A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> STATISTICS (Total: 130 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
AStA Advances in Statistical Analysis
Journal Prestige (SJR): 0.548
Citation Impact (citeScore): 1
Number of Followers: 2  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1863-818X - ISSN (Online) 1863-8171
Published by Springer-Verlag Homepage  [2467 journals]
  • Editorial special issue: Statistics in sports

    • Free pre-print version: Loading...

      Abstract: Abstract Triggered by advances in data gathering technologies, the use of statistical analyzes, predictions and modeling techniques in sports has gained a rapidly growing interest over the last decades. Today, professional sports teams have access to precise player positioning data and sports scientists design experiments involving non-standard data structures like movement-trajectories. This special issue on statistics in sports is dedicated to further foster the development of statistics and its applications in sports. The contributed articles address a wide range of statistical problems such as statistical methods for prediction of game outcomes, for prevention of sports injuries, for analyzing sports science data from movement laboratories, for measurement and evaluation of player performance, etc. Finally, also SARS-CoV-2 pandemic-related impacts on the sport’s framework are investigated.
      PubDate: 2023-03-01
       
  • Continuous-time state-space modelling of the hot hand in basketball

    • Free pre-print version: Loading...

      Abstract: Abstract We investigate the hot hand phenomenon using data on 110,513 free throws taken in the National Basketball Association. As free throws occur at unevenly spaced time points within a game, we consider a state-space model formulated in continuous time to investigate serial dependence in players’ success probabilities. In particular, the underlying state process can be interpreted as a player’s (latent) varying form and is modelled using the Ornstein-Uhlenbeck process. Our results support the existence of the hot hand, but the magnitude of the estimated effect is rather small as the underlying success probabilities are elevated by only a few percentage points.
      PubDate: 2023-03-01
       
  • Estimation of final standings in football competitions with a premature
           ending: the case of COVID-19

    • Free pre-print version: Loading...

      Abstract: Abstract We study an alternative approach to determine the final league table in football competitions with a premature ending. For several countries, a premature ending of the 2019/2020 football season has occurred due to the COVID-19 pandemic. We propose a model-based method as a possible alternative to the use of the incomplete standings to determine the final table. This method measures the performance of the teams in the matches of the season that have been played and predicts the remaining non-played matches through a paired-comparison model. The main advantage of the method compared to the incomplete standings is that it takes account of the bias in the performance measure due to the schedule of the matches in a season. Therefore, the resulting ranking of the teams based on our proposed method can be regarded as more fair in this respect. A forecasting study based on historical data of seven of the main European competitions is used to validate the method. The empirical results suggest that the model-based approach produces more accurate predictions of the true final standings than those based on the incomplete standings.
      PubDate: 2023-03-01
       
  • Integration of model-based recursive partitioning with bias reduction
           estimation: a case study assessing the impact of Oliver’s four factors
           on the probability of winning a basketball game

    • Free pre-print version: Loading...

      Abstract: Abstract In this contribution, we investigate the importance of Oliver’s Four Factors, proposed in the literature to identify a basketball team’s strengths and weaknesses in terms of shooting, turnovers, rebounding and free throws, as success drivers of a basketball game. In order to investigate the role of each factor in the success of a team in a match, we applied the MOdel-Based recursive partitioning (MOB) algorithm to real data concerning 19,138 matches of 16 National Basketball Association (NBA) regular seasons (from 2004–2005 to 2019–2020). MOB, instead of fitting one global Generalized Linear Model (GLM) to all observations, partitions the observations according to selected partitioning variables and estimates several ad hoc local GLMs for subgroups of observations. The manuscript’s aim is twofold: (1) in order to deal with (quasi) separation problems leading to convergence problems in the numerical solution of Maximum Likelihood (ML) estimation in MOB, we propose a methodological extension of GLM-based recursive partitioning from standard ML estimation to bias-reduced (BR) estimation; and (2) we apply the BR-based GLM trees to basketball analytics. The results show models very easy to interpret that can provide useful support to coaching staff’s decisions.
      PubDate: 2023-03-01
       
  • Simultaneous inference for functional data in sports biomechanics

    • Free pre-print version: Loading...

