A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> STATISTICS (Total: 130 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Lifetime Data Analysis
Journal Prestige (SJR): 0.985
Citation Impact (citeScore): 1
Number of Followers: 7  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1572-9249 - ISSN (Online) 1380-7870
Published by Springer-Verlag Homepage  [2469 journals]
  • Semi-supervised approach to event time annotation using longitudinal
           electronic health records

    • Free pre-print version: Loading...

      Abstract: Abstract Large clinical datasets derived from insurance claims and electronic health record (EHR) systems are valuable sources for precision medicine research. These datasets can be used to develop models for personalized prediction of risk or treatment response. Efficiently deriving prediction models using real world data, however, faces practical and methodological challenges. Precise information on important clinical outcomes such as time to cancer progression are not readily available in these databases. The true clinical event times typically cannot be approximated well based on simple extracts of billing or procedure codes. Whereas, annotating event times manually is time and resource prohibitive. In this paper, we propose a two-step semi-supervised multi-modal automated time annotation (MATA) method leveraging multi-dimensional longitudinal EHR encounter records. In step I, we employ a functional principal component analysis approach to estimate the underlying intensity functions based on observed point processes from the unlabeled patients. In step II, we fit a penalized proportional odds model to the event time outcomes with features derived in step I in the labeled data where the non-parametric baseline function is approximated using B-splines. Under regularity conditions, the resulting estimator of the feature effect vector is shown as root-n consistent. We demonstrate the superiority of our approach relative to existing approaches through simulations and a real data example on annotating lung cancer recurrence in an EHR cohort of lung cancer patients from Veteran Health Administration.
      PubDate: 2022-06-26
       
  • Screening for chronic diseases: optimizing lead time through balancing
           prescribed frequency and individual adherence

    • Free pre-print version: Loading...

      Abstract: Abstract Screening for chronic diseases, such as cancer, is an important public health priority, but traditionally only the frequency or rate of screening has received attention. In this work, we study the importance of adhering to recommended screening policies and develop new methodology to better optimize screening policies when adherence is imperfect. We consider a progressive disease model with four states (healthy, undetectable preclinical, detectable preclinical, clinical), and overlay this with a stochastic screening–behavior model using the theory of renewal processes that allows us to capture imperfect adherence to screening programs in a transparent way. We show that decreased adherence leads to reduced efficacy of screening programs, quantified here using elements of the lead time distribution (i.e., the time between screening diagnosis and when diagnosis would have occurred clinically in the absence of screening). Under the assumption of an inverse relationship between prescribed screening frequency and individual adherence, we show that the optimal screening frequency generally decreases with increasing levels of non-adherence. We apply this model to an example in breast cancer screening, demonstrating how accounting for imperfect adherence affects the recommended screening frequency.
      PubDate: 2022-06-24
       
  • Bias correction via outcome reassignment for cross-sectional data with
           binary disease outcome

    • Free pre-print version: Loading...

      Abstract: Abstract Cross-sectionally sampled data with binary disease outcome are commonly analyzed in observational studies to identify the relationship between covariates and disease outcome. A cross-sectional population is defined as a population of living individuals at the sampling or observational time. It is generally understood that binary disease outcome from cross-sectional data contains less information than longitudinally collected time-to-event data, but there is insufficient understanding as to whether bias can possibly exist in cross-sectional data and how the bias is related to the population risk of interest. Wang and Yang (2021) presented the complexity and bias in cross-sectional data with binary disease outcome with detailed analytical explorations into the data structure. As the distribution of the cross-sectional binary outcome is quite different from the population risk distribution, bias can arise when using cross-sectional data analysis to draw inference for population risk. In this paper we argue that the commonly adopted age-specific risk probability is biased for the estimation of population risk and propose an outcome reassignment approach which reassigns a portion of the observed binary outcome, 0 or 1, to the other disease category. A sign test and a semiparametric pseudo-likelihood method are developed for analyzing cross-sectional data using the OR approach. Simulations and an analysis based on Alzheimer’s Disease data are presented to illustrate the proposed methods.
      PubDate: 2022-06-24
       
  • On the targets of inference with multivariate failure time data

    • Free pre-print version: Loading...

