A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

        1 2 | Last   [Sort by number of followers]   [Restore default list]

  Subjects -> ELECTRONICS (Total: 207 journals)
Showing 1 - 200 of 277 Journals sorted alphabetically
Acta Electronica Malaysia     Open Access  
Advanced Materials Technologies     Hybrid Journal   (Followers: 1)
Advances in Biosensors and Bioelectronics     Open Access   (Followers: 8)
Advances in Electrical and Electronic Engineering     Open Access   (Followers: 9)
Advances in Electronics     Open Access   (Followers: 100)
Advances in Magnetic and Optical Resonance     Full-text available via subscription   (Followers: 8)
Advances in Microelectronic Engineering     Open Access   (Followers: 13)
Advances in Power Electronics     Open Access   (Followers: 41)
Advancing Microelectronics     Hybrid Journal  
American Journal of Electrical and Electronic Engineering     Open Access   (Followers: 28)
Annals of Telecommunications     Hybrid Journal   (Followers: 8)
APSIPA Transactions on Signal and Information Processing     Open Access   (Followers: 8)
Archives of Electrical Engineering     Open Access   (Followers: 16)
Australian Journal of Electrical and Electronics Engineering     Hybrid Journal  
Batteries     Open Access   (Followers: 9)
Batteries & Supercaps     Hybrid Journal   (Followers: 5)
Bell Labs Technical Journal     Hybrid Journal   (Followers: 31)
Bioelectronics in Medicine     Hybrid Journal  
Biomedical Instrumentation & Technology     Hybrid Journal   (Followers: 6)
BULLETIN of National Technical University of Ukraine. Series RADIOTECHNIQUE. RADIOAPPARATUS BUILDING     Open Access   (Followers: 2)
Bulletin of the Polish Academy of Sciences : Technical Sciences     Open Access   (Followers: 1)
Canadian Journal of Remote Sensing     Full-text available via subscription   (Followers: 47)
China Communications     Full-text available via subscription   (Followers: 9)
Chinese Journal of Electronics     Hybrid Journal  
Circuits and Systems     Open Access   (Followers: 15)
Consumer Electronics Times     Open Access   (Followers: 5)
Control Systems     Hybrid Journal   (Followers: 310)
ECTI Transactions on Computer and Information Technology (ECTI-CIT)     Open Access  
ECTI Transactions on Electrical Engineering, Electronics, and Communications     Open Access   (Followers: 2)
Edu Elektrika Journal     Open Access   (Followers: 1)
Electrica     Open Access  
Electronic Design     Partially Free   (Followers: 124)
Electronic Markets     Hybrid Journal   (Followers: 7)
Electronic Materials Letters     Hybrid Journal   (Followers: 4)
Electronics     Open Access   (Followers: 109)
Electronics and Communications in Japan     Hybrid Journal   (Followers: 10)
Electronics For You     Partially Free   (Followers: 104)
Electronics Letters     Hybrid Journal   (Followers: 26)
Elektronika ir Elektortechnika     Open Access   (Followers: 2)
Elkha : Jurnal Teknik Elektro     Open Access  
Emitor : Jurnal Teknik Elektro     Open Access   (Followers: 3)
Energy Harvesting and Systems     Hybrid Journal   (Followers: 4)
Energy Storage     Hybrid Journal   (Followers: 1)
Energy Storage Materials     Full-text available via subscription   (Followers: 4)
EPE Journal : European Power Electronics and Drives     Hybrid Journal  
EPJ Quantum Technology     Open Access   (Followers: 1)
EURASIP Journal on Embedded Systems     Open Access   (Followers: 11)
Facta Universitatis, Series : Electronics and Energetics     Open Access  
Foundations and Trends® in Communications and Information Theory     Full-text available via subscription   (Followers: 6)
Foundations and Trends® in Signal Processing     Full-text available via subscription   (Followers: 9)
Frequenz     Hybrid Journal   (Followers: 1)
Frontiers of Optoelectronics     Hybrid Journal   (Followers: 1)
IACR Transactions on Symmetric Cryptology     Open Access   (Followers: 1)
IEEE Antennas and Propagation Magazine     Hybrid Journal   (Followers: 103)
IEEE Antennas and Wireless Propagation Letters     Hybrid Journal   (Followers: 81)
IEEE Embedded Systems Letters     Hybrid Journal   (Followers: 57)
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology     Hybrid Journal   (Followers: 3)
IEEE Journal of Emerging and Selected Topics in Power Electronics     Hybrid Journal   (Followers: 52)
IEEE Journal of the Electron Devices Society     Open Access   (Followers: 9)
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits     Hybrid Journal   (Followers: 1)
IEEE Letters on Electromagnetic Compatibility Practice and Applications     Hybrid Journal   (Followers: 4)
IEEE Magnetics Letters     Hybrid Journal   (Followers: 7)
IEEE Nanotechnology Magazine     Hybrid Journal   (Followers: 42)
IEEE Open Journal of Circuits and Systems     Open Access   (Followers: 3)
IEEE Open Journal of Industry Applications     Open Access   (Followers: 3)
IEEE Open Journal of the Industrial Electronics Society     Open Access   (Followers: 3)
IEEE Power Electronics Magazine     Full-text available via subscription   (Followers: 77)
IEEE Pulse     Hybrid Journal   (Followers: 5)
IEEE Reviews in Biomedical Engineering     Hybrid Journal   (Followers: 23)
IEEE Solid-State Circuits Letters     Hybrid Journal   (Followers: 3)
