A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> STATISTICS (Total: 130 journals)
Showing 1 - 151 of 151 Journals sorted by number of followers
Review of Economics and Statistics     Hybrid Journal   (Followers: 278)
Statistics in Medicine     Hybrid Journal   (Followers: 144)
Journal of Econometrics     Hybrid Journal   (Followers: 85)
Journal of the American Statistical Association     Full-text available via subscription   (Followers: 77, SJR: 3.746, CiteScore: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Biometrics     Hybrid Journal   (Followers: 49)
Sociological Methods & Research     Hybrid Journal   (Followers: 49)
Journal of the Royal Statistical Society, Series B (Statistical Methodology)     Hybrid Journal   (Followers: 43)
Journal of Business & Economic Statistics     Full-text available via subscription   (Followers: 41, SJR: 3.664, CiteScore: 2)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 38)
Annals of Applied Statistics     Full-text available via subscription   (Followers: 37)
Journal of the Royal Statistical Society Series C (Applied Statistics)     Hybrid Journal   (Followers: 37)
Journal of Risk and Uncertainty     Hybrid Journal   (Followers: 35)
Oxford Bulletin of Economics and Statistics     Hybrid Journal   (Followers: 35)
Journal of the Royal Statistical Society, Series A (Statistics in Society)     Hybrid Journal   (Followers: 31)
Journal of Urbanism: International Research on Placemaking and Urban Sustainability     Hybrid Journal   (Followers: 28)
The American Statistician     Full-text available via subscription   (Followers: 25)
Statistical Methods in Medical Research     Hybrid Journal   (Followers: 23)
Journal of Computational & Graphical Statistics     Full-text available via subscription   (Followers: 21)
Journal of Forecasting     Hybrid Journal   (Followers: 21)
Journal of Applied Statistics     Hybrid Journal   (Followers: 20)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 19)
International Journal of Quality, Statistics, and Reliability     Open Access   (Followers: 19)
Journal of Statistical Software     Open Access   (Followers: 19, SJR: 13.802, CiteScore: 16)
Journal of Time Series Analysis     Hybrid Journal   (Followers: 18)
Statistical Modelling     Hybrid Journal   (Followers: 18)
Computational Statistics     Hybrid Journal   (Followers: 17)
Journal of Biopharmaceutical Statistics     Hybrid Journal   (Followers: 17)
Risk Management     Hybrid Journal   (Followers: 16)
Decisions in Economics and Finance     Hybrid Journal   (Followers: 15)
Statistics and Computing     Hybrid Journal   (Followers: 14)
Demographic Research     Open Access   (Followers: 14)
Statistics & Probability Letters     Hybrid Journal   (Followers: 13)
Geneva Papers on Risk and Insurance - Issues and Practice     Hybrid Journal   (Followers: 13)
Australian & New Zealand Journal of Statistics     Hybrid Journal   (Followers: 12)
Journal of Statistical Physics     Hybrid Journal   (Followers: 12)
Structural and Multidisciplinary Optimization     Hybrid Journal   (Followers: 12)
International Statistical Review     Hybrid Journal   (Followers: 11)
Statistics: A Journal of Theoretical and Applied Statistics     Hybrid Journal   (Followers: 11)
Journal of Probability and Statistics     Open Access   (Followers: 11)
Pharmaceutical Statistics     Hybrid Journal   (Followers: 10)
The Canadian Journal of Statistics / La Revue Canadienne de Statistique     Hybrid Journal   (Followers: 10)
Communications in Statistics - Theory and Methods     Hybrid Journal   (Followers: 10)
Advances in Complex Systems     Hybrid Journal   (Followers: 10)
Multivariate Behavioral Research     Hybrid Journal   (Followers: 9)
Scandinavian Journal of Statistics     Hybrid Journal   (Followers: 9)
Communications in Statistics - Simulation and Computation     Hybrid Journal   (Followers: 9)
Fuzzy Optimization and Decision Making     Hybrid Journal   (Followers: 9)