      Abstract: Abstract There are several different topics that can be addressed with multivariate failure time regression data. Data analysis methods are needed that are suited to each such topic. Specifically, marginal hazard rate models are well suited to the analysis of exposures or treatments in relation to individual failure time outcomes, when failure time dependencies are themselves of little or no interest. On the other hand semiparametric copula models are well suited to analyses where interest focuses primarily on the magnitude of dependencies between failure times. These models overlap with frailty models, that seem best suited to exploring the details of failure time clustering. Recently proposed multivariate marginal hazard methods, on the other hand, are well suited to the exploration of exposures or treatments in relation to single, pairwise, and higher dimensional hazard rates. Here these methods will be briefly described, and the final method will be illustrated using the Women’s Health Initiative hormone therapy trial data.
      PubDate: 2022-06-21
       
  • Marker-dependent observation and carry-forward of internal covariates in
           Cox regression

    • Free pre-print version: Loading...

      Abstract: Abstract Studies of chronic disease often involve modeling the relationship between marker processes and disease onset or progression. The Cox regression model is perhaps the most common and convenient approach to analysis in this setting. In most cohort studies, however, biospecimens and biomarker values are only measured intermittently (e.g. at clinic visits) so Cox models often treat biomarker values as fixed at their most recently observed values, until they are updated at the next visit. We consider the implications of this convention on the limiting values of regression coefficient estimators when the marker values themselves impact the intensity for clinic visits. A joint multistate model is described for the marker-failure-visit process which can be fitted to mitigate this bias and an expectation-maximization algorithm is developed. An application to data from a registry of patients with psoriatic arthritis is given for illustration.
      PubDate: 2022-06-20
       
  • Optimum test planning for heterogeneous inverse Gaussian processes

    • Free pre-print version: Loading...

      Abstract: Abstract The heterogeneous inverse Gaussian (IG) process is one of the most popular and most considered degradation models for highly reliable products. One difficulty with heterogeneous IG processes is the lack of analytic expressions for the Fisher information matrix (FIM). Thus, it is a challenge to find an optimum test plan using any information-based criteria with decision variables such as the termination time, the number of measurements and sample size. In this article, the FIM of an IG process with random slopes can be derived explicitly in an algebraic expression to reduce uncertainty caused by the numerical approximation. The D- and V-optimum test plans with/without a cost constraint can be obtained by using a profile optimum plan. Sensitivity analysis is studied to elucidate how optimum planning is influenced by the experimental costs and planning values of the model parameters. The theoretical results are illustrated by numerical simulation and case studies. Simulations, technical derivations and auxiliary formulae are available online as supplementary materials.
      PubDate: 2022-06-13
       
  • Longitudinal mediation analysis of time-to-event endpoints in the presence
           of competing risks

    • Free pre-print version: Loading...

      Abstract: Abstract This proposal is motivated by an analysis of the English Longitudinal Study of Ageing (ELSA), which aims to investigate the role of loneliness in explaining the negative impact of hearing loss on dementia. The methodological challenges that complicate this mediation analysis include the use of a time-to-event endpoint subject to competing risks, as well as the presence of feedback relationships between the mediator and confounders that are both repeatedly measured over time. To account for these challenges, we introduce path-specific effect proportional (cause-specific) hazard models. These extend marginal structural proportional (cause-specific) hazard models to enable effect decomposition on either the cause-specific hazard ratio scale or the cumulative incidence function scale. We show that under certain ignorability assumptions, the path-specific direct and indirect effects indexing this model are identifiable from the observed data. We next propose an inverse probability weighting approach to estimate these effects. On the ELSA data, this approach reveals little evidence that the total effect of hearing loss on dementia is mediated through the feeling of loneliness, with a non-statistically significant indirect effect equal to 1.01 (hazard ratio (HR) scale; 95% confidence interval (CI) 0.99 to 1.05).
      PubDate: 2022-06-02
       
  • Privacy-preserving estimation of an optimal individualized treatment rule:
           a case study in maximizing time to severe depression-related outcomes

    • Free pre-print version: Loading...