      Abstract: Abstract The recent sports science literature conveys a growing interest in robust statistical methods to analyze smooth, regularly-sampled functional data. This paper focuses on the inferential problem of identifying the parts of a functional domain where two population means differ. We considered four approaches recently used in sports science: interval-wise testing (IWT), statistical parametric mapping (SPM), statistical nonparametric mapping (SnPM) and the Benjamini-Hochberg (BH) procedure for false discovery control. We applied these procedures to both six representative sports science datasets, and also to systematically varied simulated datasets which replicated ten signal- and/or noise-relevant parameters that were identified in the experimental datasets. We observed generally higher IWT and BH sensitivity for five of the six experimental datasets. BH was the most sensitive procedure in simulation, but also had relatively high false positive rates (generally > 0.1) which increased sharply (> 0.3) in certain extreme simulation scenarios including highly rough data. SPM and SnPM were more sensitive than IWT in simulation except for (1) high roughness, (2) high nonstationarity, and (3) highly nonuniform smoothness. These results suggest that the optimum procedure is both signal and noise-dependent. We conclude that: (1) BH is most sensitive but also susceptible to high false positive rates, (2) IWT, SPM and SnPM appear to have relatively inconsequential differences in terms of domain identification sensitivity, except in cases of extreme signal/noise characteristics, where IWT appears to be superior at identifying a greater portion of the true signal.
      PubDate: 2023-03-01
       
  • Hierarchical Bayes modelling of penalty conversion rates of Bundesliga
           players

    • Free pre-print version: Loading...

      Abstract: Abstract Judging by its significant potential to affect the outcome of a game in one single action, the penalty kick is arguably the most important set piece in football. Scientific studies on how the ability to convert a penalty kick is distributed among professional football players are scarce. In this paper, we consider how to rank penalty takers in the German Bundesliga based on historical data from 1963 to 2021. We use Bayesian models that improve inference on ability measures of individual players by imposing structural assumptions on an associated high-dimensional parameter space. These methods prove useful for our application, coping with the inherent difficulty that many players only take few penalties, making purely frequentist inference rather unreliable.
      PubDate: 2023-03-01
       
  • Quarterback evaluation in the national football league using tracking data

    • Free pre-print version: Loading...

      Abstract: Abstract This paper evaluates quarterback performance in the National Football League. With the availability of player tracking data, there exists the capability to assess various options that are available to quarterbacks and the expected points gained resulting from each option. The options available to a quarterback are based on considering multiple frames during a play such that a current option may evolve into new options over time. Our approach also considers the possibility of quarterback running options. With tracking data, the location of receivers on the field and the openness of receivers are measurable quantities which are important considerations in the assessment of quarterback options. Machine learning techniques are then used to estimate the probabilities of success of the passing options and the estimated expected points gained from the options. The estimation procedure also takes into account what may happen after a reception. The quarterback’s observed execution is then measured against the optimal available option.
      PubDate: 2023-03-01
       
  • Action rate models for predicting actions in soccer

    • Free pre-print version: Loading...

      Abstract: Abstract We present a data-driven approach to predict the next action in soccer. We focus on passing actions of the ball possessing player and aim to forecast the pass itself and when, in time, the pass will be played. At the same time, our model estimates the probability that the player loses possession of the ball before she can perform the action. Our approach consists of parameterized exponential rate models for all possible actions that are adapted to historic data with graph recurrent neural networks to account for inter-dependencies of the output space (i.e., the possible actions). We report on empirical results.
      PubDate: 2023-03-01
       
  • Introducing LASSO-type penalisation to generalised joint regression
           modelling for count data

    • Free pre-print version: Loading...

      Abstract: Abstract In this work, we propose an extension of the versatile joint regression framework for bivariate count responses of the R package GJRM by Marra and Radice (R package version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The underlying estimation algorithm is based on a quadratic approximation of the penalty. The method enables variable selection and the corresponding estimates guarantee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimensional count response settings. The proposal’s empirical performance is investigated in a simulation study and an application on FIFA World Cup football data.
      PubDate: 2023-03-01
       
  • Estimating the change in soccer’s home advantage during the Covid-19
           pandemic using bivariate Poisson regression

    • Free pre-print version: Loading...