Current Research in Biostatistics     Open Access   (Followers: 9)
Stata Journal     Full-text available via subscription   (Followers: 9)
Journal of Educational and Behavioral Statistics     Hybrid Journal   (Followers: 8)
Journal of Statistical Planning and Inference     Hybrid Journal   (Followers: 8)
Teaching Statistics     Hybrid Journal   (Followers: 8)
Law, Probability and Risk     Hybrid Journal   (Followers: 8)
Handbook of Statistics     Full-text available via subscription   (Followers: 8)
Research Synthesis Methods     Hybrid Journal   (Followers: 8)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 7)
Journal of Combinatorial Optimization     Hybrid Journal   (Followers: 7)
Journal of Global Optimization     Hybrid Journal   (Followers: 7)
Journal of Nonparametric Statistics     Hybrid Journal   (Followers: 7)
Queueing Systems     Hybrid Journal   (Followers: 7)
Argumentation et analyse du discours     Open Access   (Followers: 7)
Asian Journal of Mathematics & Statistics     Open Access   (Followers: 7)
Biometrical Journal     Hybrid Journal   (Followers: 6)
Significance     Hybrid Journal   (Followers: 6)
International Journal of Computational Economics and Econometrics     Hybrid Journal   (Followers: 6)
Journal of Mathematics and Statistics     Open Access   (Followers: 6)
Applied Categorical Structures     Hybrid Journal   (Followers: 5)
Engineering With Computers     Hybrid Journal   (Followers: 5)
Lifetime Data Analysis     Hybrid Journal   (Followers: 5)
Optimization Methods and Software     Hybrid Journal   (Followers: 5)
Statistical Methods and Applications     Hybrid Journal   (Followers: 5)
CHANCE     Hybrid Journal   (Followers: 5)
ESAIM: Probability and Statistics     Open Access   (Followers: 4)
Mathematical Methods of Statistics     Hybrid Journal   (Followers: 4)
Metrika     Hybrid Journal   (Followers: 4)
Statistical Papers     Hybrid Journal   (Followers: 4)
Monthly Statistics of International Trade - Statistiques mensuelles du commerce international     Full-text available via subscription   (Followers: 4)
TEST     Hybrid Journal   (Followers: 3)
Journal of Algebraic Combinatorics     Hybrid Journal   (Followers: 3)
Journal of Theoretical Probability     Hybrid Journal   (Followers: 3)
Statistical Inference for Stochastic Processes     Hybrid Journal   (Followers: 3)
Handbook of Numerical Analysis     Full-text available via subscription   (Followers: 3)
Sankhya A     Hybrid Journal   (Followers: 3)
Journal of Statistical and Econometric Methods     Open Access   (Followers: 3)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 2)
Extremes     Hybrid Journal   (Followers: 2)
Optimization Letters     Hybrid Journal   (Followers: 2)
Stochastic Models     Hybrid Journal   (Followers: 2)
Stochastics An International Journal of Probability and Stochastic Processes: formerly Stochastics and Stochastics Reports     Hybrid Journal   (Followers: 2)
IEA World Energy Statistics and Balances -     Full-text available via subscription   (Followers: 2)
Building Simulation     Hybrid Journal   (Followers: 2)
Technology Innovations in Statistics Education (TISE)     Open Access   (Followers: 2)
International Journal of Stochastic Analysis     Open Access   (Followers: 2)
Measurement Interdisciplinary Research and Perspectives     Hybrid Journal   (Followers: 1)
Statistica Neerlandica     Hybrid Journal   (Followers: 1)
Sequential Analysis: Design Methods and Applications     Hybrid Journal   (Followers: 1)
Journal of the Korean Statistical Society     Hybrid Journal   (Followers: 1)
Wiley Interdisciplinary Reviews - Computational Statistics     Hybrid Journal   (Followers: 1)
Statistics and Economics     Open Access  
Review of Socionetwork Strategies     Hybrid Journal  
SourceOECD Measuring Globalisation Statistics - SourceOCDE Mesurer la mondialisation - Base de donnees statistiques     Full-text available via subscription  

