A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> STATISTICS (Total: 130 journals)
Showing 1 - 151 of 151 Journals sorted by number of followers
Review of Economics and Statistics     Hybrid Journal   (Followers: 143)
Statistics in Medicine     Hybrid Journal   (Followers: 125)
Journal of Econometrics     Hybrid Journal   (Followers: 82)
Journal of the American Statistical Association     Full-text available via subscription   (Followers: 72, SJR: 3.746, CiteScore: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Biometrics     Hybrid Journal   (Followers: 50)
Journal of the Royal Statistical Society, Series B (Statistical Methodology)     Hybrid Journal   (Followers: 41)
Sociological Methods & Research     Hybrid Journal   (Followers: 41)
Journal of Business & Economic Statistics     Full-text available via subscription   (Followers: 38, SJR: 3.664, CiteScore: 2)
Journal of the Royal Statistical Society Series C (Applied Statistics)     Hybrid Journal   (Followers: 37)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 35)
Journal of Risk and Uncertainty     Hybrid Journal   (Followers: 33)
Oxford Bulletin of Economics and Statistics     Hybrid Journal   (Followers: 33)
Statistical Methods in Medical Research     Hybrid Journal   (Followers: 28)
Journal of the Royal Statistical Society, Series A (Statistics in Society)     Hybrid Journal   (Followers: 28)
The American Statistician     Full-text available via subscription   (Followers: 25)
Journal of Urbanism: International Research on Placemaking and Urban Sustainability     Hybrid Journal   (Followers: 23)
Journal of Biopharmaceutical Statistics     Hybrid Journal   (Followers: 23)
Journal of Computational & Graphical Statistics     Full-text available via subscription   (Followers: 21)
Journal of Applied Statistics     Hybrid Journal   (Followers: 20)
Journal of Forecasting     Hybrid Journal   (Followers: 19)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 18)
Statistical Modelling     Hybrid Journal   (Followers: 18)
International Journal of Quality, Statistics, and Reliability     Open Access   (Followers: 17)
Journal of Statistical Software     Open Access   (Followers: 16, SJR: 13.802, CiteScore: 16)
Journal of Time Series Analysis     Hybrid Journal   (Followers: 16)
Risk Management     Hybrid Journal   (Followers: 16)
Pharmaceutical Statistics     Hybrid Journal   (Followers: 15)
Computational Statistics     Hybrid Journal   (Followers: 15)
Statistics and Computing     Hybrid Journal   (Followers: 14)
Demographic Research     Open Access   (Followers: 14)
Statistics & Probability Letters     Hybrid Journal   (Followers: 13)
Journal of Statistical Physics     Hybrid Journal   (Followers: 13)
Australian & New Zealand Journal of Statistics     Hybrid Journal   (Followers: 12)
International Statistical Review     Hybrid Journal   (Followers: 12)
Decisions in Economics and Finance     Hybrid Journal   (Followers: 12)
Structural and Multidisciplinary Optimization     Hybrid Journal   (Followers: 12)
Statistics: A Journal of Theoretical and Applied Statistics     Hybrid Journal   (Followers: 12)
Geneva Papers on Risk and Insurance - Issues and Practice     Hybrid Journal   (Followers: 11)
Communications in Statistics - Theory and Methods     Hybrid Journal   (Followers: 11)
Advances in Complex Systems     Hybrid Journal   (Followers: 10)
Journal of Probability and Statistics     Open Access   (Followers: 10)
The Canadian Journal of Statistics / La Revue Canadienne de Statistique     Hybrid Journal   (Followers: 10)
Biometrical Journal     Hybrid Journal   (Followers: 9)
Communications in Statistics - Simulation and Computation     Hybrid Journal   (Followers: 9)
Scandinavian Journal of Statistics     Hybrid Journal   (Followers: 9)
Asian Journal of Mathematics & Statistics     Open Access   (Followers: 8)