IEEE Solid-State Circuits Magazine     Hybrid Journal   (Followers: 13)
IEEE Transactions on Aerospace and Electronic Systems     Hybrid Journal   (Followers: 372)
IEEE Transactions on Antennas and Propagation     Full-text available via subscription   (Followers: 74)
IEEE Transactions on Automatic Control     Hybrid Journal   (Followers: 64)
IEEE Transactions on Autonomous Mental Development     Hybrid Journal   (Followers: 8)
IEEE Transactions on Biomedical Engineering     Hybrid Journal   (Followers: 39)
IEEE Transactions on Broadcasting     Hybrid Journal   (Followers: 13)
IEEE Transactions on Circuits and Systems for Video Technology     Hybrid Journal   (Followers: 26)
IEEE Transactions on Consumer Electronics     Hybrid Journal   (Followers: 46)
IEEE Transactions on Electron Devices     Hybrid Journal   (Followers: 19)
IEEE Transactions on Geoscience and Remote Sensing     Hybrid Journal   (Followers: 229)
IEEE Transactions on Haptics     Hybrid Journal   (Followers: 5)
IEEE Transactions on Industrial Electronics     Hybrid Journal   (Followers: 75)
IEEE Transactions on Industry Applications     Hybrid Journal   (Followers: 40)
IEEE Transactions on Information Theory     Hybrid Journal   (Followers: 27)
IEEE Transactions on Learning Technologies     Full-text available via subscription   (Followers: 12)
IEEE Transactions on Power Electronics     Hybrid Journal   (Followers: 80)
IEEE Transactions on Services Computing     Hybrid Journal   (Followers: 4)
IEEE Transactions on Signal and Information Processing over Networks     Hybrid Journal   (Followers: 13)
IEEE Transactions on Software Engineering     Hybrid Journal   (Followers: 79)
IEEE Women in Engineering Magazine     Hybrid Journal   (Followers: 11)
IEEE/OSA Journal of Optical Communications and Networking     Hybrid Journal   (Followers: 16)
IEICE - Transactions on Electronics     Full-text available via subscription   (Followers: 12)
IEICE - Transactions on Information and Systems     Full-text available via subscription   (Followers: 5)
IET Cyber-Physical Systems : Theory & Applications     Open Access   (Followers: 1)
IET Energy Systems Integration     Open Access   (Followers: 1)
IET Microwaves, Antennas & Propagation     Hybrid Journal   (Followers: 36)
IET Nanodielectrics     Open Access  
IET Power Electronics     Hybrid Journal   (Followers: 61)
IET Smart Grid     Open Access   (Followers: 1)
IET Wireless Sensor Systems     Hybrid Journal   (Followers: 18)
IETE Journal of Education     Open Access   (Followers: 4)
IETE Journal of Research     Open Access   (Followers: 11)
IETE Technical Review     Open Access   (Followers: 13)
IJEIS (Indonesian Journal of Electronics and Instrumentation Systems)     Open Access   (Followers: 3)
Industrial Technology Research Journal Phranakhon Rajabhat University     Open Access  
Informatik-Spektrum     Hybrid Journal   (Followers: 2)
Instabilities in Silicon Devices     Full-text available via subscription   (Followers: 1)
Intelligent Transportation Systems Magazine, IEEE     Full-text available via subscription   (Followers: 14)
International Journal of Advanced Research in Computer Science and Electronics Engineering     Open Access   (Followers: 18)
International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems     Open Access   (Followers: 12)
International Journal of Antennas and Propagation     Open Access   (Followers: 11)
International Journal of Applied Electronics in Physics & Robotics     Open Access   (Followers: 4)
International Journal of Computational Vision and Robotics     Hybrid Journal   (Followers: 5)
International Journal of Control     Hybrid Journal   (Followers: 11)
International Journal of Electronics     Hybrid Journal   (Followers: 7)
International Journal of Electronics and Telecommunications     Open Access   (Followers: 13)
International Journal of Granular Computing, Rough Sets and Intelligent Systems     Hybrid Journal   (Followers: 3)
International Journal of High Speed Electronics and Systems     Hybrid Journal  
International Journal of Hybrid Intelligence     Hybrid Journal  
International Journal of Image, Graphics and Signal Processing     Open Access   (Followers: 16)
International Journal of Microwave and Wireless Technologies     Hybrid Journal   (Followers: 10)
International Journal of Nanoscience     Hybrid Journal   (Followers: 1)
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields     Hybrid Journal   (Followers: 4)
International Journal of Power Electronics     Hybrid Journal   (Followers: 25)
International Journal of Review in Electronics & Communication Engineering     Open Access   (Followers: 4)
International Journal of Sensors, Wireless Communications and Control     Hybrid Journal   (Followers: 10)
International Journal of Systems, Control and Communications     Hybrid Journal   (Followers: 4)
International Journal of Wireless and Microwave Technologies     Open Access   (Followers: 6)
International Transaction of Electrical and Computer Engineers System     Open Access   (Followers: 2)
JAREE (Journal on Advanced Research in Electrical Engineering)     Open Access  
Journal of Biosensors & Bioelectronics     Open Access   (Followers: 4)
