Subjects -> METALLURGY (Total: 58 journals)
Showing 1 - 10 of 10 Journals sorted alphabetically
Acta Metallurgica Slovaca     Open Access  
Advanced Device Materials     Open Access   (Followers: 3)
American Journal of Fluid Dynamics     Open Access   (Followers: 47)
Archives of Metallurgy and Materials     Open Access   (Followers: 8)
Asian Journal of Materials Science     Open Access   (Followers: 5)
Canadian Metallurgical Quarterly     Hybrid Journal   (Followers: 20)
Complex Metals     Open Access   (Followers: 1)
Corrosion Communications     Open Access   (Followers: 5)
Energy Materials : Materials Science and Engineering for Energy Systems     Hybrid Journal   (Followers: 19)
Handbook of Magnetic Materials     Full-text available via subscription   (Followers: 2)
Indian Journal of Engineering and Materials Sciences (IJEMS)     Open Access   (Followers: 10)
International Journal of Metallurgy and Alloys     Full-text available via subscription   (Followers: 3)
International Journal of Metals     Open Access   (Followers: 6)
International Journal of Minerals, Metallurgy, and Materials     Hybrid Journal   (Followers: 8)
International Journal of Mining and Geo-Engineering     Open Access  
Ironmaking & Steelmaking     Hybrid Journal   (Followers: 4)
ISIJ International - Iron and Steel Institute of Japan     Full-text available via subscription   (Followers: 23)
Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Proceedings of Higher Schools. Powder Metallurgy аnd Functional Coatings)     Full-text available via subscription   (Followers: 2)
JOM Journal of the Minerals, Metals and Materials Society     Hybrid Journal   (Followers: 32)
Journal of Advanced Joining Processes     Open Access  
Journal of Central South University     Hybrid Journal   (Followers: 1)
Journal of Cluster Science     Hybrid Journal  
Journal of Heavy Metal Toxicity and Diseases     Open Access  
Journal of Iron and Steel Research International     Hybrid Journal   (Followers: 7)
Journal of Materials & Metallurgical Engineering     Full-text available via subscription   (Followers: 1)
Journal of Materials Processing Technology     Hybrid Journal   (Followers: 18)
Journal of Metallurgical Engineering     Open Access   (Followers: 2)
Journal of Sustainable Metallurgy     Hybrid Journal   (Followers: 3)
Materials Science and Metallurgy Engineering     Open Access   (Followers: 7)
Metallurgical and Materials Engineering     Open Access  
Metallurgical and Materials Transactions A     Hybrid Journal   (Followers: 42)
Metallurgical and Materials Transactions B     Hybrid Journal   (Followers: 31)
Metallurgical and Materials Transactions E     Full-text available via subscription   (Followers: 2)
Metallurgical Research & Technology     Full-text available via subscription  
Metallurgical Research and Technology     Full-text available via subscription   (Followers: 6)
Metallurgy and Foundry Engineering     Open Access  
Mining, Metallurgy & Exploration     Hybrid Journal  
Powder Diffraction     Full-text available via subscription   (Followers: 1)
Powder Metallurgy     Hybrid Journal   (Followers: 33)
Powder Metallurgy and Metal Ceramics     Hybrid Journal   (Followers: 7)
Powder Metallurgy Progress     Open Access   (Followers: 5)
Rare Metals     Hybrid Journal   (Followers: 1)
Revista de Metalurgia     Open Access  
Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica     Open Access  
Revista Remetallica     Open Access  
Russian Metallurgy (Metally)     Full-text available via subscription   (Followers: 4)
Science and Technology of Welding and Joining     Hybrid Journal   (Followers: 4)
Soldering & Surface Mount Technology     Hybrid Journal   (Followers: 1)
Stainless Steel World     Full-text available via subscription   (Followers: 17)
Transactions of the IMF     Hybrid Journal   (Followers: 14)
Transactions of the Indian Institute of Metals     Hybrid Journal   (Followers: 4)
Tungsten     Hybrid Journal  
Universal Journal of Materials Science     Open Access   (Followers: 1)
Welding in the World     Hybrid Journal   (Followers: 4)
Welding International     Hybrid Journal   (Followers: 7)
Вісник Приазовського Державного Технічного Університету. Серія: Технічні науки     Open Access  
Similar Journals
Journal Cover
Powder Metallurgy Progress
Number of Followers: 5  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1335-8987 - ISSN (Online) 1339-4533
Published by Sciendo Homepage  [408 journals]
  • Evaluation of the Corrosion Resistance of WC-Co Coating on AZ91 Applied by
           Electro Spark Deposition