      Abstract: Abstract In wake of the Covid-19 pandemic, 2019–2020 soccer seasons across the world were postponed and eventually made up during the summer months of 2020. Researchers from a variety of disciplines jumped at the opportunity to compare the rescheduled games, played in front of empty stadia, to previous games, played in front of fans. To date, most of this post-Covid soccer research has used linear regression models, or versions thereof, to estimate potential changes to the home advantage. However, we argue that leveraging the Poisson distribution would be more appropriate and use simulations to show that bivariate Poisson regression (Karlis and Ntzoufras in J R Stat Soc Ser D Stat 52(3):381–393, 2003) reduces absolute bias when estimating the home advantage benefit in a single season of soccer games, relative to linear regression, by almost 85%. Next, with data from 17 professional soccer leagues, we extend bivariate Poisson models estimate the change in home advantage due to games being played without fans. In contrast to current research that suggests a drop in the home advantage, our findings are mixed; in some leagues, evidence points to a decrease, while in others, the home advantage may have risen. Altogether, this suggests a more complex causal mechanism for the impact of fans on sporting events.
      PubDate: 2023-03-01
       
  • Decompositions by sources and by subpopulations of the Pietra index: two
           applications to professional football teams in Italy

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper two innovative procedures for the decomposition of the Pietra index are proposed. The first one allows the decomposition by sources, while the second one provides the decomposition by subpopulations. As special case of the latter procedure, the “classical” decomposition in two components (within and between) can be easily obtained. A remarkable feature of both the proposed procedures is that they permit the assessment of the contribution to the Pietra index at the smallest possible level: each source for the first one and each subpopulation for the second one. To highlight the usefulness of these procedures, two applications are provided regarding Italian professional football (soccer) teams.
      PubDate: 2023-03-01
       
  • Prediction of sports injuries in football: a recurrent time-to-event
           approach using regularized Cox models

    • Free pre-print version: Loading...

      Abstract: Abstract Data-based methods and statistical models are given special attention to the study of sports injuries to gain in-depth understanding of its risk factors and mechanisms. The objective of this work is to evaluate the use of shared frailty Cox models for the prediction of occurring sports injuries, and to compare their performance with different sets of variables selected by several regularized variable selection approaches. The study is motivated by specific characteristics commonly found for sports injury data, that usually include reduced sample size and even fewer number of injuries, coupled with a large number of potentially influential variables. Hence, we conduct a simulation study to address these statistical challenges and to explore regularized Cox model strategies together with shared frailty models in different controlled situations. We show that predictive performance greatly improves as more player observations are available. Methods that result in sparse models and favour interpretability, e.g. Best Subset Selection and Boosting, are preferred when the sample size is small. We include a real case study of injuries of female football players of a Spanish football club.
      PubDate: 2023-03-01
       
  • The role of passing network indicators in modeling football outcomes: an
           application using Bayesian hierarchical models

    • Free pre-print version: Loading...

      Abstract: Abstract Passes are undoubtedly the more frequent events in football and other team sports. Passing networks and their structural features can be useful to evaluate the style of play in terms of passing behavior, analyzing and quantifying interactions among players. The present paper aims to show how information retrieved from passing networks can have a relevant impact on predicting the match outcome. In particular, we focus on modeling both the scored goals by two competing teams and the goal difference between them. With this purpose, we fit these outcomes using Bayesian hierarchical models, including both in-match and network-based covariates to cover many aspects of the offensive actions on the pitch. Furthermore, we review and compare different approaches to include covariates in modeling football outcomes. The presented methodology is applied to a real dataset containing information on 125 matches of the 2016–2017 UEFA Champions League, involving 32 among the best European teams. From our results, shots on target, corners, and such passing network indicators are the main determinants of the considered football outcomes.
      PubDate: 2023-03-01
       
  • The Probabilistic Final Standing Calculator: a fair stochastic tool to
           handle abruptly stopped football seasons

    • Free pre-print version: Loading...

      Abstract: Abstract The COVID-19 pandemic has left its marks in the sports world, forcing the full stop of all sports-related activities in the first half of 2020. Football leagues were suddenly stopped, and each country was hesitating between a relaunch of the competition and a premature ending. Some opted for the latter option and took as the final standing of the season the ranking from the moment the competition got interrupted. This decision has been perceived as unfair, especially by those teams who had remaining matches against easier opponents. In this paper, we introduce a tool to calculate in a fairer way the final standings of domestic leagues that have to stop prematurely: our Probabilistic Final Standing Calculator (PFSC). It is based on a stochastic model taking into account the results of the matches played and simulating the remaining matches, yielding the probabilities for the various possible final rankings. We have compared our PFSC with state-of-the-art prediction models, using previous seasons which we pretend to stop at different points in time. We illustrate our PFSC by showing how a probabilistic ranking of the French Ligue 1 in the stopped 2019–2020 season could have led to alternative, potentially fairer, decisions on the final standing.
      PubDate: 2023-03-01
       
  • Having a ball: evaluating scoring streaks and game excitement using
           in-match trend estimation

    • Free pre-print version: Loading...