Journal of Advanced Dielectrics     Open Access   (Followers: 1)
Journal of Artificial Intelligence     Open Access   (Followers: 12)
Journal of Circuits, Systems, and Computers     Hybrid Journal   (Followers: 4)
Journal of Computational Intelligence and Electronic Systems     Full-text available via subscription   (Followers: 1)
Journal of Electrical and Electronics Engineering Research     Open Access   (Followers: 38)
Journal of Electrical Bioimpedance     Open Access  
Journal of Electrical Bioimpedance     Open Access   (Followers: 2)
Journal of Electrical Engineering & Electronic Technology     Hybrid Journal   (Followers: 7)
Journal of Electrical, Electronics and Informatics     Open Access  
Journal of Electromagnetic Analysis and Applications     Open Access   (Followers: 8)
Journal of Electromagnetic Waves and Applications     Hybrid Journal   (Followers: 9)
Journal of Electronic Design Technology     Full-text available via subscription   (Followers: 6)
Journal of Electronic Science and Technology     Open Access   (Followers: 1)
Journal of Electronics (China)     Hybrid Journal   (Followers: 5)
Journal of Energy Storage     Full-text available via subscription   (Followers: 4)
Journal of Engineered Fibers and Fabrics     Open Access   (Followers: 2)
Journal of Field Robotics     Hybrid Journal   (Followers: 4)
Journal of Guidance, Control, and Dynamics     Hybrid Journal   (Followers: 191)
Journal of Information and Telecommunication     Open Access   (Followers: 1)
Journal of Intelligent Procedures in Electrical Technology     Open Access   (Followers: 3)
Journal of Low Power Electronics     Full-text available via subscription   (Followers: 10)
Journal of Low Power Electronics and Applications     Open Access   (Followers: 10)
Journal of Microelectronics and Electronic Packaging     Hybrid Journal   (Followers: 1)
Journal of Microwave Power and Electromagnetic Energy     Hybrid Journal   (Followers: 3)
Journal of Microwaves, Optoelectronics and Electromagnetic Applications     Open Access   (Followers: 11)
Journal of Nuclear Cardiology     Hybrid Journal  
Journal of Optoelectronics Engineering     Open Access   (Followers: 4)
Journal of Physics B: Atomic, Molecular and Optical Physics     Hybrid Journal   (Followers: 32)
Journal of Power Electronics     Hybrid Journal   (Followers: 2)
Journal of Power Electronics & Power Systems     Full-text available via subscription   (Followers: 11)
Journal of Semiconductors     Full-text available via subscription   (Followers: 5)
Journal of Sensors     Open Access   (Followers: 27)
Journal of Signal and Information Processing     Open Access   (Followers: 8)
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer     Open Access  
Jurnal Rekayasa Elektrika     Open Access  
Jurnal Teknik Elektro     Open Access  
Jurnal Teknologi Elektro     Open Access  
Kinetik : Game Technology, Information System, Computer Network, Computing, Electronics, and Control     Open Access  
Majalah Ilmiah Teknologi Elektro : Journal of Electrical Technology     Open Access   (Followers: 2)
Metrology and Measurement Systems     Open Access   (Followers: 6)
Microelectronics and Solid State Electronics     Open Access   (Followers: 28)
Nanotechnology, Science and Applications     Open Access   (Followers: 6)
Nature Electronics     Hybrid Journal   (Followers: 1)
Networks: an International Journal     Hybrid Journal   (Followers: 4)
Open Electrical & Electronic Engineering Journal     Open Access  
Open Journal of Antennas and Propagation     Open Access   (Followers: 8)
Paladyn. Journal of Behavioral Robotics     Open Access   (Followers: 1)
Power Electronics and Drives     Open Access   (Followers: 2)
Problemy Peredachi Informatsii     Full-text available via subscription  
Progress in Quantum Electronics     Full-text available via subscription   (Followers: 7)
Radiophysics and Quantum Electronics     Hybrid Journal   (Followers: 2)
Recent Advances in Communications and Networking Technology     Hybrid Journal   (Followers: 3)
Recent Advances in Electrical & Electronic Engineering     Hybrid Journal   (Followers: 11)
Research & Reviews : Journal of Embedded System & Applications     Full-text available via subscription   (Followers: 6)
Revue Méditerranéenne des Télécommunications     Open Access  
Security and Communication Networks     Hybrid Journal   (Followers: 2)
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of     Hybrid Journal   (Followers: 57)
Semiconductors and Semimetals     Full-text available via subscription   (Followers: 1)
Sensing and Imaging : An International Journal     Hybrid Journal   (Followers: 2)
Solid State Electronics Letters     Open Access  
Solid-State Electronics     Hybrid Journal   (Followers: 9)
Superconductor Science and Technology     Hybrid Journal   (Followers: 3)
Synthesis Lectures on Power Electronics     Full-text available via subscription   (Followers: 3)
Technical Report Electronics and Computer Engineering     Open Access  
TELE     Open Access  
Telematique     Open Access  
TELKOMNIKA (Telecommunication, Computing, Electronics and Control)     Open Access   (Followers: 9)
Transactions on Cryptographic Hardware and Embedded Systems     Open Access   (Followers: 2)