      Abstract: Abstract Estimating individualized treatment rules—particularly in the context of right-censored outcomes—is challenging because the treatment effect heterogeneity of interest is often small, thus difficult to detect. While this motivates the use of very large datasets such as those from multiple health systems or centres, data privacy may be of concern with participating data centres reluctant to share individual-level data. In this case study on the treatment of depression, we demonstrate an application of distributed regression for privacy protection used in combination with dynamic weighted survival modelling (DWSurv) to estimate an optimal individualized treatment rule whilst obscuring individual-level data. In simulations, we demonstrate the flexibility of this approach to address local treatment practices that may affect confounding, and show that DWSurv retains its double robustness even when performed through a (weighted) distributed regression approach. The work is motivated by, and illustrated with, an analysis of treatment for unipolar depression using the United Kingdom’s Clinical Practice Research Datalink.
      PubDate: 2022-05-02
       
  • Mixture survival trees for cancer risk classification

    • Free pre-print version: Loading...

      Abstract: Abstract In oncology studies, it is important to understand and characterize disease heterogeneity among patients so that patients can be classified into different risk groups and one can identify high-risk patients at the right time. This information can then be used to identify a more homogeneous patient population for developing precision medicine. In this paper, we propose a mixture survival tree approach for direct risk classification. We assume that the patients can be classified into a pre-specified number of risk groups, where each group has distinct survival profile. Our proposed tree-based methods are devised to estimate latent group membership using an EM algorithm. The observed data log-likelihood function is used as the splitting criterion in recursive partitioning. The finite sample performance is evaluated by extensive simulation studies and the proposed method is illustrated by a case study in breast cancer.
      PubDate: 2022-04-29
       
  • A boosting first-hitting-time model for survival analysis in
           high-dimensional settings

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper we propose a boosting algorithm to extend the applicability of a first hitting time model to high-dimensional frameworks. Based on an underlying stochastic process, first hitting time models do not require the proportional hazards assumption, hardly verifiable in the high-dimensional context, and represent a valid parametric alternative to the Cox model for modelling time-to-event responses. First hitting time models also offer a natural way to integrate low-dimensional clinical and high-dimensional molecular information in a prediction model, that avoids complicated weighting schemes typical of current methods. The performance of our novel boosting algorithm is illustrated in three real data examples.
      PubDate: 2022-04-27
       
  • A new approach to estimation of the proportional hazards model based on
           interval-censored data with missing covariates

    • Free pre-print version: Loading...

      Abstract: Abstract This paper discusses the fitting of the proportional hazards model to interval-censored failure time data with missing covariates. Many authors have discussed the problem when complete covariate information is available or the missing is completely at random. In contrast to this, we will focus on the situation where the missing is at random. For the problem, a sieve maximum likelihood estimation approach is proposed with the use of I-spline functions to approximate the unknown cumulative baseline hazard function in the model. For the implementation of the proposed method, we develop an EM algorithm based on a two-stage data augmentation. Furthermore, we show that the proposed estimators of regression parameters are consistent and asymptotically normal. The proposed approach is then applied to a set of the data concerning Alzheimer Disease that motivated this study.
      PubDate: 2022-03-29
      DOI: 10.1007/s10985-022-09550-y
       
  • Bayesian nonparametric dynamic hazard rates in evolutionary life tables

    • Free pre-print version: Loading...

      Abstract: Abstract In the study of life tables the random variable of interest is usually assumed discrete since mortality rates are studied for integer ages. In dynamic life tables a time domain is included to account for the evolution effect of the hazard rates in time. In this article we follow a survival analysis approach and use a nonparametric description of the hazard rates. We construct a discrete time stochastic processes that reflects dependence across age as well as in time. This process is used as a bayesian nonparametric prior distribution for the hazard rates for the study of evolutionary life tables. Prior properties of the process are studied and posterior distributions are derived. We present a simulation study, with the inclusion of right censored observations, as well as a real data analysis to show the performance of our model.
      PubDate: 2022-03-17
      DOI: 10.1007/s10985-022-09551-x
       
  • Bayesian penalized Buckley-James method for high dimensional bivariate
           censored regression models

    • Free pre-print version: Loading...