    • Abstract: In order to enhance the surface properties of a magnesium-based substrate, WC-Co coating was applied on AZ91 alloy by electro spark deposition (ESD), successfully for the first time. The optimum parameters of the ESD process were achieved, based on the corrosion behavior and calculated corrosion rate of the coated samples when 5kHz and 25 A were chosen. For evaluation of the corrosion performance of the achieved WC-Co layers, polarization, and electrochemical impedance spectroscopy tests were carried out in the 3.5 wt % Na3PO4 solution at room temperature. Polarization results show that the corrosion rate (mpy) is in the optimum condition almost half of a bulk sample of uncoated AZ91. Field emission scanning electron microscopy (FE-SEM) was used to examine the surface morphology of applied coatings. These results show that at a lower current, the amount of deposited WC-Co was reduced. The maximum surface microhardness obtained was 193 HV0.2.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • Powder Metallurgy Progress, an international open-access journal with 20
           years of publishing history the Extension of the Journal`s Scope

    • PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • Calcium Phosphate Cement Modified with Silicon Nitride/Tricalcium
           Phosphate Microgranules

    • Abstract: Tetracalcium phosphate/monetite biocement was modified with 10 and 30 wt. % addition of highly porous silicon nitride/α-tricalcium phosphate (αTCP) microgranules with various content of αTCP. A composite cement powder mixture was prepared using mechanical homogenization of basic components. The accelerated release of dexamethasone from composite cement was revealed, which indicates their possible utilization for controlled drug release. The wet compressive strength of cements (<17 MPa) was significantly reduced (more than 30%) in comparison with the unmodified cement and both compressive strength and setting time were influenced by the content of αTCP in microgranules. The addition of microgranules caused a 20% decrease in final cement density. Microgranules with a higher fraction of αTCP showed good in vitro SBF bioactivity with precipitation of hydroxyapatite particles. Microstructure analysis of fractured cements demonstrated excellent interconnection between microgranules and cement calcium phosphate matrix, but also showed lower mechanical strength of microgranule cores.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • Temperature-Dependent Electrical Characteristics of Disc-Shaped Compacts
           Fabricated using Calcined Eggshell Nano Powder and Dry Cassava Starch

    • Abstract: Disc-shaped compacts were fabricated from two mix proportions of calcined eggshell nanopowder and dry cassava starch and then used as test samples. The electrical resistance (R), thermal sensitivity index (β) and electronic activation energy (Ea) of the samples measured over a temperature range from 35 to 75oC were found to decrease non-linearly in values with increasing temperature. It was also observed that the results obtained (R = 3.691E6 Ω – 6.210E7 Ω, β = 3812K – 5316K and Ea = 0.33 eV – 0.46 eV) fulfill market requirements by comparing very well with the established values for NTC thermistors. Hence, from manufacturing viewpoint, recycling of chicken eggshell wastes and cassava effluents can avail electronic industry with promising and alternative materials for fabrication of temperature sensing / monitoring / control devices suitable for engineering applications. This will also help to reduce environmental pollution.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • Powder Metallurgy Manufacturing of Iron Aluminides with Different
           Aluminium Contents and Magnesium Addition by Reactive Hot Pressing

