Followed Journals
Journal you Follow: 0
 
Sign Up to follow journals, search in your chosen journals and, optionally, receive Email Alerts when new issues of your Followed Journals are published.
Already have an account? Sign In to see the journals you follow.
Similar Journals
Journal Cover
Cell and Tissue Research
Journal Prestige (SJR): 1.393
Citation Impact (citeScore): 3
Number of Followers: 5  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-0878 - ISSN (Online) 0302-766X
Published by Springer-Verlag Homepage  [2658 journals]
  • Regeneration of the digestive system in the crinoid Lamprometra palmata
           (Mariametridae, Comatulida)

    • Free pre-print version: Loading...

      Abstract: The morphology and regeneration of the digestive system and tegmen after autotomy of the visceral mass in the crinoid Lamprometra palmata (Clark 1921) was studied. The gut has a five-lobed shape and is covered by a tegmen. The tegmen consists of epidermis and underlying connective tissue. The digestive tube can be divided into three parts: esophagus, intestine, and rectum. At 6 h post-autotomy, the calyx surface is covered by a layer of amoebocytes and juxtaligamental cells (JLCs). At 14–18 h, post-autotomy transdifferentiation of JLCs begins and give rise to the epidermis and cells of digestive system. On days 1–2 post-autotomy, JLCs undergo the mesenchymal–epithelial transition. Some JLCs turn into typical epidermal cells, while other JLCs form small closed epithelial structures that represent the gut anlage. On day 4 post-autotomy, the animals have a mouth opening and a small anal cone. On day 7 post-autotomy, the visceral mass and the digestive system become fully formed but are smaller than normal. A 24-h exposure of L. palmata individuals to a 10−7 M colchicine solution did not slow down regeneration, and the timing of gut formation was similar to that in the control animals. We conclude that JLCs are the major cell source for gut and epidermis regeneration in L. palmata. The main mechanisms of morphogenesis are cell migration, mesenchymal–epithelial transition, and transdifferentiation.
      PubDate: 2021-10-11
       
  • Lung inflammation from repeated exposure to LPS and glyphosate

    • Free pre-print version: Loading...

      Abstract: Agricultural workplaces consist of multiple airborne contaminants and inhalation exposures induce respiratory effects in workers. Endotoxin (LPS) and glyphosate are two common airborne contaminants in agricultural environments. We have previously shown that exposure to a combination of LPS and glyphosate synergistically modulates immune reactions as compared to individual exposures. The immunopathogenesis of acute and chronic exposure to complex agricultural exposures including LPS and glyphosate is not known; therefore, we further investigated the lung cellular inflammatory differences in mice exposed to either a combination, or individual, LPS, and glyphosate for 1 day, 5 days, and 10 days. Exposure to a combination of LPS and glyphosate resulted in greater cellular inflammatory effects in lungs as compared to individual exposures to LPS or glyphosate. Repeated exposures to the combination of LPS and glyphosate resulted in robust infiltration of inflammatory cells in the perivascular, peribronchiolar, and alveolar regions, and increases of alveolar septal thicknesses and perivascular spaces in the lungs with intense intercellular adhesion molecule (ICAM) − 1 staining in the perivascular region, but minimal staining in the pulmonary artery endothelium.
      PubDate: 2021-10-09
       
  • Complement catalyzing glomerular diseases

    • Free pre-print version: Loading...

      Abstract: Complement is an evolutionarily conserved system which is important in the defense against microorganisms and also in the elimination of modified or necrotic elements of the body. Complement is activated in a cascade type manner and activation and all steps of cascade progression are tightly controlled and regulatory interleaved with many processes of inflammatory machinery. Overshooting of the complement system due to dysregulation can result in the two prototypes of primary complement mediated renal diseases: C3 glomerulopathy and thrombotic microangiopathy. Apart from these, complement also is highly activated in many other inflammatory native kidney diseases, such as membranous nephropathy, ANCA-associated necrotizing glomerulonephritis, and IgA nephropathy. Moreover, it likely plays an important role also in the transplant setting, such as in antibody-mediated rejection or in hematopoietic stem cell transplant associated thrombotic microangiopathy. In this review, these glomerular disorders are discussed with regard to the role of complement in their pathogenesis. The consequential, respective clinical trials for complement inhibitory therapy strategies for these diseases are described.
      PubDate: 2021-10-06
       
  • Immunolocalization of protease-activated receptors in endothelial cells of
           splenic sinuses

    • Free pre-print version: Loading...