Fuzzy Optimization and Decision Making     Hybrid Journal   (Followers: 8)
Current Research in Biostatistics     Open Access   (Followers: 8)
Teaching Statistics     Hybrid Journal   (Followers: 8)
Multivariate Behavioral Research     Hybrid Journal   (Followers: 8)
Stata Journal     Full-text available via subscription   (Followers: 8)
Argumentation et analyse du discours     Open Access   (Followers: 7)
Journal of Statistical Planning and Inference     Hybrid Journal   (Followers: 7)
Handbook of Statistics     Full-text available via subscription   (Followers: 7)
Journal of Combinatorial Optimization     Hybrid Journal   (Followers: 7)
Journal of Educational and Behavioral Statistics     Hybrid Journal   (Followers: 7)
Lifetime Data Analysis     Hybrid Journal   (Followers: 7)
Queueing Systems     Hybrid Journal   (Followers: 7)
Research Synthesis Methods     Hybrid Journal   (Followers: 7)
Significance     Hybrid Journal   (Followers: 7)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 7)
International Journal of Computational Economics and Econometrics     Hybrid Journal   (Followers: 6)
Optimization Methods and Software     Hybrid Journal   (Followers: 6)
Journal of Mathematics and Statistics     Open Access   (Followers: 6)
Journal of Global Optimization     Hybrid Journal   (Followers: 6)
Journal of Nonparametric Statistics     Hybrid Journal   (Followers: 6)
Statistical Methods and Applications     Hybrid Journal   (Followers: 6)
Law, Probability and Risk     Hybrid Journal   (Followers: 6)
Engineering With Computers     Hybrid Journal   (Followers: 5)
CHANCE     Hybrid Journal   (Followers: 5)
Handbook of Numerical Analysis     Full-text available via subscription   (Followers: 5)
Applied Categorical Structures     Hybrid Journal   (Followers: 4)
Mathematical Methods of Statistics     Hybrid Journal   (Followers: 4)
ESAIM: Probability and Statistics     Open Access   (Followers: 4)
Metrika     Hybrid Journal   (Followers: 4)
Statistical Papers     Hybrid Journal   (Followers: 4)
Monthly Statistics of International Trade - Statistiques mensuelles du commerce international     Full-text available via subscription   (Followers: 3)
Sankhya A     Hybrid Journal   (Followers: 3)
Journal of Statistical and Econometric Methods     Open Access   (Followers: 3)
Journal of Theoretical Probability     Hybrid Journal   (Followers: 3)
Statistical Inference for Stochastic Processes     Hybrid Journal   (Followers: 3)
Journal of Algebraic Combinatorics     Hybrid Journal   (Followers: 3)
Stochastic Models     Hybrid Journal   (Followers: 2)
Building Simulation     Hybrid Journal   (Followers: 2)
Stochastics An International Journal of Probability and Stochastic Processes: formerly Stochastics and Stochastics Reports     Hybrid Journal   (Followers: 2)
IEA World Energy Statistics and Balances -     Full-text available via subscription   (Followers: 2)
Optimization Letters     Hybrid Journal   (Followers: 2)
TEST     Hybrid Journal   (Followers: 2)
Technology Innovations in Statistics Education (TISE)     Open Access   (Followers: 2)
Extremes     Hybrid Journal   (Followers: 2)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 2)
International Journal of Stochastic Analysis     Open Access   (Followers: 2)
Statistica Neerlandica     Hybrid Journal   (Followers: 1)
Wiley Interdisciplinary Reviews - Computational Statistics     Hybrid Journal   (Followers: 1)
Measurement Interdisciplinary Research and Perspectives     Hybrid Journal   (Followers: 1)
Statistics and Economics     Open Access  
Review of Socionetwork Strategies     Hybrid Journal  
SourceOECD Measuring Globalisation Statistics - SourceOCDE Mesurer la mondialisation - Base de donnees statistiques     Full-text available via subscription  
Journal of the Korean Statistical Society     Hybrid Journal  
Sequential Analysis: Design Methods and Applications     Hybrid Journal  

