotics—Case-Study: One Cobot in Cooperation
           with One Worker

    • Authors: Ahmed Sadik, Bodo Urban
      First page: 48
      Abstract: This research combines between two different manufacturing concepts. On the one hand, flow shop scheduling is a well-known problem in production systems. The problem appears when a group of jobs shares the same processing sequence on two or more machines sequentially. Flow shop scheduling tries to find the appropriate solution to optimize the sequence order of this group of jobs over the existing machines. The goal of flow shop scheduling is to obtain the continuity of the flow of the jobs over the machines. This can be obtained by minimizing the delays between two consequent jobs, therefore the overall makespan can be minimized. On the other hand, collaborative robotics is a relatively recent approach in production where a collaborative robot (cobot) is capable of a close proximity cooperation with the human worker to increase the manufacturing agility and flexibility. The simplest case-study of a collaborative workcell is one cobot in cooperation with one worker. This collaborative workcell can be seen as a special case of the shop flow scheduling problem, where the required time from the worker to perform a specific job is unknown and variable. Therefore, during this research, we implement an intelligent control solution which can optimize the flow shop scheduling problem over the previously mentioned case-study.
      Citation: Future Internet
      PubDate: 2017-08-16
      DOI: 10.3390/fi9030048
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 49: Future Intelligent Systems and Networks

    • Authors: Carmen de-Pablos-Heredero
      First page: 49
      Abstract: n/a
      Citation: Future Internet
      PubDate: 2017-09-02
      DOI: 10.3390/fi9030049
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 50: ARAAC: A Rational Allocation Approach
           in Cloud Data Center Networks

    • Authors: Ahmad Quttoum, Ayoub Alsarhan, Abidalrahman Moh’d
      First page: 50
      Abstract: The expansion of telecommunication technologies touches almost all aspects life that we are living nowadays. Indeed, such technologies have emerged as a fourth essential utility alongside the traditional utilities of electricity, water, and gas. In this context, Cloud Data Center Networks (cloud-DCNs) have been proposed as a promising way to cope with such a high-tech era and with any expected trends in future computing networks. Resources of cloud-DCNs are leased to the interested users in the form of services, such services come in different models that vary between software, platform, and infrastructure. The leasing process of any service model starts with the users (i.e., service tenants). A tenant asks for the service resources, and the cloud-provider allocates the resources with a charge that follows a predefined cost policy. Cloud resources are limited, and those cloud providers have profit objectives to be satisfied. Thus, to comply with the aforementioned promise, the limited resources need to be carefully allocated. Existing allocation proposals in the literature dealt with this problem in varying ways. However, none proposes a win-win allocation model that satisfies both the providers and tenants. This work proposes A Rational Allocation Approach in Cloud Data Center Networks (ARAAC) that efficiently allocates the available cloud resources, in a way that allows for a win-win environment to satisfy both parties: the providers and tenants. To do so, ARAAC deploys the Second Best-Price (SBP) mechanism along with a behavioral-based reputation model. The reputation is built according to the tenants’ utilization history throughout their previous service allocations. The reputation records along with the adoption of the SBP mechanism allows for a locally free-equilibrium approach that allocates the available cloud-DCN resources in an efficient and fair manner. In ARAAC, through an auction scenario, tenants with positive reputation records are awarded by having the required resources allocated at prices that are lower than what they have offered. Compared to other benchmark models, simulation results show that ARAAC can efficiently adapt the behavior of those rational service-tenants to provide for better use of the cloud resources, with an increase in the providers’ profits.
      Citation: Future Internet
      PubDate: 2017-09-06
      DOI: 10.3390/fi9030050
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 51: Local Path Planning of Driverless Car
           Navigation Based on Jump Point Search Method Under Urban Environment

    • Authors: Kaijun Zhou, Lingli Yu, Ziwei Long, Siyao Mo
      First page: 51
      Abstract: The Jump Point Search (JPS) algorithm is adopted for local path planning of the driverless car under urban environment, and it is a fast search method applied in path planning. Firstly, a vector Geographic Information System (GIS) map, including Global Positioning System (GPS) position, direction, and lane information, is built for global path planning. Secondly, the GIS map database is utilized in global path planning for the driverless car. Then, the JPS algorithm is adopted to avoid the front obstacle, and to find an optimal local path for the driverless car in the urban environment. Finally, 125 different simulation experiments in the urban environment demonstrate that JPS can search out the optimal and safety path successfully, and meanwhile, it has a lower time complexity compared with the Vector Field Histogram (VFH), the Rapidly Exploring Random Tree (RRT), A*, and the Probabilistic Roadmaps (PRM) algorithms. Furthermore, JPS is validated usefully in the structured urban environment.
      Citation: Future Internet
      PubDate: 2017-09-12
      DOI: 10.3390/fi9030051
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 52: Design for Children’s Playful
           Learning with Robots