              [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
Statistical Papers
Journal Prestige (SJR): 1.004
Citation Impact (citeScore): 1
Number of Followers: 4  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1613-9798 - ISSN (Online) 0932-5026
Published by Springer-Verlag Homepage  [2468 journals]
  • Analyzing quantitative performance: Bayesian estimation of 3-component
           mixture geometric distributions based on Kumaraswamy prior

    • Free pre-print version: Loading...

      Abstract: Abstract This research addresses the underutilization of discrete life testing models and proposes a Bayesian estimation strategy for a 3-component mixture of geometric distributions under a doubly type-I censoring scheme. Simpler models are less good at capturing how different processes work than more complex ones. This is because simpler models only show the lifetime distributions. This paper focuses on the examination of a 3-component mixture of geometric distributions from a Bayesian perspective. We conduct the analysis within a censored sampling environment, a commonly employed method in reliability theory and survival analysis. We derive expressions for Bayes estimators and Bayes risks under the Squared Error Loss Function (SELF), the Precautionary Loss Function (PLF), and the DeGroot Loss Function (DLF) using the Kumaraswamy prior. The process includes the elicitation of hyperparameters for the Kumaraswamy prior. Notably, the study recommends the use of the SELF for optimal estimation parameters of the 3-component mixture of geometric distributions under the doubly type-I censoring scheme. This exploration contributes to advancing the application of the Bayesian approach in discrete life testing, providing valuable insights for researchers and practitioners in the field. To numerically assess the performance of Bayes estimators employing Kumaraswamy prior under different loss functions, we conducted simulations to investigate their statistical properties. This analysis involved different sample sizes and test termination times. Furthermore, to underscore the practical relevance of our findings, we present an illustrative example based on real-life data.
      PubDate: 2024-05-15
       
  • Variation comparison between infinitely divisible distributions and the
           normal distribution

    • Free pre-print version: Loading...

      Abstract: Abstract Let X be a random variable with finite second moment. We investigate the inequality: \(P\{ X-\textrm{E}[X] \le \sqrt{\textrm{Var}(X)}\}\ge P\{ Z \le 1\}\) , where Z is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the Laplace, Gumbel, Logistic, Pareto, infinitely divisible Weibull, Log-normal, Student’s t and Inverse Gaussian distributions. Numerical results are given to show that the inequality with continuity correction also holds for some infinitely divisible discrete distributions.
      PubDate: 2024-05-10
       
  • Multivariate stochastic comparisons of sequential order statistics with
           non-identical components

    • Free pre-print version: Loading...

      Abstract: Abstract Sequential order statistics (SOS) are useful tools for modeling the lifetimes of systems wherein the failure of a component has a significant impact on the lifetimes of the remaining surviving components. The SOS model is a general model that contains most of the existing models for ordered random variables. In this paper, we consider the SOS model with non-identical components and then discuss various univariate and multivariate stochastic comparison results in both one-and two-sample scenarios.
      PubDate: 2024-05-07
       
  • New copula families and mixing properties

    • Free pre-print version: Loading...

      Abstract: Abstract We characterize absolutely continuous symmetric copulas with square integrable densities in this paper. This characterization is used to create new copula families, that are perturbations of the independence copula. The full study of mixing properties of Markov chains generated by these copula families is conducted. An extension that includes the Farlie–Gumbel–Morgenstern family of copulas is proposed. We propose some examples of copulas that generate non-mixing Markov chains, but whose convex combinations generate \(\psi \) -mixing Markov chains. Some general results on \(\psi \) -mixing are given. The Spearman’s correlation \(\rho _S\) and Kendall’s \(\tau \) are provided for the created copula families. Some general remarks are provided for \(\rho _S\) and \(\tau \) . A central limit theorem is provided for parameter estimators in one example. A simulation study is conducted to support derived asymptotic distributions for some examples.
      PubDate: 2024-05-06
       
  • Multiple random change points in survival analysis with applications to
           clinical trials

    • Free pre-print version: Loading...

      Abstract: Abstract There is often a presence of random change points (RCPs) with varying timing of hazard rate change among patients in survival analysis within oncology trials. This is in contrast to fixed change points in piecewise constant hazard models, where the timing of hazard rate change remains the same for all subjects. However, currently there is a lack of appropriate statistical methods to effectively tackle this particular issue. This article presents novel statistical methods that aim to characterize these complex survival models. These methods allow for the estimation of important features such as the probability of an event occurring and being censored, and the expected number of events within the clinical trial, prior to any specific time, and within specific time intervals. They also derive expected survival time and parametric expected survival and hazard functions for subjects with any finite number of RCPs. Simulation studies validate these methods and demonstrate their reliability and effectiveness. Real clinical data from an oncology trial is also used to apply these methods. The applications of these methods in oncology trials are extensive, including estimating hazard rates and rate parameters of RCPs, assessing treatment switching, delayed onset of immunotherapy, and subsequent anticancer therapies. They also have value in clinical trial planning, monitoring, and sample size adjustment. The expected parametric survival and hazard functions provide a thorough understanding of the behaviors and effects of RCPs in complex survival models.
      PubDate: 2024-05-06
       
  • Nested symmetrical Latin hypercube designs

    • Free pre-print version: Loading...