      Abstract: The immunolocalization of protease-activated receptors (PARs) and related proteins in splenic sinus endothelial cells was examined using immunofluorescence and electron microscopy. Immunofluorescence microscopy showed that PAR1 colocalized with PAR2, PAR3, and PAR4. PAR4 colocalized with PAR3 and P2Y12. Myosin heavy chain IIA localized to the outer shape and at the base of cells, but did not colocalize with α-catenin. The localization of di-phosphorylated myosin regulatory light chains (ppMLC) was partially detected on the outer circumference and conspicuously at the base of cells. Macrophage migration inhibitory factor (MIF) also localized in cells. Immunogold electron microscopy revealed the localization of PAR1 on the caveolar membrane, plasma membrane, and junctional membrane of cells. PAR2 and PAR3 localized to the plasma membrane of cells. PAR4 localized to the plasma membrane, depressions in the plasma membrane, and cytoplasmic vesicles. PpMLC was detected in stress fibers, but rarely near the adherens junctions of neighboring cells. MIF localized in vesicles on the apical and basal sides of the Golgi apparatus. Electron microscopy of endothelial cells with saponin extraction showed the depression of many coated pits formed by clathrin from the plasma membrane. Stress fibers developed at the base of cells; however, few actin filaments were observed near adherens junctions. These results indicate that PARs play important roles in splenic sinus endothelial cells, such as in endothelial barrier protection and the maintenance of firm adhesion to ring fibers.
      PubDate: 2021-10-06
       
  • Functional nitrergic innervation of smooth muscle structures in the mucosa
           of pig lower urinary tract

    • Free pre-print version: Loading...

      Abstract: Neurally released nitric oxide (NO) functions as an inhibitory neurotransmitter of urethral but not detrusor smooth muscles while relaxing bladder vasculature and muscularis mucosae (MM). Here, the distribution of nitrergic nerves was examined in the mucosa of pig lower urinary tract using immunohistochemistry, and their vasodilatory functions were studied by measuring arteriolar diameter changes. Properties of smooth muscle cells in the lamina propria (SMC-LP) of urethra and trigone were also investigated using florescence Ca2+ imaging. In the bladder mucosa, neuronal nitric oxide synthase (nNOS)–immunoreactive nitrergic fibres projected to suburothelial arterioles and venules. Perivascular nitrergic nerves were intermingled with but distinct from tyrosine hydroxylase (TH)–immunoreactive sympathetic or calcitonin gene–related peptide (CGRP)–immunoreactive afferent nerves. MM receive a nitrergic but not sympathetic or afferent innervation. In the mucosa of urethra and trigone, nitrergic nerves were in close apposition with sympathetic or afferent nerves around suburothelial vasculature but did not project to SMC-LP. In suburothelial arterioles of bladder and urethra, N ω-nitro-L-arginine (L-NA, 100 μM), an NOS inhibitor, enhanced electrical field stimulation (EFS)–induced sympathetic vasoconstrictions, while tadalafil (10 nM), a phosphodiesterase type 5 (PDE5) inhibitor, suppressed the vasoconstrictions. SMC-LP developed asynchronous spontaneous Ca2+ transients without responding to EFS. The spontaneous Ca2+ transients were enhanced by acetylcholine (1 μM) and diminished by noradrenaline (1 μM) but not SIN-1 (10 μM), an NO donor. In the lower urinary tract mucosa, perivascular nitrergic nerves appear to counteract the sympathetic vasoconstriction to maintain the mucosal circulation. Bladder MM but not SMC-LP receive an inhibitory nitrergic innervation.
      PubDate: 2021-10-04
       
  • Lung development and immune status under chronic LPS exposure in rat pups
           with and without CD26/DPP4 deficiency

    • Free pre-print version: Loading...

      Abstract: Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26− pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26− pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.
      PubDate: 2021-10-04
       
  • Regulation of granulosa cell functions through NRP-1 mediated
           internalization of follicular fluid non-exosomal miR-210

    • Free pre-print version: Loading...