    • Authors: Maria Lupetti, Yuan Yao, Haipeng Mi, Claudio Germak
      First page: 52
      Abstract: This article presents an investigation of the implications of designing for children’s playful learning with robots. This study was carried out by adopting a Research through Design approach that resulted in the development of a novel low-anthropomorphic robot called Shybo. The article reports the main phases of the project: the preliminary and exploratory research that was carried out to define a list of design requirements; the design of the robot and its supplementary materials for carrying out playful learning experiences; and the evaluation of the project that involved both parents and children. The robot, in fact, was finally tested as part of a two-hour experience that engaged children in activities related to the associations between sounds and colours. The article presents and discusses the results of this evaluation to point out positive aspects of the experience, emerging issues and hints for future works. These are documented to share lessons learned that might be supportive of the general development of children’s playful learning and cognitive experiences with robots.
      Citation: Future Internet
      PubDate: 2017-09-18
      DOI: 10.3390/fi9030052
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 53: Towards a New Digital Era: Observing
           Local E-Government Services Adoption in a Chinese Municipality

    • Authors: Yao Yang
      First page: 53
      Abstract: As electronic government services (e-government) evolve, traditional applications such as online portals are encountering challenges in a new digital era in which people thirst for more convenient, diverse channels of communication with their government. Despite the efforts devoted to the promotion of Social Networking Service (SNS) use in e-government for the past few years, empirical studies regarding this ongoing trend are still insufficient. In the local administration of China, a special collaboration between local governments and private Internet enterprises is happening: government services are imported into commercial SNS platforms known as WeChat and Weibo. This research conducts a case study of a Chinese municipality premised upon survey data (N = 605) collected in Chongqing. It examines the determinants of e-services adoption in four major local applications: two traditional government-led services “Government website portal” and “Government official app” (traditional government-led services), and two built-in government services on social networking applications “Weibo Government official account” “WeChat Public Services”. The paper aims to provide a closer understanding of current trends in local government e-services, or in this case, an innovative trial of Chinese e-government practices.
      Citation: Future Internet
      PubDate: 2017-09-20
      DOI: 10.3390/fi9030053
      Issue No: Vol. 9, No. 3 (2017)
       
  • Future Internet, Vol. 9, Pages 10: Decentralized Blind Spectrum Selection
           in Cognitive Radio Networks Considering Handoff Cost

    • Authors: Yongqun Chen, Huaibei Zhou, Ruoshan Kong, Li Zhu, Huaqing Mao
      First page: 10
      Abstract: Due to the spectrum varying nature of cognitive radio networks, secondary users are required to perform spectrum handoffs when the spectrum is occupied by primary users, which will lead to a handoff delay. In this paper, based on the multi-armed bandit framework of medium access in decentralized cognitive radio networks, we investigate blind spectrum selection problem of secondary users whose sensing ability of cognitive radio is limited and the channel statistics are a priori unknown, taking the handoff delay as a fixed handoff cost into consideration. In this scenario, secondary users have to make the choice of either staying foregoing spectrum with low availability or handing off to another spectrum with higher availability. We model the problem and investigate the performance of three representative policies, i.e., ρPRE, SL(K), kth-UCB1. The simulation results show that, despite the inclusion of the fixed handoff cost, these policies achieve the same asymptotic performance as that without handoff cost. Moreover, through comparison of these policies, we found the kth-UCB1 policy has better overall performance.
      PubDate: 2017-03-31
      DOI: 10.3390/fi9020010
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 11: Participation and Privacy Perception in
           Virtual Environments: The Role of Sense of Community, Culture and Gender
           between Italian and Turkish