      Abstract: Abstract Symmetrical global sensitivity analysis (SGSA) can aid practitioners in reducing the model complexity by identifying symmetries within the model. In this paper, we propose a nested symmetrical Latin hypercube design (NSLHD) for implementing SGSA in a sequential manner. By combining the strengths of the nested Latin hypercube design and symmetrical design, the proposed design allows for the implementation of SGSA without the need to pre-determine the sample size of the experiment. We develop a random sampling procedure and an efficient sequential optimization algorithm to construct flexible NSLHDs in terms of runs and factors. Sampling properties of the constructed designs are studied. Numerical examples are given to demonstrate the effectiveness of the NSLHD for designing sequential sensitivity analysis.
      PubDate: 2024-05-06
       
  • A two sample nonparametric test for variability via empirical likelihood
           methods

    • Free pre-print version: Loading...

      Abstract: Abstract Comparison of variability or dispersion of two distributions is the major focus of this work. To this end, we consider a two sample testing problem for detecting dominance in dispersive order and develop a test based on U-statistic approach. We also explore a link between the two measures of variability, viz. dispersive order and Gini’s mean difference (GMD). We exploit methodologies based on jackknife empirical likelihood (JEL) and adjusted JEL in order to overcome certain practical difficulties. The performance of the proposed test is assessed by means of a simulation study. Finally, we apply our test in the context of several real life situations including medical studies and insurance data.
      PubDate: 2024-05-02
       
  • Estimation for partially linear single-index spatial autoregressive model
           with covariate measurement errors

    • Free pre-print version: Loading...

      Abstract: Abstract This paper explores the estimators of parameters for a partially linear single-index spatial model which has measurement errors in all variables. We propose an efficient methodology to estimate our model by combining a local-linear smoother based Pseudo- \(\theta \) algorithm, simulation-extrapolation (SIMEX) algorithm, the estimation equation and the estimation method for profile maximum likelihood. Under some regular conditions, we derive the asymptotic properties of the link function and unknown estimators. Some simulations indicate our estimation method performs well. Finally, we apply our method to a real data set of Boston Housing Price. The result shows that our model fits the data set well.
      PubDate: 2024-04-23
       
  • A trigamma-free approach for computing information matrices related to
           trigamma function

    • Free pre-print version: Loading...

      Abstract: Abstract Negative binomial related distributions have been widely used in practice. The calculation of the corresponding Fisher information matrices involves the expectation of trigamma function values which can only be calculated numerically and approximately. In this paper, we propose a trigamma-free approach to approximate the expectations involving the trigamma function, along with theoretical upper bounds for approximation errors. We show by numerical studies that our approach is highly efficient and much more accurate than previous methods. We also apply our approach to compute the Fisher information matrices of zero-inflated negative binomial (ZINB) and beta negative binomial (ZIBNB) probabilistic models, as well as ZIBNB regression models.
      PubDate: 2024-04-20
       
  • On some stable linear functional regression estimators based on random
           projections

    • Free pre-print version: Loading...

      Abstract: Abstract In this work, we develop two stable estimators for solving linear functional regression problems. It is well known that such a problem is an ill-posed stochastic inverse problem. Hence, a special interest has to be devoted to the stability issue in the design of an estimator for solving such a problem. Our proposed estimators are based on combining a stable least-squares technique and a random projection of the slope function \(\beta _0(\cdot )\in L^2(J),\) where J is a compact interval. Moreover, these estimators have the advantage of having a fairly good convergence rate with reasonable computational load, since the involved random projections are generally performed over a fairly small dimensional subspace of \(L^2(J).\) More precisely, the first estimator is given as a least-squares solution of a regularized minimization problem over a finite dimensional subspace of \(L^2(J).\) In particular, we give an upper bound for the empirical risk error as well as the convergence rate of this estimator. The second proposed stable LFR estimator is based on combining the least-squares technique with a dyadic decomposition of the i.i.d. samples of the stochastic process, associated with the LFR model. In particular, we provide an \(L^2\) -risk error of this second LFR estimator. Finally, we provide some numerical simulations on synthetic as well as on real data that illustrate the results of this work. These results indicate that our proposed estimators are competitive with some existing and popular LFR estimators.
      PubDate: 2024-04-17
       
  • Testing practical relevance of treatment effects

    • Free pre-print version: Loading...