      Abstract: Crosstalk between follicular fluid (FF) and granulosa cells (GCs) plays a vital role in the regulation of folliculogenesis, ensuring regular reproductive cycle in mammals. This crosstalk is primarily mediated by hormones and signaling molecules, such as cytokines and chemokines. Recently, extracellular microRNAs (miRNAs) have gained a lot of attention in cell-to-cell communication. Extracellular miRNA transportation occurs through exosomes, a kind of micro-vesicles produced from almost all cells. However, the mode of non-exosomal miRNA internalization is not much studied. In the present study, we explored the role of neuropilin-1 (NRP-1) as a receptor in internalizing FF non-exosomal miRNAs in GCs. We first confirmed the expression of NRP-1 in GCs during follicular development followed by its role in the internalization of miR-210, a non-exosomal miRNA. This study showed that incubation of GCs with a non-exosomal fraction of FF increased the content of miR-210 in GCs as compared to their control. To illustrate the role of NRP-1 as a receptor, NRP-1 was knockdown using siRNA. Silencing experimental results showed a significant decrease in uptake of miR-210 in NRP-1 knockdown GCs. Furthermore, downstream expression analysis of miR-210 target genes (CYP19A1, PCNA, and EFNA3) also confirmed the NRP-1 mediated miR-210 internalization. Results of the present study clearly demonstrated that FF non-exosomal miR-210 can be internalized through the NRP-1 receptor. Furthermore, differential expression of NRP-1 in GCs suggests its role in follicular development. Overall, these findings suggest that FF non-exosomal miRNA plays an important role in GC functions and female reproduction.
      PubDate: 2021-10-02
       
  • Germ plasm and the origin of the primordial germ cells in the oriental
           river prawn Macrobrachium nipponense

    • Free pre-print version: Loading...

      Abstract: Germ plasm is a special cytoplasmic component containing special RNAs and proteins, and is located in specific regions of oocytes and embryos. Only the blastomeres inheriting the germ plasm can develop into primordial germ cells (PGCs). By using Vasa mRNA as a germline marker, we previously demonstrated that germline specification followed the preformation mode in the prawn Macrobrachium nipponense. In this study, we raised the Vasa antibody to identify germ plasm in the oocyte and trace the origin and migration of PGCs. In previtellogenic oocytes, Vasa protein was detected in the perinuclear region, in which electron-dense granules associated with numerous mitochondria were mostly visualized under a transmission electron microscope. In mature oocytes, immunosignal was localized to a large granule under the plasma membrane. During early embryogenesis, the granule was inherited by a single blastomere from 1-cell to 16-cell stages, and thereafter was segregated into two daughter blastomeres at the 32-cell stage. In gastrula, the Vasa-positive cells were large with typical PGC characteristics, containing a big round nucleus and a prominent nucleolus. The immunosignal was localized to the perinuclear region again. In the zoea stage, the Vasa-positive cells migrated toward the genital ridge and clustered in the dorsomedial region close to the yolk portion. Accordingly, we concluded that the prawn PGCs could be specified from the 16-cell stage by inheriting the germplasm. To our knowledge, this is the first report on the identification of the prawn germ plasm and PGCs. The continuous expression of Vasa protein throughout oogenesis and embryogenesis suggests that Vasa protein could be an important factor in germ plasm that functions in early germ cell specification.
      PubDate: 2021-10-02
       
  • Establishment of an immortalized cell line derived from the pupal ovary of
           Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell
           source

    • Free pre-print version: Loading...

      Abstract: Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.
      PubDate: 2021-10-02
       
  • Cell fate determination and Hippo signaling pathway in preimplantation
           mouse embryo

    • Free pre-print version: Loading...

      Abstract: First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position' The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell–cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
      PubDate: 2021-09-29
       
  • Distinct interhemispheric connectivity at the level of the olfactory bulb
           emerges during Xenopus laevis metamorphosis

    • Free pre-print version: Loading...

      Abstract: During metamorphosis, the olfactory system of anuran tadpoles undergoes substantial restructuring. The main olfactory epithelium in the principal nasal cavity of Xenopus laevis tadpoles is associated with aquatic olfaction and transformed into the adult air-nose, while a new adult water-nose emerges in the middle cavity. Impacts of this metamorphic remodeling on odor processing, behavior, and network structure are still unexplored. Here, we used neuronal tracings, calcium imaging, and behavioral experiments to examine the functional connectivity between the epithelium and the main olfactory bulb during metamorphosis. In tadpoles, olfactory receptor neurons in the principal cavity project axons to glomeruli in the ventral main olfactory bulb. These projections are gradually replaced by receptor neuron axons from the newly forming middle cavity epithelium. Despite this reorganization in the ventral bulb, two spatially segregated odor processing streams remain undisrupted and behavioral responses to waterborne odorants are unchanged. Contemporaneously, new receptor neurons in the remodeling principal cavity innervate the emerging dorsal part of the bulb, which displays distinct wiring features. Glomeruli around its midline are innervated from the left and right nasal epithelia. Additionally, postsynaptic projection neurons in the dorsal bulb predominantly connect to multiple glomeruli, while half of projection neurons in the ventral bulb are uni-glomerular. Our results show that the “water system” remains functional despite metamorphic reconstruction. The network differences between the dorsal and ventral olfactory bulb imply a higher degree of odor integration in the dorsal main olfactory bulb. This is possibly connected with the processing of different odorants, airborne vs. waterborne.
      PubDate: 2021-09-28
       