    • Abstract: In this work, iron aluminide materials, which are promising candidates for high temperature applications, are manufactured through reactive hot pressing of elemental powder mixes, facilitating a straightforward preparation of well-densified materials with a high degree of microstructural homogeneity. The impact of varying Al additions on reaction behavior, microstructural and compositional features of the resulting materials is evaluated. Furthermore, the effect of adding 1 wt. % Mg on reactivity and phase formation is illustrated. The results show that reactive hot pressing of elemental powders in the Fe-Al and Fe-Al-Mg systems at 1000 °C results in residual porosities well below 5 %. Magnesium addition significantly increased reactivity between constituents, leading to slightly improved densification without exhibiting potentially detrimental segregation phenomena. The processing approach presented in this work leads to material characteristics which are promising in the context of developing materials with favorable mechanical and tribological performance at elevated temperatures.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • Finishing of Tubes using Bonded Magnetic Abrasive Powder in an Abrasive
           Medium

    • Abstract: Magnetic abrasive flow finishing (MAFF) is an unconventional process capable of producing fine finishing with machining forces controlled by a magnetic field. This process can be utilized for hard to achieve inner surfaces through the activity of extrusion pressure, combined with abrasion activity of a magnetic abrasive powder (MAP) in a polymeric medium. MAP is the key component in securing systematic removal of material and a decent surface finish in MAFF. The research background disclosed various methods such as sintering, adhesive based, mechanical alloying, plasma based, chemical, etc. for the production of bonded MAP. This investigation proposes bonded MAP produced by mechanical alloying followed by heat treatment. The experiments have been conducted on aluminum tubes to investigate the influence of different parameters like magnetic field density, extrusion pressure and number of working cycles. The bonded magnetic abrasive powder used in MAFF is very effective to finish tubes’ inner surfaces and finishing is significantly improved after processing.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • The Effect of Plasma Pretreatment on the Morphology and Properties of
           Hitus Coatings

    • Abstract: WC coatings prepared by High Target Utilization Sputtering (HITUS), a relatively new technology, were deposited on three types of substrates. These were silicon (111), steel (100Cr6), and ceramic (WC-Co). The influence of RF plasma power pretreatment on final properties of WC coatings was investigated with two interlayer materials for bonding. The morphology, roughness, and mechanical properties of coatings were studied. The relation between plasma RF power and roughness was found. No significant change in mechanical properties was detected with change in plasma RF power. The dependence of nanohardness and scratch behavior on HITUS WC coatings was investigated.
      PubDate: Sat, 31 Jul 2021 00:00:00 GMT
       
  • T Dependence of the Mechanical Properties on the Microstructural
           Parameters of WC-Co

    • Abstract: The effect of binder content and WC grain size on the mechanical properties is widely investigated in literature. An increase in binder amount and WC grain size leads to a decrease in hardness and an increase in fracture toughness. Actually, these correlations are related to the influence of binder content and WC grain size through the contiguity and mean binder free path, which are the microstructural parameters that affect the mechanical properties. The aim of this study is to verify the dependence of the two microstructural parameters that govern the WCCo mechanical behaviour, namely the contiguity and mean binder free path, on the mechanical properties of an extended range of WC-Co samples, which differ in terms of Co content and tungsten carbide grain size.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Die Wall - Vs. Bulk Lubrication in Warm Die Compaction: Density,
           Microstructure and Mechanical Properties of Three Low Alloyed Steels

    • Abstract: The influence of die wall lubrication during warm die compaction on densification, microstructure and mechanical properties of three low alloy ferrous powders was investigated. Specimens were sintered at 1250°C. Die wall lubrication leads to higher green and sintered density and enhances the dimensional stability. It does not affect the microstructure of the matrix, while pores are smaller and more rounded than in bulk lubricated specimens. In TRS tests, both strength and deformation are higher in die wall lubricated specimens than bulk lubricated ones.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Study on Sintering of Artificially Oxidized Steel Compacts