        1 2 | Last   [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Journal of Low Power Electronics and Applications
Journal Prestige (SJR): 0.222
Citation Impact (citeScore): 1
Number of Followers: 10  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2079-9268
Published by MDPI Homepage  [230 journals]
  • JLPEA, Vol. 10, Pages 21: Accurate Analysis and Design of Integrated
           Single Input Schmitt Trigger Circuits

    • Authors: Mohamed R. Elmezayen, Wei Hu, Amr M. Maghraby, Islam T. Abougindia, Suat U. Ay
      First page: 21
      Abstract: Schmitt trigger (ST) circuits are widely used integrated circuit (IC) blocks with hysteretic input/output (I/O) characteristics. Like the I/O characteristics of a living neuron, STs reject noise and provide stability to systems that they are deployed in. Indeed, single-input/single-output (SISO) STs are likely candidates to be the core unit element in artificial neural networks (ANNs) due not only to their similar I/O characteristics but also to their low power consumption and small silicon footprints. This paper presents an accurate and detailed analysis and design of six widely used complementary metal-oxide-semiconductor (CMOS) SISO ST circuits. The hysteresis characteristics of these ST circuits were derived for hand calculations and compared to original design equations and simulation results. Simulations were carried out in a well-established, 0.35 μm/3.3 V, analog/mixed-signal CMOS process. Additionally, simulations were performed using a wide range of supplies and process variations, but only 3.3 V supply results are presented. Most of the new design equations provide better accuracy and insights, as broad assumptions of original derivations were avoided.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-06-29
      DOI: 10.3390/jlpea10030021
      Issue No: Vol. 10, No. 3 (2020)
  • JLPEA, Vol. 10, Pages 22: A Case for Security-Aware Design-Space
           Exploration of Embedded Systems

    • Authors: Andy D. Pimentel
      First page: 22
      Abstract: As modern embedded systems are becoming more and more ubiquitous and interconnected, they attract a world-wide attention of attackers and the security aspect is more important than ever during the design of those systems. Moreover, given the ever-increasing complexity of the applications that run on these systems, it becomes increasingly difficult to meet all security criteria. While extra-functional design objectives such as performance and power/energy consumption are typically taken into account already during the very early stages of embedded systems design, system security is still mostly considered as an afterthought. That is, security is usually not regarded in the process of (early) design-space exploration of embedded systems, which is the critical process of multi-objective optimization that aims at optimizing the extra-functional behavior of a design. This position paper argues for the development of techniques for quantifying the ’degree of secureness’ of embedded system design instances such that these can be incorporated in a multi-objective optimization process. Such technology would allow for the optimization of security aspects of embedded systems during the earliest design phases as well as for studying the trade-offs between security and the other design objectives such as performance, power consumption and cost.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-07-17
      DOI: 10.3390/jlpea10030022
      Issue No: Vol. 10, No. 3 (2020)
  • JLPEA, Vol. 10, Pages 23: An Approach for a Wide Dynamic Range Low-Noise
           Current Readout Circuit

    • Authors: Wei Wang, Sameer Sonkusale
      First page: 23
      Abstract: Designing low-noise current readout circuits at high speed is challenging. There is a need for preamplification stages to amplify weak input currents before being processed by conventional integrator based readout. However, the high current gain preamplification stage usually limits the dynamic range. This article presents a 140 dB input dynamic range low-noise current readout circuit with a noise floor of 10 fArms/sq(Hz). The architecture uses a programmable bidirectional input current gain stage followed by an integrator-based analog-to-pulse conversion stage. The programmable current gains setting enables one to achieve higher overall input dynamic range. The readout circuit is designed and in 0.18 μm CMOS and consumes 10.3 mW power from a 1.8 V supply. The circuit has been verified using post-layout simulations.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-07-29
      DOI: 10.3390/jlpea10030023
      Issue No: Vol. 10, No. 3 (2020)
  • JLPEA, Vol. 10, Pages 11: Rectifiers’ Design and Optimization for a
           Dual-Channel RF Energy Harvester

    • Authors: Colaiuda, Ulisse, Ferri
      First page: 11
      Abstract: This paper presents the design and implementation of two front-ends for RF (Radio Frequency) energy harvesting, comparing them with the commercial one—P2110 by Powercast Co. (Pittsburgh, PA, USA) Both devices are implemented on a discrete element board with microstrip lines combined with lumped elements and are optimized for two different input power levels (−10 dBm and 10 dBm, respectively), at the GSM900 frequencies. The load has been fixed at 5kΩ, after a load-pull analysis on systems. The rectifiers stages implement two different Schottky diodes in two different topologies: a single diode and a 2-stage Dickson’s charge pump. The second one is compared with the P2110 by generating RF fields at 915 MHz with the Powercast Powerspot. The main aim of this work is to design simple and efficient low-cost devices, which can be used as a power supply for low-power autonomous sensors, with better performances than the current solutions of state-of-the-art equipment, providing an acceptable voltage level on the load. Measurements have been conducted for input power range −20 dBm up to 10 dBm; the best power conversion efficiency (PCE) is obtained with the second design, which reaches a value of 70% at 915 MHz. In particular, the proposed device exhibited better performance compared to the P2110 commercial device, allowing a maximum distance of operation of up to 22 meters from the dedicated RF power source, making it suitable even for IoT (Internet of Things) applications.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-04-04
      DOI: 10.3390/jlpea10020011
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 12: Electronic Tuning Square-wave Generators with
           Improved Linearity Using Operational Transresistance Amplifier

