A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> WATER RESOURCES (Total: 160 journals)
We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Similar Journals
Journal Cover
Journal of Hydrology and Hydromechanics
Journal Prestige (SJR): 0.599
Citation Impact (citeScore): 2
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 0042-790X - ISSN (Online) 1338-4333
Published by Sciendo Homepage  [370 journals]
  • Estimation of hydrodynamic properties of a sandy-loam soil by two analysis
           methods of single-ring infiltration data

    • Abstract: Beerkan infiltration runs could provide an incomplete description of infiltration with reference to either the near steady-state or the transient stages. In particular, the process could still be in the transient stage at the end of the run or some transient infiltration data might be loss. The Wu1 method and the BEST-steady algorithm can be applied to derive soil hydrodynamic parameters even under these circumstances. Therefore, a soil dataset could be developed using two different data analysis methods. The hypothesis that the Wu1 method and BEST-steady yield similar predictions of the soil parameters when they are applied to the same infiltration curve was tested in this investigation. For a sandy-loam soil, BEST-steady yielded higher saturated soil hydraulic conductivity, Ks, microscopic pore radius, λm, and depth of the wetting front at the end of the run, dwf, and lower macroscopic capillary length, λc, as compared with the Wu1 method. Two corresponding means differed by 1.2–1.4 times, depending on the variable, and the differences appeared overall from moderate to relatively appreciable, that is neither too high nor negligible in any circumstance, according to some literature suggestions. Two estimates of Ks were similar (difference by < 25%) when the gravity-driven vertical flow and the lateral capillary components represented the 71–89% of total infiltration. In conclusion, the two methods of data analysis do not generally yield the same predictions of soil hydrodynamic parameters when they are applied to the same infiltration curve. However, it seems possible to establish what are the conditions making the two methods similar.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Analytical and numerical investigation of mechanical energy balance and
           energy loss of three-dimensional steady turbulent flows in open-channels

    • Abstract: Study about the mechanical energy balance and the energy loss of 3-D turbulent flows in open-channels has its own complexities. The governing equation of the mechanical energy in turbulent flows has been previously known and includes turbulence parameters that their calculations or measurements are not easy. In this study, a form of the total mechanical energy equation that leads to a number of significant physical insights is analytically investigated, from which analytical relationships for the energy loss estimation in 3-D turbulent flows are defined. The effect of different turbulence parameters is reflected on the new relationships and analyzed by equalizations replacing unknown correlations with closure approximations using the numerical turbulence simulation. In order to investigate the application of the analytical relationships, numerical simulations are performed by using OpenFOAM software to solve the Navier-Stokes equations with the RSM turbulence model in open-channels with different geometries. Then, the contribution of the turbulence parameters to the total mechanical energy balance is evaluated in uniform and nonuniform turbulent flows and their difference is analyzed, that leads to identify the parameters affecting the friction and local losses. The results demonstrate that the magnitudes of the turbulent diffusion, the work done by the viscous stresses pertaining to the mean motion and the viscous diffusion of the turbulence energy are substantially smaller than the other terms of the total energy equation for turbulent flows in open-channels with different geometries, while the effect of the variations of the turbulence kinetic energy and the work done by the turbulence stresses, that has not been considered in the previous mechanical energy equations, is more important in complex flows. From a practical viewpoint, in order to study the details of the total mechanical energy balance and the energy loss in 3-D turbulent flows with the presence of the secondary currents, the proposed method can be useful.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Experimental investigation of hydrophobic bentonite effects on reducing
           evaporation from water surfaces