              [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
Mathematical Methods of Statistics
Journal Prestige (SJR): 0.43
Number of Followers: 4  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1934-8045 - ISSN (Online) 1066-5307
Published by Springer-Verlag Homepage  [2469 journals]
  • Bounds on the Expectations of $$\boldsymbol{L}$$ -statistics from Iid
           Symmetric Populations in Various Scale Units

    • Free pre-print version: Loading...

      Abstract: We consider the order statistics \(X_{1:n},\ldots,X_{n:n}\) based on independent identically symmetrically distributed random variables. We determine sharp upper bounds in the properly centered linear combinations of order statistics \(\sum_{i=1}^{n}c_{i}(X_{i:n}-\mu)\) , where \((c_{1},\ldots,c_{n})\) is an arbitrary vector of coefficients from the \(n\) -dimensional real space, and \(\mu\) is the symmetry center of the parent distribution, in various scale units. The scale units are constructed on the basis of absolute central moments of the parent distribution of various orders. The bounds are specified for single order statistics. The lower bounds are immediately concluded from the upper ones.
      PubDate: 2021-07-01
       
  • A Necessary Bayesian Nonparametric Test for Assessing Multivariate
           Normality

    • Free pre-print version: Loading...

      Abstract: A novel Bayesian nonparametric test for assessing multivariate normal models is presented. Although there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The approach considered in this paper is based on the Dirichlet process and the squared radii of observations. Specifically, the squared radii are employed to transform the \(m\) -variate problem into a univariate problem by relying on the fact that if a random sample is coming from a multivariate normal distribution then the square radii follow a particular beta distribution. While the Dirichlet process is used as a prior on the distribution of the square radii, the concentration of the distribution of the Anderson–Darling distance between the posterior process and the beta distribution is compared to that between the prior process and beta distribution via a relative belief ratio. Key results of the approach are derived. The procedure is illustrated through several examples, in which it shows excellent performance.
      PubDate: 2021-07-01
       
  • Inferential Results for a New Inequality Curve

    • Free pre-print version: Loading...

      Abstract: We propose inferential results for a new integrated inequality curve, related to a new index of inequality and specifically designed for capturing significant shifts in the lower and upper tails of income distributions. In the last decades, indeed, substantial changes mainly occurred in the opposite sides of income distributions, raising serious concern to policy makers. These phenomena has been observed in countries like US, Germany, UK, and France. Properties of the index and curve have been investigated, and applications to real data disclosed a new way to look at inequality. First inferential results for the index have been published, as well. It seems natural, now, to be interested also in inferential results for the integrated curve. To fill this gap in the literature, we introduce two empirical estimators for the integrated curve, and show their asymptotical equivalence. Afterwards, we state their consistency. Finally, we prove the weak convergence in the space \(C[0,1]\) of the corresponding empirical process to a Gaussian process, which is a linear transformation of a Brownian bridge. An analysis of real data from the Bank of Italy Survey of Income and Wealth is also presented, on the base of the obtained inferential results.
      PubDate: 2021-01-01
       
  • Local Dvoretzky–Kiefer–Wolfowitz Confidence Bands

    • Free pre-print version: Loading...

      Abstract: In this paper, we revisit the concentration inequalities for the supremum of the cumulative distribution function (CDF) of a real-valued continuous distribution as established by Dvoretzky, Kiefer, Wolfowitz and revisited later by Massart in in two seminal papers. We focus on the concentration of the local supremum over a sub-interval, rather than on the full domain. That is, denoting \(U\) the CDF of the uniform distribution over \([0,1]\) and \(U_{n}\) its empirical version built from \(n\) samples, we study \(\mathbb{P}\Big{(}\sup_{u\in[\underline{u},\overline{u}]}U_{n}(u)-U(u)>\varepsilon\Big{)}\) for different values of \(\underline{u},\overline{u}\in[0,1]\) . Such local controls naturally appear for instance when studying estimation error of spectral risk-measures (such as the conditional value at risk), where \([\underline{u},\overline{u}]\) is typically \([0,\alpha]\) or \([1-\alpha,1]\) for a risk level \(\alpha\) , after reshaping the CDF \(F\) of the considered distribution into \(U\) by the general inverse transform \(F^{-1}\) . Extending a proof technique from Smirnov, we provide exact expressions of the local quantities \(\mathbb{P}\Big{(}\sup_{u\in[\underline{u},\overline{u}]}U_{n}(u)-U(u)>\varepsilon\Big{)}\) and \(\mathbb{P}\Big{(}\sup_{u\in[\underline{u},\overline{u}]}U(u)-U_{n}(u)>\varepsilon\Big{)}\) for each \(n,\varepsilon,\underline{u},\overline{u}\) . Interestingly these quantities, seen as a function of \(\varepsilon\) , can be easily inverted numerically into functions of the probability level \(\delta\) . Although not explicit, they can be computed and tabulated. We plot such expressions and compare them to the classical bound \(\sqrt{\frac{\ln(1/\delta)}{2n}}\) provided by Massart inequality. We then provide an application of such result to the control of generic functional of the CDF, motivated by the case of the conditional value at risk. Last, we extend the local concentration results holding individually for each \(n\) to time-uniform concentration inequalities holding simultaneously for all \(n\) , revisiting a reflection inequality by James, which is of independent interest for the study of sequential decision making strategies.
      PubDate: 2021-01-01
       