      Abstract: Abstract Traditionally, common testing problems are formalized in terms of a precise null hypothesis representing an idealized situation such as absence of a certain “treatment effect”. However, in most applications the real purpose of the analysis is to assess evidence in favor of a practically relevant effect, rather than simply determining its presence/absence. This discrepancy leads to erroneous inferential conclusions, especially in case of moderate or large sample size. In particular, statistical significance, as commonly evaluated on the basis of a precise hypothesis low p value, bears little or no information on practical significance. This paper presents an innovative approach to the problem of testing the practical relevance of effects. This relies upon the proposal of a general method for modifying standard tests by making them suitable to deal with appropriate interval null hypotheses containing all practically irrelevant effect sizes. In addition, when it is difficult to specify exactly which effect sizes are irrelevant we provide the researcher with a benchmark value. Acceptance/rejection can be established purely by deciding on the (ir)relevance of this value. We illustrate our proposal in the context of many important testing setups, and we apply the proposed methods to two case studies in clinical medicine. First, we consider data on the evaluation of systolic blood pressure in a sample of adult participants at risk for nutritional deficit. Second, we focus on a study of the effects of remdesivir on patients hospitalized with COVID-19.
      PubDate: 2024-04-17
       
  • Supervised dimension reduction for functional time series

    • Free pre-print version: Loading...

      Abstract: Abstract Functional time series model has been the subject of the most research in recent years, and since functional data is infinite dimensional, dimension reduction is essential for functional time series. However, the majority of the existing dimension reduction methods such as the functional principal component and fixed basis expansion are unsupervised and typically result in information loss. Then, the functional time series model has an urgent need for a supervised dimension reduction method. The functional sufficient dimension reduction method is a supervised technique that adequately exploits the regression structure information, resulting in minimal information loss. Functional sliced inverse regression (FSIR) is the most popular functional sufficient dimension reduction method, but it cannot be applied directly to functional time series model. In this paper, we examine a functional time series model in which the response is a scalar time series and the explanatory variable is functional time series. We propose a novel supervised dimension reduction technique for the regression model by combining the FSIR and blind source separation methods. Furthermore, we propose innovative strategies for selecting the dimensionality of dimension reduction space and the lags of the functional time series. Numerical studies, including simulation studies and a real data analysis are show the effectiveness of the proposed methods.
      PubDate: 2024-04-16
       
  • Statistical inferences for missing response problems based on modified
           empirical likelihood

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, we advance the application of empirical likelihood (EL) for missing response problems. Inspired by remedies for the shortcomings of EL for parameter hypothesis testing, we modify the EL approach used for statistical inference on the mean response when the response is subject to missing behavior. We propose consistent mean estimators, and associated confidence intervals. We extend the approach to estimate the average treatment effect in causal inference settings. We detail the analogous estimators for average treatment effect, prove their consistency, and example their use in estimating the average effect of smoking on renal function of the patients with atherosclerotic renal-artery stenosis and elevated blood pressure, chronic kidney disease, or both. Our proposed estimators outperform the historical mean estimators under missing responses and causal inference settings in terms of simulated relative RMSE and coverage probability on average.
      PubDate: 2024-04-16
       
  • A high-dimensional single-index regression for interactions between
           treatment and covariates

    • Free pre-print version: Loading...

      Abstract: Abstract This paper explores a methodology for dimension reduction in regression models for a treatment outcome, specifically to capture covariates’ moderating impact on the treatment-outcome association. The motivation behind this stems from the field of precision medicine, where a comprehensive understanding of the interactions between a treatment variable and pretreatment covariates is essential for developing individualized treatment regimes (ITRs). We provide a review of sufficient dimension reduction methods suitable for capturing treatment-covariate interactions and establish connections with linear model-based approaches for the proposed model. Within the framework of single-index regression models, we introduce a sparse estimation method for a dimension reduction vector to tackle the challenges posed by high-dimensional covariate data. Our methods offer insights into dimension reduction techniques specifically for interaction analysis, by providing a semiparametric framework for approximating the minimally sufficient subspace for interactions.
      PubDate: 2024-04-13
       
  • Flexible-dimensional L-statistic for mean estimation of symmetric
           distributions

    • Free pre-print version: Loading...