    • Authors: Andrea Guazzini, Ayça Saraç, Camillo Donati, Annalisa Nardi, Daniele Vilone, Patrizia Meringolo
      First page: 11
      Abstract: Advancements in information and communication technologies have enhanced our possibilities to communicate worldwide, eliminating borders and making it possible to interact with people coming from other cultures like never happened before. Such powerful tools have brought us to reconsider our concept of privacy and social involvement in order to make them fit into this wider environment. It is possible to claim that the information and communication technologies (ICT) revolution is changing our world and is having a core role as a mediating factor for social movements (e.g., Arab spring) and political decisions (e.g., Brexit), shaping the world in a faster and shared brand new way. It is then interesting to explore how the perception of this brand new environment (in terms of social engagement, privacy perception and sense of belonging to a community) differs even in similar cultures separated by recent historical reasons. Recent historical events may in effect have shaped a different psychological representation of Participation, Privacy and Sense of Community in ICT environments, determining a different perception of affordances and concerns of these complex behaviors. The aim of this research is to examine the relation between the constructs of Sense of Community, Participation and Privacy compared with culture and gender, considering the changes that have occurred in the last few years with the introduction of the web environment. A questionnaire, including ad hoc created scales for Participation and Privacy, have been administered to 180 participants from Turkey and Italy. In order to highlight the cultural differences in the perception of these two constructs, we have provided a semantic differential to both sub-samples showing interesting outcomes. The results are then discussed while taking into account the recent history of both countries in terms of the widespread of new technologies, political actions and protest movements.
      PubDate: 2017-04-07
      DOI: 10.3390/fi9020011
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 12: Spectrum and Energy Efficiency of
           Uplink Massive MIMO System with D2D Underlay

    • Authors: Xinhua Wang
      First page: 12
      Abstract: In this paper, both the spectrum efficiency (SE) and the energy efficiency (EE) are investigated for an uplink massive multiple-input multiple-output (MIMO) system coexisting with an underlay device-to-device (D2D) system. The outage probability and the achievable rates of the cellular user equipments (CUEs) and the D2D link are derived in closed-form, respectively. Constrained by the SE of the D2D link and the CUEs, the EE of the massive MIMO system is maximized by jointly optimizing the transmit power of CUEs and the number of BS antennas. An algorithm with low complexity is proposed to solve the optimization problem. Performance results are provided to validate our derived closed-from results and verify the efficiency of our proposed scheme.
      PubDate: 2017-04-13
      DOI: 10.3390/fi9020012
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 13: Feature-Based Image Watermarking
           Algorithm Using SVD and APBT for Copyright Protection

    • Authors: Yunpeng Zhang, Chengyou Wang, Xiaoli Wang, Min Wang
      First page: 13
      Abstract: Watermarking techniques can be applied in digital images to maintain the authenticity and integrity for copyright protection. In this paper, scale-invariant feature transform (SIFT) is combined with local digital watermarking and a digital watermarking algorithm based on SIFT, singular value decomposition (SVD), and all phase biorthogonal transform (APBT) is proposed. It describes the generation process of the SIFT algorithm in detail and obtains a series of scale-invariant feature points. A large amount of candidate feature points are selected to obtain the neighborhood which can be used to embed the watermark. For these selected feature points, block-based APBT is carried out on their neighborhoods. Moreover, a coefficients matrix of certain APBT coefficients is generated for SVD to embed the encrypted watermark. Experimental results demonstrate that the proposed watermarking algorithm has stronger robustness than some previous schemes. In addition, APBT-based digital watermarking algorithm has good imperceptibility and is more robust to different combinations of attacks, which can be applied for the purpose of copyright protection.
      PubDate: 2017-04-19
      DOI: 10.3390/fi9020013
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 14: An Energy Efficient MAC Protocol for
           Wireless Passive Sensor Networks

    • Authors: Qingyao Yu, Guangming Li, Xiaojie Hang, Kun Fu, and Tianqi Li
      First page: 14
      Abstract: Medium Access Control (MAC) protocol is one of the key network protocols that ensure Wireless Sensor Networks (WSNs) maintain high performance during communication. MAC protocol design plays an important role in improving the performances of the whole network. First, Wireless Passive Sensor Networks (WPSNs) and MAC protocols are introduced in this paper. Second, some existing MAC protocols are introduced. Sensor MAC (S-MAC) protocol is analyzed and existing improved backoff algorithms are introduced. A new MAC protocol called Improved Sensor MAC (IS-MAC) is then proposed to solve the problem that the contention window (CW) during carrier sense is fixed in S-MAC protocol. IS-MAC protocol is able to adjust CW in terms of network load, so energy consumption can be decreased. Finally, according to the simulation results on NS2, the proposed protocol has better performance in terms of throughput and energy consumption.
      PubDate: 2017-04-19
      DOI: 10.3390/fi9020014
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 15: Assessing OpenStreetMap Data Using
           