    • Abstract: Sintering of Cr-prealloyed PM steels requires atmospheres with good quality – low oxygen potential – to achieve satisfactory sintering results. But during heating even the best atmospheres may be oxidizing, the system turns to reducing conditions only at high temperatures, which can be monitored by thermal analysis. During the dewaxing process, oxidizing conditions are favourable for effective dewaxing without sooting and blistering. However, this may result in some oxygen pickup during heating, and then the final properties of the produced parts may be strongly influenced by this intermediate oxidation. This study demonstrates the behaviour of artificially oxidized steels (Fe-C and Fe3Cr-0.5Mo-C) during the sintering process by stepwise sintering. Iron and steel powder were slightly oxidized and then pressed and sintered at different temperatures. In parallel, as a second approach, pressed samples were oxidized and then sintered. Density, hardness and impact energy were measured and dilatometry/MS was used for online monitoring of the sintering process. The starting oxygen content of 0.20 to 0.30 wt% is high enough to change the sintering behaviour of the materials, but still leads to rather good properties. Thermal analysis showed that most of the oxygen picked up was present as iron oxides on the surface which were reduced by hydrogen at rather low temperatures, confirming that these were iron oxides, which also holds for the Cr-prealloyed variant. The biggest influence on the final performance was exerted by the final carbon content and the microstructural development of the material.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Polymorphs of Neodymium Niobate and Tantalate Thin Films Prepared by
           Sol-Gel Method

    • Abstract: Neodymium niobate NdNbO4 (NNO) and tantalate NdTaO4 (NTO) thin films (~100 nm) were prepared by sol-gel/spin-coating process on Pb(Zr0.52Ti0.48)O3/Al2O3 substrates with annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The XRD results of NNO and NTO films confirmed tetragonal T-NdNbO4 and T-NdTaO4 phases, respectively, with traces of monoclinic MNdNbO4 and M´-NdTaO4. The surface morphology and topography were investigated by SEM and AFM analysis. NTO was smoother with roughness 5.24 nm in comparison with NNO (6.95 nm). In the microstructure of NNO, small spherical (~ 20-50 nm) T-NdNbO4 and larger needle-like particles (~100 nm) of M-NdNbO4 phase were observed. The compact clusters composed of fine spherical T-NdTaO4 particles (~ 50 nm) and cuboidal M´-NdTaO4 particles (~ 100 nm) were found in NTO. The results of this work can contribute to formation of different polymorphs of films for the application in environmental electrolytic thin film devices.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Influence of Sodium Alginate on Properties of Tetracalcium
           Phosphate/Nanomonetite Biocement

    • Abstract: The tetracalcium phosphate/nanomonetite (TTCPMH) biocements with the addition of sodium alginate were prepared by mechanical homogenization of powder mixture with hardening liquid containing sodium alginate. The effect of various viscosity of different alginates on properties of TTCPMH cement mixture was investigated. The medium viscous (MED) alginate had a more negative effect on setting process and compressive strength than low viscous (LOW) alginate. An approx. 50% decrease in mechanical properties (compressive strengths, Young´s modulus, work of fracture (WOF)) was revealed after an addition of 0.25 wt % with rapid fall above 1 wt % of LOW alginate in biocement. A statistically significant difference in the WOF was found between of 0.25 and 0.5 LOW alginate biocements (p<0.035) whereas no statistical differences were revealed between WOF of 0.5 and 1 LOW alginate biocements (p˃0.357). In the microstructure of composite cements, the increased amounts of granular or finer needle-like nanohydroxyapatite particles arranged into the form of more separated spherical agglomerates were observed. A low cytotoxicity of cement extracts based on measurement of cell proliferation was revealed.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Experimental Investigations on Impact Toughness and Shear Strength of
           Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg

    • Abstract: Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strength and impact toughness tests were conducted on Sn-1Cu-1Ni when different amounts of Ag (0.25, 0.5, 0.75 1 % by wt.) is added. Shear strength test is tested using micro force test system. Impact toughness test is analyzed using Charpy impact test set up by calculating the energy difference before and after impact. The study reveals that, Ultimate shear stress increased from 19 MPa to 21.3 MPa. Yield strength increased from 27.4 MPa to 29.7 Mpa. Impact toughness of the alloys increased from 9.4 J to 10.1 J. Thus, Sn-1Cu-1Ni-1Ag is found to have improved shear strength and impact toughness than Sn-1Cu-1Ni.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Additive Manufacturing of Steel and Copper Using Fused Layer Modelling:
           Material and Process Development