      Abstract: Abstract Estimating the mean of a population is a recurrent topic in statistics because of its multiple applications. If previous data is available, or the distribution of the deviation between the measurements and the mean is known, it is possible to perform such estimation by using L-statistics, whose optimal linear coefficients, typically referred to as weights, are derived from a minimization of the mean squared error. However, such optimal weights can only manage sample sizes equal to the one used to derive them, while in real-world scenarios this size might slightly change. Therefore, this paper proposes a method to overcome such a limitation and derive approximations of flexible-dimensional optimal weights. To do so, a parametric family of functions based on extreme value reductions and amplifications is proposed to be adjusted to the cumulative optimal weights of a given sample from a symmetric distribution. Then, the application of Yager’s method to derive weights for ordered weighted average (OWA) operators allows computing the approximate optimal weights for sample sizes close to the original one. This method is justified from the theoretical point of view by proving a convergence result regarding the cumulative weights obtained for different sample sizes. Finally, the practical performance of the theoretical results is shown for several classical symmetric distributions.
      PubDate: 2024-04-06
       
  • Matrix-variate generalized linear model with measurement error

    • Free pre-print version: Loading...

      Abstract: Abstract Matrix-variate generalized linear model (mvGLM) has been investigated successfully under the framework of tensor generalized linear model, because matrix-form data can be regarded as a specific tensor (2-dimension). But there are few works focusing on matrix-form data with measurement error (ME), since tensor in conjunction with ME is relatively complex in structure. In this paper we introduce a mvGLM to primarily explore the influence of ME in the model with matrix-form data. We calculate the asymptotic bias based on error-prone mvGLM, and then develop bias-correction methods to tackle the affect of ME. Statistical properties for all methods are established, and the practical performance of all methods is further evaluated in analysis on synthetic and real data sets.
      PubDate: 2024-04-06
       
  • Some practical and theoretical issues related to the quantile estimators

    • Free pre-print version: Loading...

      Abstract: Abstract The paper contains the comparative analysis of the efficiency of different qunatile estimators for various distributions. Additionally, we show strong consistency of different quantile estimators and we study the Bahadur representation for each of the quantile estimators, when the sample is taken from NA, \(\varphi \) , \(\rho ^*\) , \(\rho \) -mixing population.
      PubDate: 2024-04-05
       
  • A sequential feature selection approach to change point detection in
           mean-shift change point models

    • Free pre-print version: Loading...

      Abstract: Abstract Change point detection is an important area of scientific research and has applications in a wide range of fields. In this paper, we propose a sequential change point detection (SCPD) procedure for mean-shift change point models. Unlike classical feature selection based approaches, the SCPD method detects change points in the order of the conditional change sizes and makes full use of the identified change points information. The extended Bayesian information criterion (EBIC) is employed as the stopping rule in the SCPD procedure. We investigate the theoretical property of the procedure and compare its performance with other methods existing in the literature. It is established that the SCPD procedure has the property of detection consistency. Simulation studies and real data analyses demonstrate that the SCPD procedure has the edge over the other methods in terms of detection accuracy and robustness.
      PubDate: 2024-04-03
       
  • The exponentiated exponentially weighted moving average control chart

    • Free pre-print version: Loading...

      Abstract: Abstract Memory-type control charts are widely used for monitoring small to moderate shifts in the process parameter(s). In the present article, we present an exponentiated exponentially weighted moving average (Exp-EWMA) control chart that weights the past observations of a process using an exponentiated function. We evaluated the run-length characteristics of the Exp-EWMA chart via Monte Carlo simulations. A comparison study versus the CUSUM, EWMA and extended EWMA (EEWMA) charts under similar in-control (IC) run-length properties demonstrates that the Exp-EWMA chart is more effective for detecting small and, under certain circumstances, moderate shifts for both the zero-state and steady-state cases. Moreover, the Exp-EWMA chart has better zero-state out-of-control (OOC) performance than an EWMA chart with smoothing parameter equal to the limit to the infinity of the exponentiated function, while the two charts perform similarly for the steady-state case. Finally, it is shown that the Exp-EWMA chart is more IC robust than its competitors under several non-normal distributions. Two examples are provided to explain the implementation of the proposed chart
      PubDate: 2024-04-03
       
  • Hypothesis testing for varying coefficient models in tail index regression

    • Free pre-print version: Loading...