    • Abstract: In recent years, due to the occurrence of water shortage and drought problems, particularly in arid and semi-arid regions of the world, new methods to reduce evaporation from the surface of dam reservoirs, lakes, and other water-free surfaces are investigated. This study aimed to use hydrophobic bentonite to reduce water evaporation from water surfaces, on a laboratory scale, and field conditions for the first time. Bentonite initially became hydrophobic by stearic acid (SA). Under such conditions, hydrophobic bentonite floats on the surface of water and forms a thin coating layer. The produced hydrophobic bentonite had a contact angle of 150°, indicating its superhydrophobicity. Evaporation reduction was measured under laboratory and field conditions and it was compared to hexadecanol as the reference material. The results demonstrated that the hydrophobic bentonite efficiency under laboratory conditions was similar to that of hexadecanol and prevented water evaporation by 36%. However, under field conditions, hydrophobic bentonite and hexadecanol efficiencies were 40% and 23% to reduce evaporation for 30 days, respectively. In terms of stability, hexadecanol needed to be re-injected after three days, while hydrophobic bentonite was stable and remained on the surface for more than 100 days under laboratory conditions and for more than 15 days under field conditions without needing re-injection. This coverage with method can be used to reduce evaporation from lakes, tanks, and reservoirs of small dams.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Field-scale assessment of the unsaturated hydraulic properties of residual
           soils in southeastern Brazil

    • Abstract: Field tests were carried out to estimate effective unsaturated soil hydraulic properties of layered residual soils in Rio de Janeiro, southeastern Brazil. Data of this type are important for understanding the initiation of rainstorm-induced soil landslides, which often occur in the state of Rio de Janeiro as well as other areas having similar geologic settings and climate conditions. Tests were carried out using a simplified field approach, referred to as the Monitored Infiltration Test, which requires only a tensiometer to measure pressure heads below the wetting front, triggered by flow from a Mariotte bottle which maintains a constant pressure at the top edge of the soil profile. The data can then be analyzed by numerical inversion using the HYDRUS-2D software package. The test is relatively fast since no steady-state flow conditions are needed, and versatile since the test can be carried out quickly on steep slopes with the help of a manual auger. Soil water retention and the unsaturated hydraulic conductivity functions were obtained for a range of young, mature and saprolitic residual soils. The effective hydraulic properties of the distinct residual soil layers can be quite large, reflecting a need to provide a careful analysis of field-scale hydraulic heterogeneity in geotechnical analyses.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Sand dune vegetation-biocrust interaction as a source of spatial

    • Abstract: Vegetation and biocrust play crucial roles in dune stability and mobility, and their interaction can lead to bistability, temporal oscillations, and hysteresis. We studied a two-dimensional (2D) mathematical model of vegetation and biogenic crust cover dynamics on sand dunes. Under a certain parameter range, the space-independent version of the model exhibited the bi-stability of an oscillatory state and a steady state, and we studied the 2D dynamics of the model under these parameters. The patterns developed by the 2D model showed a high degree of spatial heterogeneity and complexity depending on the initial conditions and on the state type across the front. The results suggest that spatial heterogeneity and complexity can evolve from the intrinsic dynamics between vegetation and biocrust, even without natural geodiversity and spatiotemporal climate fluctuations. In the real world, these two types of intrinsic and extrinsic heterogeneity processes interact such that it is difficult to distinguish between them.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Performance analysis of rectangular SIT (sediment invert trap) for
           stormwater drainage system

    • Abstract: Deposition of solid particles in the stormwater sewers reduces the discharging capacity, causing inundation. A sediment invert trap (SIT) is an option that can be installed at the bottom of the stormwater sewer drain to intercept the flowing solid particles. In the present study performance of rectangular SIT were analyzed experimentally and computationally. Variation of particle trapping efficiency of rectangular SIT fitted at the bottom of the open channel flume has been studied under the interpretation of invert trap depth, flow depth, particle size, particle shape, and slot width. To predict the flow field and trap efficiency of a rectangular invert trap, 2D-VOF-DPM-CFD modelling has been carried out using ANSYS Fluent 2020 R1 software. For velocity field determination, the volume of fluid (VOF) model was used along with realizable k-є turbulence model. To predict particle trap efficiency, stochastic discrete phase model (DPM) was utilized. From experimental study and CFD modeling, it has been found that the particle trap efficiency of rectangular invert trap varied with change in the depth of invert trap, sediment size, shape factor, depth of flow and slot width. Consideration of particle shape in terms of shape factor in the modeling of solid-phase through DPM validated the CFD predicted results with those obtained experimentally with mean absolute percent error (MAPE) of 2.68%, 3.99% and 6.6% for sewer solid size ranges SS1, SS2, and SS3 respectively at all flow depths for both slot widths considered in this study.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • The spatial and temporal variability of hydrological drought in the Polish