      Abstract: Abstract Many popular sports involve matches between two teams or players where each team have the possibility of scoring points throughout the match. While the overall match winner and result is interesting, it conveys little information about the underlying scoring trends throughout the match. Modeling approaches that accommodate a finer granularity of the score difference throughout the match is needed to evaluate in-game strategies, discuss scoring streaks, teams strengths, and other aspects of the game. We propose a latent Gaussian process to model the score difference between two teams and introduce the Trend Direction Index as an easily interpretable probabilistic measure of the current trend in the match as well as a measure of post-game trend evaluation. In addition we propose the Excitement Trend Index—the expected number of monotonicity changes in the running score difference—as a measure of overall game excitement. Our proposed methodology is applied to all 1143 matches from the 2019–2020 National Basketball Association season. We show how the trends can be interpreted in individual games and how the excitement score can be used to cluster teams according to how exciting they are to watch.
      PubDate: 2023-03-01
       
  • A copula-based multivariate hidden Markov model for modelling momentum in
           football

    • Free pre-print version: Loading...

      Abstract: Abstract We investigate the potential occurrence of change points—commonly referred to as “momentum shifts”—in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state dependence of the variables, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.
      PubDate: 2023-03-01
       
  • Contextual movement models based on normalizing flows

    • Free pre-print version: Loading...

      Abstract: Abstract Movement models predict positions of players (or objects in general) over time and are thus key to analyzing spatiotemporal data as it is often used in sports analytics. Existing movement models are either designed from physical principles or are entirely data-driven. However, the former suffers from oversimplifications to achieve feasible and interpretable models, while the latter relies on computationally costly, from a current point of view, nonparametric density estimations and require maintaining multiple estimators, each responsible for different types of movements (e.g., such as different velocities). In this paper, we propose a unified contextual probabilistic movement model based on normalizing flows. Our approach learns the desired densities by directly optimizing the likelihood and maintains only a single contextual model that can be conditioned on auxiliary variables. Training is simultaneously performed on all observed types of movements, resulting in an effective and efficient movement model. We empirically evaluate our approach on spatiotemporal data from professional soccer. Our findings show that our approach outperforms the state of the art while being orders of magnitude more efficient with respect to computation time and memory requirements.
      PubDate: 2023-03-01
       
  • Component-based structural equation modeling for the assessment of
           psycho-social aspects and performance of athletes

    • Free pre-print version: Loading...

      Abstract: Abstract Recent studies have pointed out the effect of personality traits on athletes’ performance and success; however, fewer analyses have focused the relation among these features and specific athletic behaviors, skills, and strategies to enhance performance. To fill this void, the present paper provides evidence on what personality traits mostly affect athletes’ mental skills and, in turn, their effect on the performance of a sample of elite swimmers. The main findings were obtained by exploiting a component-based structural equation modeling which allows to analyze the relationships among some psychological constructs, measuring personality traits and mental skills, and a construct measuring sports performance. The partial least squares path modeling was employed, as it is the most recognized method among the component-based approaches. The introduced method simultaneously encompasses latent and emergent variables. Rather than focusing only on objective behaviors or game/race outcomes, such an approach evaluates variables not directly observable related to sport performance, such as cognition and affect, considering measurement error and measurement invariance, as well as the validity and reliability of the obtained latent constructs. The obtained results could be an asset to design strategies and interventions both for coaches and swimmers establishing an innovative use of statistical methods for maximizing athletes’ performance and well-being.
      PubDate: 2023-03-01
       
  • Correction: Bayesian ridge regression for survival data based on a vine
           copula-based prior

    • Free pre-print version: Loading...

      PubDate: 2023-02-14
       
  • A dynamic causal modeling of the second outbreak of COVID-19 in Italy

    • Free pre-print version: Loading...

      Abstract: Abstract While the vaccination campaign against COVID-19 is having its positive impact, we retrospectively analyze the causal impact of some decisions made by the Italian government on the second outbreak of the SARS-CoV-2 pandemic in Italy, when no vaccine was available. First, we analyze the causal impact of reopenings after the first lockdown in 2020. In addition, we also analyze the impact of reopening schools in September 2020. Our results provide an unprecedented opportunity to evaluate the causal relationship between the relaxation of restrictions and the transmission in the community of a highly contagious respiratory virus that causes severe illness in the absence of prophylactic vaccination programs. We present a purely data-analytic approach based on a Bayesian methodology and discuss possible interpretations of the results obtained and implications for policy makers.
      PubDate: 2023-02-07
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.171.156
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-