      Abstract: Abstract This study examines the varying coefficient model in tail index regression. The varying coefficient model is an efficient semiparametric model that avoids the curse of dimensionality when including large covariates in the model. In fact, the varying coefficient model is useful in mean, quantile, and other regressions. The tail index regression is not an exception. However, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function varies significantly with covariates. If the effect of the non-linearity of the model is weak, the varying coefficient structure is reduced to a simpler model, such as a constant or zero. Accordingly, the hypothesis test for model assessment in the varying coefficient model has been discussed in mean and quantile regression. However, there are no results in tail index regression. In this study, we investigate the asymptotic properties of an estimator and provide a hypothesis testing method for varying coefficient models for tail index regression.
      PubDate: 2024-04-02
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.239.158.223
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> STATISTICS (Total: 130 journals)
Showing 1 - 151 of 151 Journals sorted by number of followers
Review of Economics and Statistics     Hybrid Journal   (Followers: 278)
Statistics in Medicine     Hybrid Journal   (Followers: 144)
Journal of Econometrics     Hybrid Journal   (Followers: 85)
Journal of the American Statistical Association     Full-text available via subscription   (Followers: 77, SJR: 3.746, CiteScore: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Biometrics     Hybrid Journal   (Followers: 49)
Sociological Methods & Research     Hybrid Journal   (Followers: 49)
Journal of the Royal Statistical Society, Series B (Statistical Methodology)     Hybrid Journal   (Followers: 43)
Journal of Business & Economic Statistics     Full-text available via subscription   (Followers: 41, SJR: 3.664, CiteScore: 2)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 38)
Annals of Applied Statistics     Full-text available via subscription   (Followers: 37)
Journal of the Royal Statistical Society Series C (Applied Statistics)     Hybrid Journal   (Followers: 37)
Journal of Risk and Uncertainty     Hybrid Journal   (Followers: 35)
Oxford Bulletin of Economics and Statistics     Hybrid Journal   (Followers: 35)
Journal of the Royal Statistical Society, Series A (Statistics in Society)     Hybrid Journal   (Followers: 31)
Journal of Urbanism: International Research on Placemaking and Urban Sustainability     Hybrid Journal   (Followers: 28)
The American Statistician     Full-text available via subscription   (Followers: 25)
Statistical Methods in Medical Research     Hybrid Journal   (Followers: 23)
Journal of Computational & Graphical Statistics     Full-text available via subscription   (Followers: 21)
Journal of Forecasting     Hybrid Journal   (Followers: 21)
Journal of Applied Statistics     Hybrid Journal   (Followers: 20)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 19)
International Journal of Quality, Statistics, and Reliability     Open Access   (Followers: 19)
Journal of Statistical Software     Open Access   (Followers: 19, SJR: 13.802, CiteScore: 16)
Journal of Time Series Analysis     Hybrid Journal   (Followers: 18)
Statistical Modelling     Hybrid Journal   (Followers: 18)
Computational Statistics     Hybrid Journal   (Followers: 17)
Journal of Biopharmaceutical Statistics     Hybrid Journal   (Followers: 17)
Risk Management     Hybrid Journal   (Followers: 16)
Decisions in Economics and Finance     Hybrid Journal   (Followers: 15)
Statistics and Computing     Hybrid Journal   (Followers: 14)
Demographic Research     Open Access   (Followers: 14)
Statistics & Probability Letters     Hybrid Journal   (Followers: 13)
Geneva Papers on Risk and Insurance - Issues and Practice     Hybrid Journal   (Followers: 13)
Australian & New Zealand Journal of Statistics     Hybrid Journal   (Followers: 12)
Journal of Statistical Physics     Hybrid Journal   (Followers: 12)
Structural and Multidisciplinary Optimization     Hybrid Journal   (Followers: 12)
International Statistical Review     Hybrid Journal   (Followers: 11)
Statistics: A Journal of Theoretical and Applied Statistics     Hybrid Journal   (Followers: 11)
Journal of Probability and Statistics     Open Access   (Followers: 11)
Pharmaceutical Statistics     Hybrid Journal   (Followers: 10)
The Canadian Journal of Statistics / La Revue Canadienne de Statistique     Hybrid Journal   (Followers: 10)