    • Abstract: The aim of the study was to evaluate the climate and geographic factors controlling the hydrological drought of the rivers located in the Upper Vistula catchment in the Polish Carpathians. Drought was identified based on the daily flow (based on water stage measered once a day at 6 UTC) series dating from between 1975 and 2019 at 49 gauging cross-sections. Four physico-geographical regions were identified in the Polish Carpathians and spatial variabilities of the basic drought characteristics were developed within these regions. Such spatial distributions were treated as maps indicating drought hazard areas in the region. In addition, an analysis was undertaken to study the seasonality of the start and end times of the drought (all in the multi-annual period), the longest duration of droughts, the droughts of the highest volume in multi-annual period, as well as the number of drought days. Multi-annual variability of the number of drought days was also analysed.The results suggest that droughts in the Polish Carpathians are events characteristic of summer and autumn, whereas in the Tatra Mountains and the Podhale region - of autumn and winter. The greatest hazard of a prolonged and high-volume drought occurs in the Podhale region and the Tatra Mountains, while the lowest hazard is observed in the Bieszczady Mountains and the eastern part of the studied area.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Effects of carbonated water injection on the pore system of a carbonate
           rock (coquina)

    • Abstract: CO2 injection is a well-known Enhanced Oil Recovery (EOR) technique that has been used for years to improve oil extraction from carbonate rock and other oil reservoirs. Optimal functioning of CO2 injection requires a thorough understanding of how this method affects the petrophysical properties of the rocks. We evaluated pore-scale changes in these properties, notably porosity and absolute permeability, following injection of CO2-saturated water in two coquina outcrop samples from the Morro do Chaves Formation in Brazil. The coquinas are close analogues of Pre-salt oil reservoirs off the coast of southern Brazil. The effects of carbonated water injection were evaluated using a series of experimental and numerical steps before and after coreflooding: cleaning, basic petrophysics, microtomography (microCT) imaging, nuclear magnetic resonance (NMR) analyses, and pore network modeling (PNM). Our study was motivated by an earlier experiment which did not show the development of a wormhole in the center of the sample, with a concomitant increase in permeability of the coquina as often noted in the literature. We instead observed a substantial decrease in the absolute permeability (between 71 and 77%), but with little effect on the porosity and no wormhole formation. While all tests were carried out on both samples, here we present a comprehensive analysis for one of the samples to illustrate changes at the pore network level. Different techniques were used for the pore-scale analyses, including pore network modeling using PoreStudio, and software developed by the authors to enable a statistical analysis of the pore network. Results provided much insight in how injected carbonated water affects the pore network of carbonate rocks.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Correlation between climate and flood indices in Northwestern Italy at
           different temporal scales

    • Abstract: The occurrence of river floods is strongly related to specific climatic conditions that favor extreme precipitation events leading to catchment saturation. Although the impact of precipitation and temperature patterns on river flows is a well discussed topic in hydrology, few studies have focused on the relationship between peak discharges and standard Climate Change Indices (ETCCDI) of precipitation and temperature, widely used in climate research. It is of interest to evaluate whether these indices are relevant for characterizing and predicting floods in the Alpine area. In this study, a correlation analysis of the ETCCDI indices annual time series and annual maximum flows is presented for the Piedmont Region, in North-Western Italy. Spearman’s rank correlation is used to determine which ETCCDI indices are temporally correlated with maximum discharges, allowing to hypothesize which climate drivers better explain the interannual variability of floods. Moreover, the influence of climate (decadal) variability on the tendency of annual maximum discharges is examined by spatially correlating temporal trends of climate indices with temporal trends of the discharge series in the last twenty years, calculated using the Theil-Sen slope estimator. Results highlight that, while extreme precipitation indices are highly correlated with extreme discharges at the annual timescale, with different indices that are consistent with catchment size, the decadal tendencies of extreme discharges may be better explained by the decadal tendencies of the total annual precipitation over the study area. This suggests that future projections of the annual precipitation available from climate models simulations, whose reliability is higher compared to precipitation extremes, may be used as covariates for non-stationary flood frequency analysis.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Adaptive stochastic management of the storage function for a large, open
           reservoir using learned fuzzy models