  • Applying the Solution for the First Multiplicity of Types Equation to
           Calculate Exact Approximations of the Probability Distributions of
           Statistical Values

    • Free pre-print version: Loading...

      Abstract: We consider here the use of the solution for the first multiplicity of types equation to compute exact probability distributions of statistical values and their exact approximations. We consider \({\Delta}\) -exact distributions as their exact approximations; \({\Delta}\) -exact distributions differ from exact distributions by no more than a predetermined, arbitrarily small value \({\Delta}\) . It is shown that the basis for the exact distribution computing method is an enumeration of search area elements for solution of a linear first multiplicity of type equation composed of multiplicity type vectors. Each element represents here the number of occurrences for elements of a certain type (any sign of an alphabet) in the considered sample. It is shown simultaneously, that the method for restricting the search area for solution of the first multiplicity of type equation is applied for calculating exact approximation. We give an expression defining the algorithmic complexity of exact distributions calculated using the first multiplicity solution method which is finite and allows for each value of alphabet power to determine the maximum sample size for which exact distributions can be calculated by the first multiplicity solution method using limited computing power. To estimate the algorithmic complexity of computing the exact approximations, we used the expression obtained for the first time for the number of first multiplicity equation’s solutions with limitation on the values of coordinates of solution vectors. An expression determining algorithmic complexity for computing the exact approximations using the solution method for the first multiplicity equation with the constraint on the values of solution vector coordinates was obtained. The statistic value of maximal frequency is used as a parameter for restricting the solution vector coordinates, the probability of its excess is less than a pre-determined, arbitrarily small value \({\Delta}\) . This permits to calculate the exact approximations of the distributions differing from their exact distribution values by no more than a chosen value \({\Delta}\) . Results for calculating the maximum sample sizes for which exact approximations can be computed are given. It is shown that the algorithmic complexity of computing exact distributions by many orders of magnitude exceeds the complexity of computing their exact approximations. It is shown that application of the first multiplicity method for computing exact approximations allows increasing the volume of samples by a factor of two or more for equal values of the alphabet power as compared to computing exact distributions.
      PubDate: 2020-10-01
      DOI: 10.3103/S1066530720040031
       
  • Selecting an Augmented Random Effects Model

    • Free pre-print version: Loading...

      Abstract: There are many collaborative studies where the data are discrepant while uncertainty estimates reported in each study cannot be relied upon. The classical commonly used random effects model explains this phenomenon by additional noise with a constant heterogeneity variance. This assumption may be inadequate especially when the smallest uncertainty values correspond to the cases which are most deviant from the bulk of data. An augmented random effects model for meta-analysis of such studies is offered. It proposes to think about the data as consisting of different classes with the same heterogeneity variance only within each cluster. The choice of the classes is to be made on the basis of the classical or restricted likelihood. We discuss the properties of the corresponding procedures which indicate the studies whose heterogeneity effect is to be enlarged. The conditions for the convergence of several iterative algorithms are given.
      PubDate: 2020-10-01
      DOI: 10.3103/S1066530720040043
       
  • Censored Gamma Regression with Uncertain Censoring Status

    • Free pre-print version: Loading...