      Abstract: Abstract For high dimensional gene expression data, one important goal is to identify a small number of genes that are associated with progression of the disease or survival of the patients. In this paper, we consider the problem of variable selection for multivariate survival data. We propose an estimation procedure for high dimensional accelerated failure time (AFT) models with bivariate censored data. The method extends the Buckley-James method by minimizing a penalized \(L_2\) loss function with a penalty function induced from a bivariate spike-and-slab prior specification. In the proposed algorithm, censored observations are imputed using the Kaplan-Meier estimator, which avoids a parametric assumption on the error terms. Our empirical studies demonstrate that the proposed method provides better performance compared to the alternative procedures designed for univariate survival data regardless of whether the true events are correlated or not, and conceptualizes a formal way of handling bivariate survival data for AFT models. Findings from the analysis of a myeloma clinical trial using the proposed method are also presented.
      PubDate: 2022-03-03
      DOI: 10.1007/s10985-022-09549-5
       
  • Regression analysis of additive hazards model with sparse longitudinal
           covariates

    • Free pre-print version: Loading...

      Abstract: Abstract Additive hazards model is often used to complement the proportional hazards model in the analysis of failure time data. Statistical inference of additive hazards model with time-dependent longitudinal covariates requires the availability of the whole trajectory of the longitudinal process, which is not realistic in practice. The commonly used last value carried forward approach for intermittently observed longitudinal covariates can induce biased parameter estimation. The more principled joint modeling of the longitudinal process and failure time data imposes strong modeling assumptions, which is difficult to verify. In this paper, we propose methods that weigh the distance between the observational time of longitudinal covariates and the failure time, resulting in unbiased regression coefficient estimation. We establish the consistency and asymptotic normality of the proposed estimators. Simulation studies provide numerical support for the theoretical findings. Data from an Alzheimer’s study illustrate the practical utility of the methodology.
      PubDate: 2022-02-11
      DOI: 10.1007/s10985-022-09548-6
       
  • Phase-type models for competing risks, with emphasis on identifiability
           issues

    • Free pre-print version: Loading...

      Abstract: Abstract We first review some main results for phase-type distributions, including a discussion of Coxian distributions and their canonical representations. We then consider the extension of phase-type modeling to cover competing risks. This extension involves the consideration of finite state Markov chains with more than one absorbing state, letting each absorbing state correspond to a particular risk. The non-uniqueness of Markov chain representations of phase-type distributions is well known. In the paper we study corresponding issues for the competing risks case with the aim of obtaining identifiable parameterizations. Statistical inference for the Coxian competing risks model is briefly discussed and some real data are analyzed for illustration.
      PubDate: 2022-02-08
      DOI: 10.1007/s10985-022-09547-7
       
  • Scalable proximal methods for cause-specific hazard modeling with
           time-varying coefficients

    • Free pre-print version: Loading...

      Abstract: Abstract Survival modeling with time-varying coefficients has proven useful in analyzing time-to-event data with one or more distinct failure types. When studying the cause-specific etiology of breast and prostate cancers using the large-scale data from the Surveillance, Epidemiology, and End Results (SEER) Program, we encountered two major challenges that existing methods for estimating time-varying coefficients cannot tackle. First, these methods, dependent on expanding the original data in a repeated measurement format, result in formidable time and memory consumption as the sample size escalates to over one million. In this case, even a well-configured workstation cannot accommodate their implementations. Second, when the large-scale data under analysis include binary predictors with near-zero variance (e.g., only 0.6% of patients in our SEER prostate cancer data had tumors regional to the lymph nodes), existing methods suffer from numerical instability due to ill-conditioned second-order information. The estimation accuracy deteriorates further with multiple competing risks. To address these issues, we propose a proximal Newton algorithm with a shared-memory parallelization scheme and tests of significance and nonproportionality for the time-varying effects. A simulation study shows that our scalable approach reduces the time and memory costs by orders of magnitude and enjoys improved estimation accuracy compared with alternative approaches. Applications to the SEER cancer data demonstrate the real-world performance of the proximal Newton algorithm.
      PubDate: 2022-01-29
      DOI: 10.1007/s10985-021-09544-2
       
  • Estimation and inference of predictive discrimination for survival outcome
           risk prediction models

    • Free pre-print version: Loading...