    • Abstract: The design and evaluation of algorithms for adaptive stochastic control of the reservoir function of a water reservoir using an artificial intelligence method (learned fuzzy model) are described in this article. This procedure was tested on the Vranov reservoir (Czech Republic). Stochastic model results were compared with the results of deterministic management obtained using the method of classical optimisation (differential evolution). The models used for controlling of reservoir outflow used single quantile from flow duration curve values or combinations of quantile values from flow duration curve for determination of controlled outflow. Both methods were also tested on forecast data from real series (100% forecast). Finally, the results of the dispatcher graph, adaptive deterministic control and adaptive stochastic control were compared. Achieved results of adaptive stochastic management were better than results provided by dispatcher graph and provide inspiration for continuing research in the field.
      PubDate: Thu, 19 May 2022 00:00:00 GMT
  • Temporal and spatial patterns of the river flow and water temperature
           relations in Poland

    • Abstract: Main aim of the study was to determine the temporal and spatial patterns of relations between monthly and annual average river flow (RF) and water temperature (WT) for 53 rivers in Poland. The research made use of monthly and annual WT and RF for 88 water gauges for the period 1971–2015. Correlations were established using the Spearman’s rank correlation coefficient and the similarity of RF–WT relations was determined using the Ward’s hierarchical grouping. It was demonstrated that correlations between average annual RF and WT were negative (for >85% of water gauges) and statistically significant (p<0.05) only for 30% of water gauges. It was confirmed that the studied RF–WT relations underwent seasonal changes. Positive correlations were clearly predominant in the winter months, while from April to September these relations were negative and statistically significant. The RF–WT relations were also characterized by spatial differences and this had been confirmed by separation of seven groups of water gauge profiles distinguished with the help of the Ward’s hierarchical grouping method. The strongest RF–WT relations were apparent in the case of mountainous rivers, for which snow melt supply and summer rainfall supply were predominant, and lakeland rivers, which had a considerable share of groundwater supply. These were classified as cold rivers, as opposed to the cool rivers in the lowland belt, for which the RF–WT relations were the weakest. The results obtained may contribute to the elaboration of an appropriate management strategy for river ecosystems, which are assigned important economic and environmental functions.
      PubDate: Sat, 12 Feb 2022 00:00:00 GMT
  • Effect of slope position on soil properties and soil moisture regime of
           Stagnosol in the vineyard

    • Abstract: Hillslope hydrology in agricultural landscapes is complex due to a variety of hydropedological processes and field management possibilities. The aim was to test if there are any differences in soil properties and water regime along the hillslope and to compare vineyard rows (vine) with inter-rows (grass) area for those properties. The study determined that there are significant differences in the contents of soil particle fractions, pH, and humus content along the slope (P < 0.0001), with lower confidence level in bulk density (P < 0.05). Differences between row and inter-row space were significant for the pH, humus, and silt content, but for sand and clay content, and bulk density differences were not determined. The study determined differences in soil water content among five slope positions (P < 0.0001), and between row and inter-row vineyard space (all with P < 0.05). Where in the upper slope positions (e. g., P1) soil water content was higher than on lower slope positions. Higher soil water content was observed at higher slope positions, associated with clay content. However, it can be concluded that the retention of moisture on the slope is more influenced by local-scale soil properties (primarily soil texture) and variability of the crop (row/inter-row) than the position on the slope.
      PubDate: Sat, 12 Feb 2022 00:00:00 GMT
  • The study of flow type dynamics at pedon scale via morphometric parameter
           analysis of dye-pattern profiles