      Abstract: In this paper, we consider the problem of censored Gamma regression when the censoring status is missing at random. Three estimation methods are investigated. They consist in solving a censored maximum likelihood estimating equation where missing data are replaced by values adjusted using either regression calibration or multiple imputation or inverse probability weights. We show that the resulting estimates are consistent and asymptotically normal. Moreover, while asymptotic variances in missing data problems are generally estimated empirically (using Rubin’s rules for example), we propose closed-form consistent variances estimates based on explicit formulas for the asymptotic variances of the proposed estimates. A simulation study is conducted to assess finite-sample properties of the proposed parameters and asymptotic variances estimates.
      PubDate: 2020-10-01
      DOI: 10.3103/S106653072004002X
       
  • On a Time Dependent Divergence Measure between Two Residual Lifetime
           Distributions

    • Free pre-print version: Loading...

      Abstract: Recently, a time-dependent measure of divergence has been introduced by Mansourvar and Asadi (2020) to assess the discrepancy between the survival functions of two residual lifetime random variables. In this paper, we derive various time-dependent results on the proposed divergence measure in connection to other well-known measures in reliability engineering. The proposed criterion is also examined in mixture models and a general class of survival transformation models which results in some well-known models in the lifetime studies and survival analysis. In addition, the time-dependent measure is employed to evaluate the divergence between the lifetime distributions of \(k\) -out-of- \(n\) systems and also to assess the discrepancy between the distribution functions of the epoch times of a non-homogeneous Poisson process.
      PubDate: 2020-07-01
      DOI: 10.3103/S1066530720030023
       
  • On Some Models of Ordered Random Variables and Characterizations of
           Distributions

    • Free pre-print version: Loading...

      Abstract: The concept of extended neighboring order statistics introduced in Asadi et al. (2001) is a general model containing models of ordered random variables that are included in the generalized order statistics. This model also includes several models of ordered random variables that are not included in the generalized order statistics and is a helpful tool in unifying characterization results from several models of ordered random variables. In this paper, some general classes of distributions with many applications in reliability analysis and engineering, such as negative exponential, inverse exponential, Pareto, negative Pareto, inverse Pareto, power function, negative power, beta of the first kind, rectangular, Cauchy, Raleigh, Lomax, etc., have been characterized by using the regression of extended neighboring order statistics and decreasingly ordered random variables.
      PubDate: 2020-07-01
      DOI: 10.3103/S1066530720030035
       
  • Optimal Rates for Nonparametric F-Score Binary Classification via
           Post-Processing

    • Free pre-print version: Loading...

      Abstract: This work studies the problem of binary classification with the F-score as the performance measure. We propose a post-processing algorithm for this problem which fits a threshold for any score base classifier to yield high F-score. The post-processing step involves only unlabeled data and can be performed in logarithmic time. We derive a general finite sample post-processing bound for the proposed procedure and show that the procedure is minimax rate optimal, when the underlying distribution satisfies classical nonparametric assumptions. This result improves upon previously known rates for the F-score classification and bridges the gap between standard classification risk and the F-score. Finally, we discuss the generalization of this approach to the set-valued classification.
      PubDate: 2020-04-01
      DOI: 10.3103/S1066530720020027
       
  • Adaptive Minimax Testing for Circular Convolution

    • Free pre-print version: Loading...

      Abstract: Given observations from a circular random variable contaminated by an additive measurement error, we consider the problem of minimax optimal goodness-of-fit testing in a non-asymptotic framework. We propose direct and indirect testing procedures using a projection approach. The structure of the optimal tests depends on regularity and ill-posedness parameters of the model, which are unknown in practice. Therefore, adaptive testing strategies that perform optimally over a wide range of regularity and ill-posedness classes simultaneously are investigated. Considering a multiple testing procedure, we obtain adaptive i.e. assumption-free procedures and analyse their performance. Compared with the non-adaptive tests, their radii of testing face a deterioration by a log-factor. We show that for testing of uniformity this loss is unavoidable by providing a lower bound. The results are illustrated considering Sobolev spaces and ordinary or super smooth error densities.
      PubDate: 2020-04-01
      DOI: 10.3103/S1066530720020039
       
  • Optimal Adaptive Estimation on $${\mathbb{R}}$$ or $${\mathbb{R}}^{{+}}$$
           of the Derivatives of a Density

    • Free pre-print version: Loading...