    • Authors: Pittala Chandra Shaker, Avireni Srinivasulu
      First page: 12
      Abstract: Two new electronic tuning current-mode square-wave generators are introduced in the ensuing paper. In the first proposed square-wave generator circuit, one Operational Trans-resistance Amplifier (OTRA) and two passive components are involved, along with two NMOS depletion mode transistors. This circuit generates a square-wave with almost equal and fixed duty cycles. The second proposed circuit is able to control both on-duty and off-duty cycles independently with the help of two passive components, two NMOS depletion mode transistors, and two diodes connected to the circuit. The frequency of the proposed circuits can be adjusted with the passive components connected to the circuit. Moreover, electronic tuning can also be achieved with the proposed circuits. The measured results that are included in the paper show the linear variation of a time period as compared with existing OTRA based square waveform generator. The performance of the proposed circuits is examined while using SPICE models. These circuits are built on a laboratory breadboard using commercially available Current Feedback Operational Amplifier (AD844 AN) and passive components are connected externally and tested for square waveform generation. The obtained results demonstrate good agreement with the theoretical values.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-04-14
      DOI: 10.3390/jlpea10020012
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 13: A Chopper Stabilization Audio Instrumentation
           Amplifier for IoT Applications

    • Authors: Jamel Nebhen, Pietro M. Ferreira, Sofiene Mansouri
      First page: 13
      Abstract: A low-noise instrumentation amplifier dedicated to a nano- and micro-electro-mechanical system (M&NEMS) microphone for the use in Internet of Things (IoT) applications is presented. The piezoresistive sensor and the electronic interface are respectively, silicon nanowires and an instrumentation amplifier. To design an instrumentation amplifier for IoT applications, different trade-offs are discussed like power consumption, gain, noise and sensitivity. Because the most critical noisy block is the amplifier, a delay-time chopper stabilization (CHS) technique is implemented around it to eliminate its offset and 1/f noise. The low-noise instrumentation amplifier is implemented in a 65-nm CMOS (Complementary metal–oxide–semiconductor) technology. The supply voltage is 2.5 V while the power consumption is 0.4 mW and the core area is 1 mm2. The circuit of the M&NEMS microphone and the amplifier was fabricated and measured. From measurement results over a signal bandwidth of 20 kHz, it achieves a signal-to-noise ratio (SNR) of 77 dB.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-04-16
      DOI: 10.3390/jlpea10020013
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 14: Low-Power Embedded System for Gait
           Classification Using Neural Networks

    • Authors: Francisco Luna-Perejón, Manuel Domínguez-Morales, Daniel Gutiérrez-Galán, Antón Civit-Balcells
      First page: 14
      Abstract: Abnormal foot postures can be measured during the march by plantar pressures in both dynamic and static conditions. These detections may prevent possible injuries to the lower limbs like fractures, ankle sprain or plantar fasciitis. This information can be obtained by an embedded instrumented insole with pressure sensors and a low-power microcontroller. However, these sensors are placed in sparse locations inside the insole, so it is not easy to correlate manually its values with the gait type; that is why a machine learning system is needed. In this work, we analyse the feasibility of integrating a machine learning classifier inside a low-power embedded system in order to obtain information from the user’s gait in real-time and prevent future injuries. Moreover, we analyse the execution times, the power consumption and the model effectiveness. The machine learning classifier is trained using an acquired dataset of 3000+ steps from 6 different users. Results prove that this system provides an accuracy over 99% and the power consumption tests obtains a battery autonomy over 25 days.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-05-01
      DOI: 10.3390/jlpea10020014
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 15: An Autonomous Low-Power LoRa-Based
           Flood-Monitoring System

    • Authors: Mattia Ragnoli, Gianluca Barile, Alfiero Leoni, Giuseppe Ferri, Vincenzo Stornelli
      First page: 15
      Abstract: The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-05-10
      DOI: 10.3390/jlpea10020015
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 16: Near-Threshold Voltage Design Techniques for
           Heterogenous Manycore System-on-Chips

    • Authors: Sriram Vangal, Somnath Paul, Steven Hsu, Amit Agarwal, Ram Krishnamurthy, James Tschanz, Vivek De
      First page: 16
      Abstract: Aggressive power supply scaling into the near-threshold voltage (NTV) region holds great potential for applications with strict energy budgets, since the energy efficiency peaks as the supply voltage approaches the threshold voltage (VT) of the CMOS transistors. The improved silicon energy efficiency promises to fit more cores in a given power envelope. As a result, many-core Near-threshold computing (NTC) has emerged as an attractive paradigm. Realizing energy-efficient heterogenous system on chips (SoCs) necessitates key NTV-optimized ingredients, recipes and IP blocks; including CPUs, graphic vector engines, interconnect fabrics and mm-scale microcontroller (MCU) designs. We discuss application of NTV design techniques, necessary for reliable operation over a wide supply voltage range—from nominal down to the NTV regime, and for a variety of IPs. Evaluation results spanning Intel’s 32-, 22- and 14-nm CMOS technologies across four test chips are presented, confirming substantial energy benefits that scale well with Moore’s law.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-05-14
      DOI: 10.3390/jlpea10020016
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 17: Evidence of Limitations of the
           Transconductance-to- Drain-Current Method (gm/Id) for Transistor Sizing in
           28 nm UTBB FD-SOI Transistors