    • Abstract: The application of Brilliant Blue FCF tracer enables to identify flow types in multi-domain porous systems of soils via analyses of morphologic parameters of stained objects occurring in dye pattern profiles, as they represent the footprint of flow processes which occurred in soil during both the infiltration and the redistribution of dye solution. We analysed the vertical dye pattern profiles exposed for different time lengths, and revealed temporal evolution of dye solution redistribution leading to changes in flow types. The field experiment was performed with the Brilliant Blue tracer (the 10 g l−1 concentration) applied on 1m x 1m surface of the Dystric Cambisol. The top litter horizon had been removed before 100 l of the tracer was applied. Four vertical profiles were excavated on the experimental plot (always 20 cm apart) at different times after the irrigation had been finished: 2 hours (CUT 2), 24 hours (CUT 24), 27 hours (CUT 27) and 504 hours (CUT 504). The analyses of the dyed patterns profiles showed the spatio-temporal changes in the dye coverage, surface area density, average BB concentration, and stained path width, which allowed us to specify three stages of dye solution redistribution history: (i) a stage of preferential macropore flow, (ii) a stage of strong interaction between macropore-domain and soil matrix leading to the generation of heterogeneous matrix flow and fingering flow types, and (iii) a final stage of dye redistribution within the soil body connected with leaching of BB caused by meteoric water. With increasing time, the macropore flow types convert to mostly matrix-dominated FTs in the upper part of the soil profile. These results were supported by soil hydrological modelling, which implied that more than 70% of the soil moisture profiles variability among CUT 2–CUT 504 could be explained by the time factor.
      PubDate: Mon, 29 Oct 2018 00:00:00 GMT
  • 65 Anniversary of the Institute of Hydrology, Slovak Academy of Sciences

    • PubDate: Mon, 29 Oct 2018 00:00:00 GMT
  • Factors controlling alterations in the performance of a runoff model in
           changing climate conditions

    • Abstract: In many Austrian catchments in recent decades an increase in the mean annual air temperature and precipitation has been observed, but only a small change in the mean annual runoff. The main objective of this paper is (1) to analyze alterations in the performance of a conceptual hydrological model when applied in changing climate conditions and (2) to assess the factors and model parameters that control these changes. A conceptual rainfall-runoff model (the TUW model) was calibrated and validated in 213 Austrian basins from 1981–2010. The changes in the runoff model’s efficiency have been compared with changes in the mean annual precipitation and air temperature and stratified for basins with dominant snowmelt and soil moisture processes. The results indicate that while the model’s efficiency in the calibration period has not changed over the decades, the values of the model’s parameters and hence the model’s performance (i.e., the volume error and the runoff model’s efficiency) in the validation period have changed. The changes in the model’s performance are greater in basins with a dominant soil moisture regime. For these basins, the average volume error which was not used in calibration has increased from 0% (in the calibration periods 1981–1990 or 2001–2010) to 9% (validation period 2001–2010) or –8% (validation period 1981–1990), respectively. In the snow-dominated basins, the model tends to slightly underestimate runoff volumes during its calibration (average volume error = –4%), but the changes in the validation periods are very small (i.e., the changes in the volume error are typically less than 1–2%). The model calibrated in a colder decade (e.g., 1981–1990) tends to overestimate the runoff in a warmer and wetter decade (e.g., 2001–2010), particularly in flatland basins. The opposite case (i.e., the use of parameters calibrated in a warmer decade for a colder, drier decade) indicates a tendency to underestimate runoff. A multidimensional analysis by regression trees showed that the change in the simulated runoff volume is clearly related to the change in precipitation, but the relationship is not linear in flatland basins. The main controlling factor of changes in simulated runoff volumes is the magnitude of the change in precipitation for both groups of basins. For basins with a dominant snowmelt runoff regime, the controlling factors are also the wetness of the basins and the mean annual precipitation. For basins with a soil moisture regime, landcover (forest) plays an important role.
      PubDate: Mon, 29 Oct 2018 00:00:00 GMT
  • Response of soil organic carbon and water-stable aggregates to different
           biochar treatments including nitrogen fertilization