    • Authors: Sukhjit Sehra, Jaiteg Singh, Hardeep Rai
      First page: 15
      Abstract: OpenStreetMap (OSM) is a recent emerging area in computational science. There are several unexplored issues in the quality assessment of OSM. Firstly, researchers are using various established assessment methods by comparing OSM with authoritative dataset. However, these methods are unsuitable to assess OSM data quality in the case of the non-availability of authoritative data. In such a scenario, the intrinsic quality indicators can be used to assess the quality. Secondly, a framework for data assessment specific to different geographic information system (GIS) domains is not available. In this light, the current study presents an extension of the Quantum GIS (QGIS) processing toolbox by using existing functionalities and writing new scripts to handle spatial data. This would enable researchers to assess the completeness of spatial data using intrinsic indicators. The study also proposed a heuristic approach to test the road navigability of OSM data. The developed models are applied on Punjab (India) OSM data. The results suggest that the OSM project in Punjab (India) is progressing at a slow peace, and contributors’ motivation is required to enhance the fitness of data. It is concluded that the scripts developed to provide an intuitive method to assess the OSM data based on quality indicators can be easily utilized for evaluating the fitness-of-use of the data of any region.
      PubDate: 2017-04-21
      DOI: 10.3390/fi9020015
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 16: Private and Secure Distribution of
           Targeted Advertisements to Mobile Phones

    • Authors: Stylianos Mamais, George Theodorakopoulos
      First page: 16
      Abstract: Online Behavioural Advertising (OBA) enables promotion companies to effectively target users with ads that best satisfy their purchasing needs. This is highly beneficial for both vendors and publishers who are the owners of the advertising platforms, such as websites and app developers, but at the same time creates a serious privacy threat for users who expose their consumer interests. In this paper, we categorize the available ad-distribution methods and identify their limitations in terms of security, privacy, targeting effectiveness and practicality. We contribute our own system, which utilizes opportunistic networking in order to distribute targeted adverts within a social network. We improve upon previous work by eliminating the need for trust among the users (network nodes) while at the same time achieving low memory and bandwidth overhead, which are inherent problems of many opportunistic networks. Our protocol accomplishes this by identifying similarities between the consumer interests of users and then allows them to share access to the same adverts, which need to be downloaded only once. Although the same ads may be viewed by multiple users, privacy is preserved as the users do not learn each other’s advertising interests. An additional contribution is that malicious users cannot alter the ads in order to spread malicious content, and also, they cannot launch impersonation attacks.
      PubDate: 2017-05-01
      DOI: 10.3390/fi9020016
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 17: Towards Rack Utilization in Internet
           Datacenters: An Approach Based on Dynamic Programming

    • Authors: Haibao Chen, Yuyan Zhao, Chuxiong Yan
      First page: 17
      Abstract: In the datacenter rented to Internet Service Providers (ISPs), the low utilization of racks can seriously affect ISPs’ benefit because the ISPs are charged by “rack per year” rather than servers. Based on our analysis about the utilization data from production systems, we find that the over-provisioning of power results in low power utilization, which potentially decreases rack utilization as well as the ISPs’ benefit. To improve the rack utilization, maximizing the number of servers in racks is an effective way. In this paper, we propose a server placement algorithm to minimize the power fragment in a rack. The experimental results show that it can save more than 50% leasing cost (rack utilization improvement) in evaluation.
      PubDate: 2017-05-06
      DOI: 10.3390/fi9020017
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 18: A Simple Approach to Dynamic
           Optimisation of Flexible Optical Networks with Practical Application