Communications in Statistics - Theory and Methods     Hybrid Journal   (Followers: 10)
Advances in Complex Systems     Hybrid Journal   (Followers: 10)
Multivariate Behavioral Research     Hybrid Journal   (Followers: 9)
Scandinavian Journal of Statistics     Hybrid Journal   (Followers: 9)
Communications in Statistics - Simulation and Computation     Hybrid Journal   (Followers: 9)
Fuzzy Optimization and Decision Making     Hybrid Journal   (Followers: 9)
Current Research in Biostatistics     Open Access   (Followers: 9)
Stata Journal     Full-text available via subscription   (Followers: 9)
Journal of Educational and Behavioral Statistics     Hybrid Journal   (Followers: 8)
Journal of Statistical Planning and Inference     Hybrid Journal   (Followers: 8)
Teaching Statistics     Hybrid Journal   (Followers: 8)
Law, Probability and Risk     Hybrid Journal   (Followers: 8)
Handbook of Statistics     Full-text available via subscription   (Followers: 8)
Research Synthesis Methods     Hybrid Journal   (Followers: 8)
Environmental and Ecological Statistics     Hybrid Journal   (Followers: 7)
Journal of Combinatorial Optimization     Hybrid Journal   (Followers: 7)
Journal of Global Optimization     Hybrid Journal   (Followers: 7)
Journal of Nonparametric Statistics     Hybrid Journal   (Followers: 7)
Queueing Systems     Hybrid Journal   (Followers: 7)
Argumentation et analyse du discours     Open Access   (Followers: 7)
Asian Journal of Mathematics & Statistics     Open Access   (Followers: 7)
Biometrical Journal     Hybrid Journal   (Followers: 6)
Significance     Hybrid Journal   (Followers: 6)
International Journal of Computational Economics and Econometrics     Hybrid Journal   (Followers: 6)
Journal of Mathematics and Statistics     Open Access   (Followers: 6)
Applied Categorical Structures     Hybrid Journal   (Followers: 5)
Engineering With Computers     Hybrid Journal   (Followers: 5)
Lifetime Data Analysis     Hybrid Journal   (Followers: 5)
Optimization Methods and Software     Hybrid Journal   (Followers: 5)
Statistical Methods and Applications     Hybrid Journal   (Followers: 5)
CHANCE     Hybrid Journal   (Followers: 5)
ESAIM: Probability and Statistics     Open Access   (Followers: 4)
Mathematical Methods of Statistics     Hybrid Journal   (Followers: 4)
Metrika     Hybrid Journal   (Followers: 4)
Statistical Papers     Hybrid Journal   (Followers: 4)
Monthly Statistics of International Trade - Statistiques mensuelles du commerce international     Full-text available via subscription   (Followers: 4)
TEST     Hybrid Journal   (Followers: 3)
Journal of Algebraic Combinatorics     Hybrid Journal   (Followers: 3)
Journal of Theoretical Probability     Hybrid Journal   (Followers: 3)
Statistical Inference for Stochastic Processes     Hybrid Journal   (Followers: 3)
Handbook of Numerical Analysis     Full-text available via subscription   (Followers: 3)
Sankhya A     Hybrid Journal   (Followers: 3)
Journal of Statistical and Econometric Methods     Open Access   (Followers: 3)
AStA Advances in Statistical Analysis     Hybrid Journal   (Followers: 2)
Extremes     Hybrid Journal   (Followers: 2)
Optimization Letters     Hybrid Journal   (Followers: 2)
Stochastic Models     Hybrid Journal   (Followers: 2)
Stochastics An International Journal of Probability and Stochastic Processes: formerly Stochastics and Stochastics Reports     Hybrid Journal   (Followers: 2)
IEA World Energy Statistics and Balances -     Full-text available via subscription   (Followers: 2)
Building Simulation     Hybrid Journal   (Followers: 2)
Technology Innovations in Statistics Education (TISE)     Open Access   (Followers: 2)
International Journal of Stochastic Analysis     Open Access   (Followers: 2)
Measurement Interdisciplinary Research and Perspectives     Hybrid Journal   (Followers: 1)
Statistica Neerlandica     Hybrid Journal   (Followers: 1)
Sequential Analysis: Design Methods and Applications     Hybrid Journal   (Followers: 1)
Journal of the Korean Statistical Society     Hybrid Journal   (Followers: 1)
Wiley Interdisciplinary Reviews - Computational Statistics     Hybrid Journal   (Followers: 1)
Statistics and Economics     Open Access  
Review of Socionetwork Strategies     Hybrid Journal  
SourceOECD Measuring Globalisation Statistics - SourceOCDE Mesurer la mondialisation - Base de donnees statistiques     Full-text available via subscription  

              [Sort alphabetically]   [Restore default list]

Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 34.239.158.223
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-