  • Polarized M2 macrophages induced by mechanical stretching modulate bone
           regeneration of the craniofacial suture for midfacial hypoplasia treatment
           

    • Free pre-print version: Loading...

      Abstract: The underlying mechanism of the trans-sutural distraction osteogenesis (TSDO) technique as an effective treatment that improves the symptoms of midfacial hypoplasia syndromes is not clearly understood. Increasing findings in the orthopedics field indicate that macrophages are mechanically sensitive and their phenotypes can respond to mechanical cues. However, how macrophages respond to mechanical stretching and consequently influence osteoblast differentiation of suture-derived stem cells (SuSCs) remains unclear, particularly during the TSDO process. In the present study, we established a TSDO rat model to determine whether and how macrophages were polarized in response to stretching and consequently affected bone regeneration of the suture frontal edge. Notably, after performing immunofluorescence, RNA-sequencing, and micro-computed tomography, it was demonstrated that macrophages are first recruited by various chemokines factors and polarized to the M2 phenotype upon optimal stretching. The latter in turn regulates SuSC activity and facilitates bone regeneration in sutures. Moreover, when the activated M2 macrophages were suppressed by pharmacological manipulation, new bone microarchitecture could rarely be detected under mechanical stretching and the expansion of the sutures was clear. Additionally, macrophages achieved M2 polarization in response to the optimal mechanical stretching (10%, 0.5 Hz) and strongly facilitated SuSC osteogenic differentiation and human umbilical vein endothelial cell angiogenesis using an indirect co-culture system in vitro. Collectively, this study revealed the mechanical stimulation-immune response-bone regeneration axis and clarified at least in part how sutures achieve bone regeneration in response to mechanical force.
      PubDate: 2021-09-27
       
  • Distribution, fine structure, and three-dimensional innervation of
           lamellar corpuscles in rat plantar skin

    • Free pre-print version: Loading...

      Abstract: Lamellar corpuscles function as mechanoreceptors in the skin, composed of axon terminals and lamellae constructed by terminal Schwann cells. They are classified into Pacinian, Meissner, and simple corpuscles based on histological criteria. Lamellar corpuscles in rat dermal papilla cells have been reported; however, the morphological aspects have yet to be thoroughly investigated. In the present study, we analyzed the enzyme activity, distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. The lamellar corpuscles exhibiting non-specific cholinesterase were densely distributed in rat footpads, evident as notable skin elevations, especially at the apex, the highest portion of the ridges in each footpad. In contrast, only a few lamellar corpuscles were found in other plantar skin areas. Lamellar corpuscle was considered composed of a flat axon terminal Schwann cell lamellae, which were roughly concentrically arranged in the dermal papilla. These histological characteristics correspond to those of the simple corpuscle. Moreover, the axon tracing method revealed that one trunk axon innervated several simple corpuscles. The territory of the trunk axons overlapped with each other. Finally, the animals’ footprints were analyzed. During the pausing and walking phases, footpads are often in contact with the floor. These results demonstrate that the type of lamellar corpuscles in the dermal papillae of rat plantar skin is a simple corpuscle and implies that their distribution pattern in the plantar skin is convenient for efficient sensing and transmission of mechanical stimuli from the ground.
      PubDate: 2021-09-25
       
  • New insights into the role and origin of pituitary S100β-positive
           cells

    • Free pre-print version: Loading...

      Abstract: In the anterior pituitary, S100β protein (S100β) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100β-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100β-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100β, suggesting that S100β plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100β/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100β-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell’s recess. These two populations are likely the substantive origin of S100β-positive cells in the postnatal anterior pituitary, while S100β-positive cells emerging from oral ectoderm-derived cells remain unclear.
      PubDate: 2021-09-22
       
  • The mRNA decapping protein 2 (DCP2) is a major regulator of developmental
           events in Drosophila—insights from expression paradigms

    • Free pre-print version: Loading...