    • Authors: Vic Grout
      First page: 18
      Abstract: This paper provides an initial introduction to, and definition of, the ‘Dynamically Powered Relays for a Flexible Optical Network’ (DPR-FON) problem for opto-electro-optical (OEO) regenerators used in optical networks. In such networks, optical transmission parameters can be varied dynamically as traffic patterns change. This will provide different bandwidths, but also change the regeneration limits as a result. To support this flexibility, OEOs (‘relays’) may be switched on and off as required, thus saving power. DPR-FON is shown to be NP-complete; consequently, solving such a dynamic problem in real-time requires a fast heuristic capable of delivering an acceptable approximation to the optimal configuration with low complexity. In this paper, just such an algorithm is developed, implemented, and evaluated against more computationally-demanding alternatives for two known cases. A number of real-world extensions are considered as the paper develops, combining to produce the ‘Generalised Dynamically Powered Relays for a Flexible Optical Network’ (GDPR-FON) problem. This, too, is analysed and an associated fast heuristic proposed, along with an exploration of the further research that is required.
      PubDate: 2017-05-23
      DOI: 10.3390/fi9020018
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 19: An Adaptive Back-Off Mechanism for
           Wireless Sensor Networks

    • Authors: Peng Sun, Guangming Li, Fuqiang Wang
      First page: 19
      Abstract: Wireless sensor networks (WSNs) have been extensively applied in many domains such as smart homes and Internet of Things (IoT). As part of WSNs’ communication protocols, back-off mechanisms play an essential role in the deployment of wireless channels for network nodes and have been at the core of ensuring effective communication. The performance of many back-off algorithms is excellent in light or middle load networks. However, it degrades dramatically in heavy load networks. In this paper, we propose an adaptive contention window medium access control (MAC) protocol to improve the throughput performance under heavy load. By using the number of historical collisions as the parameter in the back-off mechanism to reflect the channel status, the size of the contention window is adjusted automatically, and the throughput of network is then improved. Simulation results show that our optimized MAC protocol has higher throughput and energy efficiency.
      PubDate: 2017-06-01
      DOI: 10.3390/fi9020019
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 20: An Access Control Model for Preventing
           Virtual Machine Escape Attack

    • Authors: Jiang Wu, Zhou Lei, Shengbo Chen, Wenfeng Shen
      First page: 20
      Abstract: With the rapid development of Internet, the traditional computing environment is making a big migration to the cloud-computing environment. However, cloud computing introduces a set of new security problems. Aiming at the virtual machine (VM) escape attack, we study the traditional attack model and attack scenarios in the cloud-computing environment. In addition, we propose an access control model that can prevent virtual machine escape (PVME) by adapting the BLP (Bell-La Padula) model (an access control model developed by D. Bell and J. LaPadula). Finally, the PVME model has been implemented on full virtualization architecture. The experimental results show that the PVME module can effectively prevent virtual machine escape while only incurring 4% to 8% time overhead.
      PubDate: 2017-06-02
      DOI: 10.3390/fi9020020
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 21: Energy Efficient Power Allocation for
           the Uplink of Distributed Massive MIMO Systems

    • Authors: Xinhua Wang, Yan Yang, Jinlu Sheng
      First page: 21
      Abstract: In this paper, an energy efficient power allocation scheme is proposed for a distributed massive multiple-input multiple-output (MIMO) system with a circular antenna array. Single-antenna users simultaneously transmit signal to the base station (BS) with a large number of distributed antennas. The tight approximation of the energy efficiency (EE) is derived in closed form expressions. Through jointly optimizing the power allocation and the antenna number of BS, an NP-hard problem is formulated to maximize the EE. The equal power allocation is proved to be optimal given the total transmit power and the number of antennas. Finally, the optimal antenna number is determined by one dimension search. It is noteworthy that the NP-hard problem is solved by one dimension search. Simulation results validate the accuracy and the low-complexity of our proposed scheme.
      PubDate: 2017-06-09
      DOI: 10.3390/fi9020021
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 22: A Method for Identifying the Mood
           States of Social Network Users Based on Cyber Psychometrics

    • Authors: Weijun Wang, Ying Li, Yinghui Huang, Hui Liu, Tingting Zhang
      First page: 22
      Abstract: Analyzing people’s opinions, attitudes, sentiments, and emotions based on user-generated content (UGC) is feasible for identifying the psychological characteristics of social network users. However, most studies focus on identifying the sentiments carried in the micro-blogging text and there is no ideal calculation method for users’ real emotional states. In this study, the Profile of Mood State (POMS) is used to characterize users’ real mood states and a regression model is built based on cyber psychometrics and a multitask method. Features of users’ online behavior are selected through structured statistics and unstructured text. Results of the correlation analysis of different features demonstrate that users’ real mood states are not only characterized by the messages expressed through texts, but also correlate with statistical features of online behavior. The sentiment-related features in different timespans indicate different correlations with the real mood state. The comparison among various regression algorithms suggests that the multitask learning method outperforms other algorithms in root-mean-square error and error ratio. Therefore, this cyber psychometrics method based on multitask learning that integrates structural features and temporal emotional information could effectively obtain users’ real mood states and could be applied in further psychological measurements and predictions.
      PubDate: 2017-06-16
      DOI: 10.3390/fi9020022
      Issue No: Vol. 9, No. 2 (2017)
       