    • Authors: Leonardo Barboni
      First page: 17
      Abstract: The transconductance-to-drain-current method is a transistor sizing methodology that is commonly used in CMOS technology. In this study, we explored by means of simulations, a case of study and three figures of merit used for the method, and we conclude for the first time that the method should be reformulated. The study has been performed on Ultra-Thin Body and Buried Fully Depleted Silicon-On-Insulator 28 nm low-voltage-threshold NFET commercial technology (UTBB FD-SOI), and the simulations were performed via Spectre Circuit Simulator, by using the device model-card. To our knowledge, no previous attempts have been made to assess the method capability, and we collected very important results that infer that the method should be reformulated or considered incomplete for use with this technology, which has an impact and ramifications on the field of process modeling, simulation and circuit design.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-05-15
      DOI: 10.3390/jlpea10020017
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 18: Implementation of a Fractional-Order
           Electronically Reconfigurable Lung Impedance Emulator of the Human
           Respiratory Tree

    • Authors: Elpida Kaskouta, Stavroula Kapoulea, Costas Psychalinos, Ahmed S. Elwakil
      First page: 18
      Abstract: The fractional-order lung impedance model of the human respiratory tree is implemented in this paper, using Operational Transconductance Amplifiers. The employment of such active element offers electronic adjustment of the impedance characteristics in terms of both elements values and orders. As the MOS transistors in OTAs are biased in the weak inversion region, the power dissipation and the dc bias voltage of operation are also minimized. In addition, the partial fraction expansion tool has been utilized, in order to achieve reduction of the spread of the required time-constants and scaling factors. The performance of the proposed scheme has been evaluated, at post-layout level, using MOS transistors models provided by the 0.35 μ m Austria Mikro Systeme technology CMOS process, and the Cadence IC design suite.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-05-16
      DOI: 10.3390/jlpea10020018
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 19: Idleness-Aware Dynamic Power Mode Selection on
           the i.MX 7ULP IoT Edge Processor

    • Authors: Alfio Di Mauro, Hamed Fatemi, Jose Pineda de Gyvez, Luca Benini
      First page: 19
      Abstract: Power management is a crucial concern in micro-controller platforms for the Internet of Things (IoT) edge. Many applications present a variable and difficult to predict workload profile, usually driven by external inputs. The dynamic tuning of power consumption to the application requirements is indeed a viable approach to save energy. In this paper, we propose the implementation of a power management strategy for a novel low-cost low-power heterogeneous dual-core SoC for IoT edge fabricated in 28 nm FD-SOI technology. Ss with more complex power management policies implemented on high-end application processors, we propose a power management strategy where the power mode is dynamically selected to ensure user-specified target idleness. We demonstrate that the dynamic power mode selection introduced by our power manager allows achieving more than 43% power consumption reduction with respect to static worst-case power mode selection, without any significant penalty in the performance of a running application.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-06-05
      DOI: 10.3390/jlpea10020019
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 20: Surrogate Assisted Optimization for Low-Voltage
           Low-Power Circuit Design

    • Authors: Amel Garbaya, Mouna Kotti, Mourad Fakhfakh, Esteban Tlelo-Cuautle
      First page: 20
      Abstract: Low-voltage low-power (LVLP) circuit design and optimization is a hard and time-consuming task. In this study, we are interested in the application of the newly proposed meta-modelling technique to alleviate such burdens. Kriging-based surrogate models of circuits’ performances were constructed and then used within a metaheuristic-based optimization kernel in order to maximize the circuits’ sizing. The JAYA algorithm was used for this purpose. Three topologies of CMOS current conveyors (CCII) were considered to showcase the proposed approach. The achieved performances were compared to those obtained using conventional LVLP circuit sizing techniques, and we show that our approach offers interesting results.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-06-16
      DOI: 10.3390/jlpea10020020
      Issue No: Vol. 10, No. 2 (2020)
  • JLPEA, Vol. 10, Pages 2: Temperature Compensation Circuit for ISFET Sensor

    • Authors: Ahmed Gaddour, Wael Dghais, Belgacem Hamdi, Mounir Ben Ali
      First page: 2
      Abstract: PH measurements are widely used in agriculture, biomedical engineering, the food industry, environmental studies, etc. Several healthcare and biomedical research studies have reported that all aqueous samples have their pH tested at some point in their lifecycle for evaluation of the diagnosis of diseases or susceptibility, wound healing, cellular internalization, etc. The ion-sensitive field effect transistor (ISFET) is capable of pH measurements. Such use of the ISFET has become popular, as it allows sensing, preprocessing, and computational circuitry to be encapsulated on a single chip, enabling miniaturization and portability. However, the extracted data from the sensor have been affected by the variation of the temperature. This paper presents a new integrated circuit that can enhance the immunity of ion-sensitive field effect transistors (ISFET) against the temperature. To achieve this purpose, the considered ISFET macro model is analyzed and validated with experimental data. Moreover, we investigate the temperature dependency on the voltage-current (I-V). Accordingly, an improved conditioning circuit is designed in order to reduce the temperature sensitivity on the measured pH values of the ISFET sensor. The numerical validation results show that the developed solution accurately compensates the temperature variation on the measured pH values at low power consumption.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-01-04
      DOI: 10.3390/jlpea10010002
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 3: Threshold Voltage Degradation for n-Channel
           4H-SiC Power MOSFETs