      Abstract: Abstract Accurate risk prediction has been the central goal in many studies of survival outcomes. In the presence of multiple risk factors, a censored regression model can be employed to estimate a risk prediction rule. Before the prediction tool can be popularized for practical use, it is crucial to rigorously assess its prediction performance. In our motivating example, researchers are interested in developing and validating a risk prediction tool to identify future lung cancer cases by integrating demographic information, disease characteristics and smoking-related data. Considering the long latency period of cancer, it is desirable for a prediction tool to achieve discriminative performance that does not weaken over time. We propose estimation and inferential procedures to comprehensively assess both the overall predictive discrimination and the temporal pattern of an estimated prediction rule. The proposed methods readily accommodate commonly used censored regression models, including the Cox proportional hazards model and the accelerated failure time model. The estimators are consistent and asymptotically normal, and reliable variance estimators are also developed. The proposed methods offer an informative tool for inferring time-dependent predictive discrimination, as well as for comparing the discrimination performance between candidate models. Applications of the proposed methods demonstrate enduring performance of the risk prediction tool in the PLCO study and detected decaying performance in a study of liver disease.
      PubDate: 2022-01-21
      DOI: 10.1007/s10985-022-09545-9
       
  • A calibrated Bayesian method for the stratified proportional hazards model
           with missing covariates

    • Free pre-print version: Loading...

      Abstract: Abstract Missing covariates are commonly encountered when evaluating covariate effects on survival outcomes. Excluding missing data from the analysis may lead to biased parameter estimation and a misleading conclusion. The inverse probability weighting method is widely used to handle missing covariates. However, obtaining asymptotic variance in frequentist inference is complicated because it involves estimating parameters for propensity scores. In this paper, we propose a new approach based on an approximate Bayesian method without using Taylor expansion to handle missing covariates for survival data. We consider a stratified proportional hazards model so that it can be used for the non-proportional hazards structure. Two cases for missing pattern are studied: a single missing pattern and multiple missing patterns. The proposed estimators are shown to be consistent and asymptotically normal, which matches the frequentist asymptotic properties. Simulation studies show that our proposed estimators are asymptotically unbiased and the credible region obtained from posterior distribution is close to the frequentist confidence interval. The algorithm is straightforward and computationally efficient. We apply the proposed method to a stem cell transplantation data set.
      PubDate: 2022-01-16
      DOI: 10.1007/s10985-021-09542-4
       
  • Competing risks regression models with covariates-adjusted censoring
           weight under the generalized case-cohort design

    • Free pre-print version: Loading...

      Abstract: Abstract A generalized case-cohort design has been used when measuring exposures is expensive and events are not rare in the full cohort. This design collects expensive exposure information from a (stratified) randomly selected subset from the full cohort, called the subcohort, and a fraction of cases outside the subcohort. For the full cohort study with competing risks, He et al. (Scand J Stat 43:103-122, 2016) studied the non-stratified proportional subdistribution hazards model with covariate-dependent censoring to directly evaluate covariate effects on the cumulative incidence function. In this paper, we propose a stratified proportional subdistribution hazards model with covariate-adjusted censoring weights for competing risks data under the generalized case-cohort design. We consider a general class of weight functions to account for the generalized case-cohort design. Then, we derive the optimal weight function which minimizes the asymptotic variance of parameter estimates within the general class of weight functions. The proposed estimator is shown to be consistent and asymptotically normally distributed. The simulation studies show (i) the proposed estimator with covariate-adjusted weight is unbiased when the censoring distribution depends on covariates; and (ii) the proposed estimator with the optimal weight function gains parameter estimation efficiency. We apply the proposed method to stem cell transplantation and diabetes data sets.
      PubDate: 2022-01-15
      DOI: 10.1007/s10985-022-09546-8
       
  • Prognostic accuracy for predicting ordinal competing risk outcomes using
           ROC surfaces

    • Free pre-print version: Loading...

      Abstract: Abstract Many medical conditions are marked by a sequence of events in association with continuous changes in biomarkers. Few works have evaluated the overall accuracy of a biomarker in predicting disease progression. We thus extend the concept of receiver operating characteristic (ROC) surface and the volume under the surface (VUS) from multi-category outcomes to ordinal competing-risk outcomes that are also subject to noninformative censoring. Two VUS estimators are considered. One is based on the definition of the ROC surface and obtained by integrating the estimated ROC surface. The other is an inverse probability weighted U estimator that is built upon the equivalence of the VUS to the concordance probability between the marker and sequential outcomes. Both estimators have nice asymptotic results that can be derived using counting process techniques and U-statistics theory. We illustrate their good practical performances through simulations and applications to two studies of cognition and a transplant dataset.
      PubDate: 2021-11-22
      DOI: 10.1007/s10985-021-09539-z
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.215.79.204
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-