  • Future Internet, Vol. 9, Pages 2: Acknowledgement to Reviewers of Future
           Internet in 2016

    • Authors: Future Internet Editorial Office
      First page: 2
      Abstract: The editors of Future Internet would like to express their sincere gratitude to the following  reviewers for assessing manuscripts in 2016.[...]
      PubDate: 2017-01-12
      DOI: 10.3390/fi9010002
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 3: Towards Incidence Management in 5G Based
           on Situational Awareness

    • Authors: Lorena Barona López, Ángel Valdivieso Caraguay, Jorge Maestre Vidal, Marco Sotelo Monge, Luis García Villalba
      First page: 3
      Abstract: The fifth generation mobile network, or 5G, moves towards bringing solutions to deploying faster networks, with hundreds of thousands of simultaneous connections and massive data transfer. For this purpose, several emerging technologies are implemented, resulting in virtualization and self-organization of most of their components, which raises important challenges related to safety. In order to contribute to their resolution, this paper proposes a novel architecture for incident management on 5G. The approach combines the conventional risk management schemes with the Endsley Situational Awareness model, thus improving effectiveness in different aspects, among them the ability to adapt to complex and dynamical monitoring environments, and countermeasure tracking or the role of context when decision-making. The proposal takes into account all layers for information processing in 5G mobile networks, ranging from infrastructure to the actuators responsible for deploying corrective measures.
      PubDate: 2017-01-17
      DOI: 10.3390/fi9010003
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 4: A Point of View on New Education for
           Smart Citizenship

    • Authors: Cristina Martelli
      First page: 4
      Abstract: Smart cities and intelligent communities have an ever-growing demand for specialized smart services, applications, and research-driven innovation. Knowledge of users’ profiles, behavior, and preferences are a potentially dangerous side effect of smart services. Citizens are usually not aware of the knowledge bases generated by the IT services they use: this dimension of the contemporary and digital era sheds new light on the elements concerning the concept of citizenship itself, as it affects dimensions like freedom and privacy. This paper addresses this issue from an education system perspective, and advances a non-technical methodology for being aware and recognizing knowledge bases generated by user-service interaction. Starting from narratives, developed in natural language by unskilled smart service users about their experience, the proposed method advances an original methodology, which is identified in the conceptual models derived from these narratives, a bridge towards a deeper understanding of the informative implications of their behavior. The proposal; which is iterative and scalable; has been tested on the field and some examples of lesson contents are presented and discussed.
      PubDate: 2017-02-01
      DOI: 10.3390/fi9010004
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 5: Construction Management Risk System
           (CMRS) for Construction Management (CM) Firms

    • Authors: Kyungmo Park, Sanghyo Lee, Yonghan Ahn
      First page: 5
      Abstract: After the global financial crisis of 2008, the need for risk management arose because it was necessary to minimize the losses in construction management (CM) firms. This was caused by a decreased amount of orders in the Korean CM market, which intensified order competition between companies. However, research results revealed that risks were not being systematically managed owing to the absence of risk management systems. Thus, it was concluded that it was necessary to develop standard operating systems and implement risk management systems in order to manage risks effectively. Therefore, the purpose of this study was to develop a construction risk management system (CRMS) for systematically managing risks. For this purpose, the field operation managers of CM firms were interviewed and surveyed in order to define risk factors. Upon this, a risk assessment priority analysis was performed. Finally, a risk management system that comprised seven modules and 20 sub-modules and was capable of responding systematically to risks was proposed. Furthermore, the effectiveness of this system was verified through on-site inspection. This system allows early response to risks, accountability verification and immediate response to legal disputes with clients by managing risk records.
      PubDate: 2017-02-10
      DOI: 10.3390/fi9010005
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 6: Automatic Detection of Online
           Recruitment Frauds: Characteristics, Methods, and a Public Dataset