      Abstract: The Drosophila genome codes for two decapping proteins, DCP1 and DCP2, out of which DCP2 is the active decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify an active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.
      PubDate: 2021-09-18
       
  • Correction to: Preservation of optic nerve structure by complement
           inhibition in experimental glaucoma

    • Free pre-print version: Loading...

      PubDate: 2021-09-06
      DOI: 10.1007/s00441-021-03501-z
       
  • Expression and functional analysis of cytoplasmic dynein during
           spermatogenesis in Portunus trituberculatus

    • Free pre-print version: Loading...

      Abstract: The mechanism of acrosome formation in the crab sperm is a hot topic in crustacean reproduction research. Dynein is a motor protein that performs microtubule-dependent retrograde transport and plays an essential role in spermatogenesis. However, whether cytoplasmic dynein participates in acrosome formation in the crab sperm remains poorly understood. In this study, we cloned the cytoplasmic dynein intermediate chain gene (Pt-DIC) from Portunus trituberculatus testis. Pt-DIC is composed of a p150glued-binding domain, a dynein light chain (DLC)-binding domain, and a dynein heavy chain (DHC)-binding domain. The Pt-DIC gene is widely expressed in different tissues, showing the highest expression in the testis, and it is expressed in different stages of spermatid development, indicating important functions in spermatogenesis. We further observed the colocalization of Pt-DIC and Pt-DHC, Pt-DHC and tubulin, and Pt-DHC and GM130, and the results indicated that cytoplasmic dynein may participate in nuclear shaping and acrosome formation via vesicle transport. In addition, we examined the colocalization of Pt-DHC and a mitochondrion (MT) tracker and that of Pt-DHC and prohibitin (PHB). The results indicated that cytoplasmic dynein participated in mitochondrial transport and mitochondrial degradation. Taken together, these results support the hypothesis that cytoplasmic dynein participates in acrosome formation, nuclear shaping, and mitochondrial transport during spermiogenesis in P. trituberculatus. This study will provide valuable guidance for the artificial fertilization and reproduction of P. trituberculatus.
      PubDate: 2021-09-03
      DOI: 10.1007/s00441-021-03519-3
       
  • Subretinal fibrosis in neovascular age-related macular degeneration:
           current concepts, therapeutic avenues, and future perspectives

    • Free pre-print version: Loading...

      Abstract: Age-related macular degeneration (AMD) is a progressive, degenerative disease of the human retina which in its most aggressive form is associated with the formation of macular neovascularization (MNV) and subretinal fibrosis leading to irreversible blindness. MNVs contain blood vessels as well as infiltrating immune cells, myofibroblasts, and excessive amounts of extracellular matrix proteins such as collagens, fibronectin, and laminin which disrupts retinal function and triggers neurodegeneration. In the mammalian retina, damaged neurons cannot be replaced by tissue regeneration, and subretinal MNV and fibrosis persist and thus fuel degeneration and visual loss. This review provides an overview of subretinal fibrosis in neovascular AMD, by summarizing its clinical manifestations, exploring the current understanding of the underlying cellular and molecular mechanisms and discussing potential therapeutic approaches to inhibit subretinal fibrosis in the future.
      PubDate: 2021-09-03
      DOI: 10.1007/s00441-021-03514-8
       
  • Immune-mediated glomerular diseases: new basic concepts and clinical
           implications

    • Free pre-print version: Loading...

      PubDate: 2021-08-31
      DOI: 10.1007/s00441-021-03509-5
       
  • Parietal epithelial cell dysfunction in crescentic glomerulonephritis

    • Free pre-print version: Loading...

      Abstract: Crescentic glomerulonephritis represents a group of kidney diseases characterized by rapid loss of kidney function and the formation of glomerular crescents. While the role of the immune system has been extensively studied in relation to the development of crescents, recent findings show that parietal epithelial cells play a key role in the pathophysiology of crescent formation, even in the absence of immune modulation. This review highlights our current understanding of parietal epithelial cell biology and the reported physiological and pathological roles that these cells play in glomerular lesion formation, especially in the context of crescentic glomerulonephritis.
      PubDate: 2021-08-28
      DOI: 10.1007/s00441-021-03513-9
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.236.51.151
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-