      Abstract: In this paper, we consider the problem of estimating the \(d\) -th order derivative \(f^{(d)}\) of a density \(f\) , relying on a sample of \(n\) i.i.d. observations \(X_{1},\dots,X_{n}\) with density \(f\) supported on \({\mathbb{R}}\) or \({\mathbb{R}}^{+}\) . We propose projection estimators defined in the orthonormal Hermite or Laguerre bases and study their integrated \({\mathbb{L}}^{2}\) -risk. For the density \(f\) belonging to regularity spaces and for a projection space chosen with adequate dimension, we obtain rates of convergence for our estimators, which are optimal in the minimax sense. The optimal choice of the projection space depends on unknown parameters, so a general data-driven procedure is proposed to reach the bias-variance compromise automatically. We discuss the assumptions and the estimator is compared to the one obtained by simply differentiating the density estimator. Simulations are finally performed. They illustrate the good performances of the procedure and provide numerical comparison of projection and kernel estimators
      PubDate: 2020-01-01
      DOI: 10.3103/S1066530720010020
       
  • Multi-level Bayes and MAP Monotonicity Testing

    • Free pre-print version: Loading...

      Abstract: In this paper, we develop Bayes and maximum a posteriori probability (MAP) approaches to monotonicity testing. In order to simplify this problem, we consider a simple white Gaussian noise model and with the help of the Haar transform we reduce it to the equivalent problem of testing positivity of the Haar coefficients. This approach permits, in particular, to understand links between monotonicity testing and sparse vectors detection, to construct new tests, and to prove their optimality without supplementary assumptions. The main idea in our construction of multi-level tests is based on some invariance properties of specific probability distributions. Along with Bayes and MAP tests, we construct also adaptive multi-level tests that are free from the prior information about the sizes of non-monotonicity segments of the function.
      PubDate: 2020-01-01
      DOI: 10.3103/S1066530720010032
       
  • Kernel Selection in Nonparametric Regression

    • Free pre-print version: Loading...

      Abstract: In the regression model \(Y=b(X)+\sigma(X)\varepsilon\) , where \(X\) has a density \(f\) , this paper deals with an oracle inequality for an estimator of \(bf\) , involving a kernel in the sense of Lerasle et al. [13], selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already studied in Lacour et al. [12] and Comte and Marie [3], the dimension selection for anisotropic projection estimators of \(f\) and \(bf\) is covered.
      PubDate: 2020-01-01
      DOI: 10.3103/S1066530720010044
       
  • Bounding the Expectation of the Supremum of Empirical Processes Indexed by
           Hölder Classes

    • Free pre-print version: Loading...

      Abstract: In this note, we provide upper bounds on the expectation of the supremum of empirical processes indexed by Hölder classes of any smoothness and for any distribution supported on a bounded set in \(\mathbb{R}^{d}\) . These results can alternatively be seen as non-asymptotic risk bounds, when the unknown distribution is estimated by its empirical counterpart, based on \(n\) independent observations, and the error of estimation is quantified by integral probability metrics (IPM). In particular, IPM indexed by Hölder classes are considered and the corresponding rates are derived. These results interpolate between two well-known extreme cases: the rate \(n^{-1/d}\) corresponding to the Wassertein-1 distance (the least smooth case) and the fast rate \(n^{-1/2}\) corresponding to very smooth functions (for instance, functions from a RKHS defined by a bounded kernel).
      PubDate: 2020-01-01
      DOI: 10.3103/S1066530720010056
       
  • State Occupation Probabilities in Non-Markov Models

    • Free pre-print version: Loading...