    • Abstract: Recent studies show that biochar improves physical properties of soils and contributes to the carbon sequestration. In contrast to most other studies on biochar, the present study comprise a long-term field experiment with a special focus on the simultaneous impact of N-fertilizer to soil structure parameters and content of soil organic carbon (SOC) since SOC has been linked to improved aggregate stability. However, the question remains: how does the content of water-stable aggregates change with the content of organic matter' In this paper we investigate the effects of biochar alone and in a combination with N-fertilizer (i) on the content of water-stable macro- (WSAma) and micro-aggregates (WSAmi) as well as soil structure parameters; and (ii) on the contents of SOC and labile carbon (CL) in water-stable aggregates (WSA).A field experiment was conducted with different biochar application rates: B0 control (0 t ha−1), B10 (10 t ha−1) and B20 (20 t ha−1) and 0 (no N), 1st and 2nd level of nitrogen fertilization. The doses of level 1 were calculated on required average crop production using the balance method. The level 2 included an application of additional 100% of N in 2014 and additional 50% of N in the years 2015–2016 on silty loam Haplic Luvisol at the study site located at Dolná Malanta (Slovakia). The effects were investigated after the growing season of spring barley, maize and spring wheat in 2014, 2015 and 2016, respectively.The results indicate that the B10N0 treatment significantly decreased the structure vulnerability by 25% compared to B0N0. Overall, the lower level of N combined with lower doses of biochar and the higher level of N showed positive effects on the average contents of higher classes of WSAma and other soil structure parameters. The content of SOC in WSA in all size classes and the content of CL in WSAma 3–1 mm significantly increased after applying 20 t ha–1 of biochar compared to B0N0. In the case of the B20N1 treatment, the content of SOC in WSAma within the size classes >5 mm (8%), 5–3 mm (19%), 3–2 mm (12%), 2–1 mm (16%), 1–0.5 mm (14%), 0.5–0.25 mm (9%) and WSAmi (12%) was higher than in B0N1. We also observed a considerably higher content of SOC in WSAma 5–0.5 mm and WSAmi with the B10N1 treatment as compared to B0N1. Doses of 20 t biochar ha−1 combined with second level of N fertilization had significant effect on the increase of WSAma and WSAmi compared to the B0N2 treatment. A significant increase of CL in WSA was determined for size classes of 2–0.25 mm and WSAmi in the B20N2 treatment. Our findings showed that biochar might have beneficial effects on soil structure parameters, SOC, CL in WSA and carbon sequestration, depending on the applied amounts of biochar and nitrogen.
      PubDate: Mon, 29 Oct 2018 00:00:00 GMT
  • An approximate method for 1-D simulation of pollution transport in streams
           with dead zones

    • Abstract: Analytical solutions describing the 1D substance transport in streams have many limitations and factors, which determine their accuracy. One of the very important factors is the presence of the transient storage (dead zones), that deform the concentration distribution of the transported substance. For better adaptation to such real conditions, a simple 1D approximation method is presented in this paper. The proposed approximate method is based on the asymmetric probability distribution (Gumbel’s distribution) and was verified on three streams in southern Slovakia. Tracer experiments on these streams confirmed the presence of dead zones to various extents, depending mainly on the vegetation extent in each stream. Statistical evaluation confirms that the proposed method approximates the measured concentrations significantly better than methods based upon the Gaussian distribution. The results achieved by this novel method are also comparable with the solution of the 1D advection-diffusion equation (ADE), whereas the proposed method is faster and easier to apply and thus suitable for iterative (inverse) tasks.
      PubDate: Mon, 29 Oct 2018 00:00:00 GMT
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-