    • Authors: Esteban Guevara, Victor Herrera-Pérez, Cristian Rocha, Katherine Guerrero
      First page: 3
      Abstract: In this study, threshold voltage instability on commercial silicon carbide (SiC) power metal oxide semiconductor field electric transistor MOSFETs was evaluated using devices manufactured from two different manufacturers. The characterization process included PBTI (positive bias temperature instability) and pulsed IV measurements of devices to determine electrical parameters’ degradations. This work proposes an experimental procedure to characterize silicon carbide (SiC) power MOSFETs following two characterization methods: (1) Using the one spot drop down (OSDD) measurement technique to assess the threshold voltage explains temperature dependence when used on devices while they are subjected to high temperatures and different gate voltage stresses. (2) Measurement data processing to obtain hysteresis characteristics variation and the damage effect over threshold voltage. Finally, based on the results, it was concluded that trapping charge does not cause damage on commercial devices due to reduced value of recovery voltage, when a negative small voltage is applied over a long stress time. The motivation of this research was to estimate the impact and importance of the bias temperature instability for the application fields of SiC power n-MOSFETs. The importance of this study lies in the identification of the aforementioned behavior where SiC power n-MOSFETs work together with complementary MOS (CMOS) circuits.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-01-08
      DOI: 10.3390/jlpea10010003
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 4: Acknowledgement to Reviewers of Journal of Low
           Power Electronics and Applications in 2019

    • Authors: Journal Of Low Power Electronics And Applications Editorial Office; Journal Of Low Power Electronics And Applications Editorial Office
      First page: 4
      Abstract: The editorial team greatly appreciates the reviewers who have dedicated their considerable time and expertise to the journal’s rigorous editorial process over the past 12 months, regardless of whether the papers are finally published or not [...]
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-01-23
      DOI: 10.3390/jlpea10010004
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 5: High-Efficiency Switched-Capacitor DC-DC
           Converter with Three Decades of Load Current Range Using Adaptively-Biased

    • Authors: Anurag Veerabathini, Paul M. Furth
      First page: 5
      Abstract: A fully-integrated switched-capacitor (SC) DC-DC converter that steps down 2.0 V to 0.9 V with a peak efficiency of 80% is implemented in a 0.18 μ m CMOS process. An ultra-low-power voltage-controlled oscillator that generates a wide range of switching frequencies is proposed to extend battery runtime. An efficiency >70% for load currents in the range of 12 μ A to 17.8 mA is achieved by implementing a novel adaptively-biased pulse frequency modulation (ABPFM) technique in the controller. A symmetric charge-discharge topology with two-phase time interleaving is used as a power stage to reduce the output voltage ripple to <72 mV over the entire load current range.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-02-20
      DOI: 10.3390/jlpea10010005
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 6: An Acoustic Vehicle Detector and Classifier Using
           a Reconfigurable Analog/Mixed-Signal Platform

    • Authors: Swagat Bhattacharyya, Steven Andryzcik, David W. Graham
      First page: 6
      Abstract: The wireless sensor nodes used in a growing number of remote sensing applications are deployed in inaccessible locations or are subjected to severe energy constraints. Audio-based sensing offers flexibility in node placement and is popular in low-power schemes. Thus, in this paper, a node architecture with low power consumption and in-the-field reconfigurability is evaluated in the context of an acoustic vehicle detection and classification (hereafter “AVDC”) scenario. The proposed architecture utilizes an always-on field-programmable analog array (FPAA) as a low-power event detector to selectively wake a microcontroller unit (MCU) when a significant event is detected. When awoken, the MCU verifies the vehicle class asserted by the FPAA and transmits the relevant information. The AVDC system is trained by solving a classification problem using a lexicographic, nonlinear programming algorithm. On a testing dataset comprising of data from ten cars, ten trucks, and 40 s of wind noise, the AVDC system has a detection accuracy of 100%, a classification accuracy of 95%, and no false alarms. The mean power draw of the FPAA is 43 μ W and the mean power consumption of the MCU and radio during its validation and wireless transmission process is 40.9 mW. Overall, this paper demonstrates that the utilization of an FPAA-based signal preprocessor can greatly improve the flexibility and power consumption of wireless sensor nodes.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-02-20
      DOI: 10.3390/jlpea10010006
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 7: Logic-in-Memory Computation: Is It Worth it'
           A Binary Neural Network Case Study