    • Abstract: Fused Layer Modelling (FLM) is one out of several material extrusion (ME) additive manufacturing (AM) methods. FLM usually deals with processing of polymeric materials but can also be used to process metal-filled polymeric systems to produce metallic parts. Using FLM for this purpose helps to save costs since the FLM hardware is cheap compared to e.g. direct metal laser processing hardware, and FLM offers an alternative route to the production of metallic components.To produce metallic parts by FLM, the methodology is different from direct metal processing technologies, and several processing steps are required: First, filaments consisting of a special polymer-metal composition are produced. The filament is then transformed into shaped parts by using FLM process technology. Subsequently the polymeric binder is removed (”debinding”) and finally the metallic powder body is sintered. Depending on the metal powder used, the binder composition, the FLM production parameters and also the debinding and sintering processes must be carefully adapted and optimized.The focal points of this study are as following:1. To confirm that metallic parts can be produced by using FLM plus debinding and sintering as an alternative route to direct metal additive manufacturing.2. Determination of process parameters, depending on the used metal powders (steel and copper) and optimization of each process step.3. Comparison of the production paths for the different metal powders and their debinding and sintering behavior as well as the final properties of the produced parts.The results showed that both materials were printable after adjusting the FLM parameters, metallic parts being produced for both metal powder systems. The production method and the sintering process worked out well for both powders. However there are specific challenges in the sintering process that have to be overcome to produce high quality metal parts. This study serves as a fundamental basis for understanding when it comes to the processing of steel and copper powder into metallic parts using FLM processing technology.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Preparation, Microstructure Evaluation and Performance Analysis of
           Diamond-Iron Bonded Magnetic Abrasive Powder

    • Abstract: The customary edged tool for machining is uneconomical for harder and hard to machine materials and furthermore the level of surface finish accomplished is not that great. As of late, a lot of consideration in mechanical engineering has been centered on finishing tasks. Not many investigations have been accounted for till date on the advancement of substitute magnetic abrasive powder (MAP). In this paper, to improve the finishing performance, the abrasive powder were prepared by mechanical alloying of diamond powder and iron (Fe) powder, compacting these with universal testing machine (UTM) and then sintered at different temperature in a sintering machine in an inert gas (H2) atmosphere. These compacts were crushed and sieved to obtain various sizes of MAP. This abrasive powder were micro-structurally examined. The results indicate that the densification increases and porosity decreases with increasing temperature. Moreover, the prepared bonded MAP has potential performance as a new MAP for fine finishing in Magnetic Abrasive Flow Machining (MAFM) process.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
  • Supersolidus Sintering of Cr Prealloyed Steels by Inductive Heating

    • Abstract: For powder metallurgy products, high density is an essential requirements to obtain maximum mechanical properties. Here, supersolidus liquid phase sintering (SSPLS) is an effective means to attain high sintered density, as known from PM high speed steels. In the present work it is shown that this technique can also be applied to Cr prealloyed low alloy steel grades. Supersolidus sintering through indirect heating requires precise control of temperature and also the atmosphere, to avoid uncontrolled changes of the carbon level. Higher C contents are beneficial here since they enable lower temperatures and result in wider temperature windows for sintering. The temperatures necessary for SSLPS at moderate C levels are fairly high for standard sintering furnaces, therefore induction sintering was studied in this work. It showed that, as was to be expected, also here precise temperature control is required, but for any carbon level tested a sintering temperature could be identified that yielded high sintered density and good shape retention. The high density attained, in combination with the very high temperatures, results in pronounced grain growth, this process no more being inhibited by the presence of pores, which is undesirable but can however be remedied by suitable heat treatment.
      PubDate: Mon, 15 Jun 2020 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 75.101.211.110
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-