      Abstract: Abstract The consistency of the Aalen—Johansen-derived estimator of state occupation probabilities in non-Markov multi-state settings is studied and established via a new route. This new route is based on interval functions and relies on a close connection between additive and multiplicative transforms of interval functions, which is established. Under certain assumptions, the consistency follows from explicit expressions of the additive and multiplicative transforms related to the transition probabilities as interval functions, which are obtained, in combination with certain censoring and positivity assumptions
      PubDate: 2019-10-01
      DOI: 10.3103/S1066530719040033
       
  • Admissibility of Invariant Tests for Means with Covariates

    • Free pre-print version: Loading...

      Abstract: Abstract For a multinormal distribution with a p-dimensional mean vector θ and an arbitrary unknown dispersion matrix Σ, Rao ([8], [9]) proposed two tests for the problem of testing H0: θ1 = 0, θ2 = 0, Σ unspecified, versus H1: θ1 ≠ 0, θ2 = 0, Σ unspecified. These tests are known as Rao’s W-test and Rao’s U-test, respectively. In this paper, it is shown that Rao’s U-test is admissible while Hotelling’s T2-test is inadmissible.
      PubDate: 2019-10-01
      DOI: 10.3103/S106653071904001X
       
  • Relative Error Prediction for Twice Censored Data

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper we consider the problem of non-parametric relative regression for twice censored data. We introduce and study a new estimate of the regression function when it is appropriate to assess performance in terms of mean squared relative error of prediction. We establish the uniform consistency with rate over a compact set and asymptotic normality of the estimator suitably normalized. The asymptotic variance is explicitly given. A Monte Carlo study is carried out to evaluate the performance of this estimate.
      PubDate: 2019-10-01
      DOI: 10.3103/S1066530719040045
       
  • An Asymptotically Optimal Transform of Pearson’s Correlation
           Statistic

    • Free pre-print version: Loading...

      Abstract: Abstract It is shown that for any correlation-parametrized model of dependence and any given significance level α ∈ (0, 1), there is an asymptotically optimal transform of Pearson’s correlation statistic R, for which the generally leading error term for the normal approximation vanishes for all values ρ ∈ (−1, 1) of the correlation coefficient. This general result is then applied to the bivariate normal (BVN) model of dependence and to what is referred to in this paper as the SquareV model. In the BVN model, Pearson’s R turns out to be asymptotically optimal for a rather unusual significance level α ≈ 0.240, whereas Fisher’s transform RF of R is asymptotically optimal for the limit significance level α = 0. In the SquareV model, Pearson’s R is asymptotically optimal for a still rather high significance level α ≈ 0.159, whereas Fisher’s transform RF of R is not asymptotically optimal for any α ∈ [0, 1]. Moreover, it is shown that in both the BVN model and the SquareV model, the transform optimal for a given value of α is in fact asymptotically better than R and RF in wide ranges of values of the significance level, including α itself. Extensive computer simulations for the BVN and SquareV models of dependence suggest that, for sample sizes n ≥ 100 and significance levels α ∈ {0.01, 0.05}, the mentioned asymptotically optimal transform of R generally outperforms both Pearson’s R and Fisher’s transform RF of R, the latter appearing generally much inferior to both R and the asymptotically optimal transform of R in the SquareV model.
      PubDate: 2019-10-01
      DOI: 10.3103/S1066530719040057
       
  • On the Skewness Order of van Zwet and Oja

    • Free pre-print version: Loading...

      Abstract: Abstract Van Zwet (1964) [16] introduced the convex transformation order between two distribution functions F and G, defined by F ≤cG if G−1 ∘ F is convex. A distribution which precedes G in this order should be seen as less right-skewed than G. Consequently, if F ≤cG, any reasonable measure of skewness should be smaller for F than for G. This property is the key property when defining any skewness measure. In the existing literature, the treatment of the convex transformation order is restricted to the class of differentiable distribution functions with positive density on the support of F. It is the aim of this work to analyze this order in more detail. We show that several of the most well known skewness measures satisfy the key property mentioned above with very weak or no assumptions on the underlying distributions. In doing so, we conversely explore what restrictions are imposed on the underlying distributions by the requirement that F precedes G in convex transformation order.
      PubDate: 2019-10-01
      DOI: 10.3103/S1066530719040021
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.201.96.43
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-