    • Authors: Andrea Coluccio, Marco Vacca, Giovanna Turvani
      First page: 7
      Abstract: Recently, the Logic-in-Memory (LiM) concept has been widely studied in the literature. This paradigm represents one of the most efficient ways to solve the limitations of a Von Neumann’s architecture: by placing simple logic circuits inside or near a memory element, it is possible to obtain a local computation without the need to fetch data from the main memory. Although this concept introduces a lot of advantages from a theoretical point of view, its implementation could introduce an increasing complexity overhead of the memory itself, leading to a more sophisticated design flow. As a case study, Binary Neural Networks (BNNs) have been chosen. BNNs binarize both weights and inputs, transforming multiply-and-accumulate into a simpler bitwise logical operation while maintaining high accuracy, making them well-suited for a LiM implementation. In this paper, we present two circuits implementing a BNN model in CMOS technology. The first one, called Out-Of-Memory (OOM) architecture, is implemented following a standard Von Neumann structure. The same architecture was redesigned to adapt the critical part of the algorithm for a modified memory, which is also capable of executing logic calculations. By comparing both OOM and LiM architectures we aim to evaluate if Logic-in-Memory paradigm is worth it. The results highlight that LiM architectures have a clear advantage over Von Neumann architectures, allowing a reduction in energy consumption while increasing the overall speed of the circuit.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-02-22
      DOI: 10.3390/jlpea10010007
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 8: Body Bias Optimization for Real-Time Systems

    • Authors: Carlos C. Cortes Torres, Ryota Yasudo, Hideharu Amano
      First page: 8
      Abstract: The energy of real-time systems for embedded usage needs to be efficient without affecting the system’s ability to meet task deadlines. Dynamic body bias (BB) scaling is a promising approach to managing leakage energy and operational speed, especially for system-on-insulator devices. However, traditional energy models cannot deal with the overhead of adjusting the BB voltage; thus, the models are not accurate. This paper presents a more accurate model for calculating energy overhead using an analytical double exponential expression for dynamic BB scaling and an optimization method based on nonlinear programming with consideration of the real-chip parameter constraints. The use of the proposed model resulted in an energy reduction of about 32% at lower frequencies in comparison with the conventional model. Moreover, the energy overhead was reduced to approximately 14% of the total energy consumption. This methodology provides a framework and design guidelines for real-time systems and computer-aided design.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-02-22
      DOI: 10.3390/jlpea10010008
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 9: AxCEM: Designing Approximate Comparator-Enabled

    • Authors: Samar Ghabraei, Morteza Rezaalipour, Masoud Dehyadegari, Mahdi Nazm Bojnordi
      First page: 9
      Abstract: Floating-point multipliers have been the key component of nearly all forms of modern computing systems. Most data-intensive applications, such as deep neural networks (DNNs), expend the majority of their resources and energy budget for floating-point multiplication. The error-resilient nature of these applications often suggests employing approximate computing to improve the energy-efficiency, performance, and area of floating-point multipliers. Prior work has shown that employing hardware-oriented approximation for computing the mantissa product may result in significant system energy reduction at the cost of an acceptable computational error. This article examines the design of an approximate comparator used for preforming mantissa products in the floating-point multipliers. First, we illustrate the use of exact comparators for enhancing power, area, and delay of floating-point multipliers. Then, we explore the design space of approximate comparators for designing efficient approximate comparator-enabled multipliers (AxCEM). Our simulation results indicate that the proposed architecture can achieve a 66% reduction in power dissipation, another 66% reduction in die-area, and a 71% decrease in delay. As compared with the state-of-the-art approximate floating-point multipliers, the accuracy loss in DNN applications due to the proposed AxCEM is less than 0.06%.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-03-01
      DOI: 10.3390/jlpea10010009
      Issue No: Vol. 10, No. 1 (2020)
  • JLPEA, Vol. 10, Pages 10: Efficacy of Topology Scaling for Temperature and
           Latency Constrained Embedded ConvNets

    • Authors: Valentino Peluso, Roberto Giorgio Rizzo, Andrea Calimera
      First page: 10
      Abstract: Embedded Convolutional Neural Networks (ConvNets) are driving the evolution of ubiquitous systems that can sense and understand the environment autonomously. Due to their high complexity, aggressive compression is needed to meet the specifications of portable end-nodes. A variety of algorithmic optimizations are available today, from custom quantization and filter pruning to modular topology scaling, which enable fine-tuning of the hyperparameters and the right balance between quality, performance and resource usage. Nonetheless, the implementation of systems capable of sustaining continuous inference over a long period is still a primary source of concern since the limited thermal design power of general-purpose embedded CPUs prevents execution at maximum speed. Neglecting this aspect may result in substantial mismatches and the violation of the design constraints. The objective of this work was to assess topology scaling as a design knob to control the performance and the thermal stability of inference engines for image classification. To this aim, we built a characterization framework to inspect both the functional (accuracy) and non-functional (latency and temperature) metrics of two ConvNet models, MobileNet and MnasNet, ported onto a commercial low-power CPU, the ARM Cortex-A15. Our investigation reveals that different latency constraints can be met even under continuous inference, yet with a severe accuracy penalty forced by thermal constraints. Moreover, we empirically demonstrate that thermal behavior does not benefit from topology scaling as the on-chip temperature still reaches critical values affecting reliability and user satisfaction.
      Citation: Journal of Low Power Electronics and Applications
      PubDate: 2020-03-13
      DOI: 10.3390/jlpea10010010
      Issue No: Vol. 10, No. 1 (2020)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-