    • Authors: Sokratis Vidros, Constantinos Kolias, Georgios Kambourakis, Leman Akoglu
      First page: 6
      Abstract: The critical process of hiring has relatively recently been ported to the cloud. Specifically, the automated systems responsible for completing the recruitment of new employees in an online fashion, aim to make the hiring process more immediate, accurate and cost-efficient. However, the online exposure of such traditional business procedures has introduced new points of failure that may lead to privacy loss for applicants and harm the reputation of organizations. So far, the most common case of Online Recruitment Frauds (ORF), is employment scam. Unlike relevant online fraud problems, the tackling of ORF has not yet received the proper attention, remaining largely unexplored until now. Responding to this need, the work at hand defines and describes the characteristics of this severe and timely novel cyber security research topic. At the same time, it contributes and evaluates the first to our knowledge publicly available dataset of 17,880 annotated job ads, retrieved from the use of a real-life system.
      PubDate: 2017-03-03
      DOI: 10.3390/fi9010006
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 7: An Adaptive Privacy Protection Method
           for Smart Home Environments Using Supervised Learning

    • Authors: Jingsha He, Qi Xiao, Peng He, Muhammad Pathan
      First page: 7
      Abstract: In recent years, smart home technologies have started to be widely used, bringing a great deal of convenience to people’s daily lives. At the same time, privacy issues have become particularly prominent. Traditional encryption methods can no longer meet the needs of privacy protection in smart home applications, since attacks can be launched even without the need for access to the cipher. Rather, attacks can be successfully realized through analyzing the frequency of radio signals, as well as the timestamp series, so that the daily activities of the residents in the smart home can be learnt. Such types of attacks can achieve a very high success rate, making them a great threat to users’ privacy. In this paper, we propose an adaptive method based on sample data analysis and supervised learning (SDASL), to hide the patterns of daily routines of residents that would adapt to dynamically changing network loads. Compared to some existing solutions, our proposed method exhibits advantages such as low energy consumption, low latency, strong adaptability, and effective privacy protection.
      PubDate: 2017-03-05
      DOI: 10.3390/fi9010007
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 8: Designing a Softwarized Network Deployed
           on a Fleet of Drones for Rural Zone Monitoring

    • Authors: Corrado Rametta, Giovanni Schembra
      First page: 8
      Abstract: In the last decade, the differences in the information communication technology (ICT) infrastructures between urban and rural areas have registered a tremendous increase. ICT infrastructures could strongly help rural communities where many operations are time consuming, labor-intensive and expensive due to limited access and large distances to cover. One of the most attractive solutions, which is widely recognized as promising for filling this gap, is the use of drone fleets. In this context, this paper proposes a video monitoring platform as a service (VMPaaS) for wide rural areas not covered by Internet access. The platform is realized with a Software-Defined Network (SDN)/Network Functions Virtualization (NFV)-based flying ad-hoc network (FANET), whose target is providing a flexible and dynamic connectivity backbone, and a set of drones equipped with high-resolution cameras, each transmitting a video stream of a portion of the considered area. After describing the architecture of the proposed platform, service chains to realize the video delivery service are described, and an analytical model is defined to evaluate the computational load of the platform nodes in such a way so as to allow the network orchestrator to decide the backbone drones where running the virtual functions, and the relative resources to be allocated. Numerical analysis is carried out in a case study.
      PubDate: 2017-03-20
      DOI: 10.3390/fi9010008
      Issue No: Vol. 9, No. 1 (2017)
       
  • Future Internet, Vol. 9, Pages 9: Improved Recommendations Based on Trust
           Relationships in Social Networks

    • Authors: Hao Tian, Peifeng Liang
      First page: 9
      Abstract: In order to alleviate the pressure of information overload and enhance consumer satisfaction, personalization recommendation has become increasingly popular in recent years. As a result, various approaches for recommendation have been proposed in the past few years. However, traditional recommendation methods are still troubled with typical issues such as cold start, sparsity, and low accuracy. To address these problems, this paper proposed an improved recommendation method based on trust relationships in social networks to improve the performance of recommendations. In particular, we define trust relationship afresh and consider several representative factors in the formalization of trust relationships. To verify the proposed approach comprehensively, this paper conducted experiments in three ways. The experimental results show that our proposed approach leads to a substantial increase in prediction accuracy and is very helpful in dealing with cold start and sparsity.
      PubDate: 2017-03-21
      DOI: 10.3390/fi9010009
      Issue No: Vol. 9, No. 1 (2017)
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.147.40.153
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016