Subjects -> FORESTS AND FORESTRY (Total: 130 journals)
    - FORESTS AND FORESTRY (129 journals)
    - LUMBER AND WOOD (1 journals)

FORESTS AND FORESTRY (129 journals)                     

Showing 1 - 12 of 12 Journals sorted alphabetically
Acta Brasiliensis     Open Access  
Advance in Forestry Research     Open Access   (Followers: 7)
Advances in Forestry Science     Open Access   (Followers: 4)
Agrociencia     Open Access  
Agroforestry Systems     Open Access   (Followers: 15)
Annals of Forest Research     Open Access  
Annals of Forest Science     Hybrid Journal   (Followers: 5)
Annals of Silvicultural Research     Open Access  
Appita Journal: Journal of the Technical Association of the Australian and New Zealand Pulp and Paper Industry     Full-text available via subscription   (Followers: 6)
Arboricultural Journal : The International Journal of Urban Forestry     Hybrid Journal   (Followers: 6)
Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi / Artvin Coruh University Journal of Forestry Faculty     Open Access  
Asian Journal of Forestry     Open Access   (Followers: 1)
Asian Journal of Research in Agriculture and Forestry     Open Access   (Followers: 1)
Australian Forest Grower     Full-text available via subscription   (Followers: 2)
Australian Forestry     Hybrid Journal   (Followers: 1)
Banko Janakari     Open Access  
Bartın Orman Fakültesi Dergisi / Journal of Bartin Faculty of Forestry     Open Access  
BIOFIX Scientific Journal     Open Access  
Bosque     Open Access   (Followers: 2)
Canadian Journal of Forest Research     Hybrid Journal   (Followers: 28)
Canadian Journal of Plant Science     Full-text available via subscription   (Followers: 11)
Central European Forestry Journal     Open Access   (Followers: 1)
Ciencia forestal en México     Open Access   (Followers: 1)
Colombia Forestal     Open Access   (Followers: 1)
Current Forestry Reports     Hybrid Journal   (Followers: 1)
Current Landscape Ecology Reports     Hybrid Journal   (Followers: 2)
Dissertationes Forestales     Open Access   (Followers: 1)
East African Agricultural and Forestry Journal     Hybrid Journal   (Followers: 1)
Eurasian Journal of Forest Science     Open Access  
European Journal of Forest Engineering     Open Access  
European Journal of Forest Research     Hybrid Journal   (Followers: 7)
Expert Opinion on Environmental Biology     Hybrid Journal  
Folia Forestalia Polonica. Seria A - Forestry     Open Access  
Forest Ecology and Management     Hybrid Journal   (Followers: 61)
Forest Ecosystems     Open Access   (Followers: 5)
Forest Pathology     Hybrid Journal   (Followers: 1)
Forest Policy and Economics     Hybrid Journal   (Followers: 21)
Forest Science     Hybrid Journal   (Followers: 8)
Forest Science and Technology     Open Access   (Followers: 2)
Forest@ : Journal of Silviculture and Forest Ecology     Open Access  
Foresta Veracruzana     Open Access  
Forestry : Journal of Institute of Forestry, Nepal     Open Access  
Forestry Chronicle     Full-text available via subscription   (Followers: 9)
Forestry Letters     Open Access   (Followers: 1)
Forestry Studies     Open Access  
Forestry: An International Journal of Forest Research     Hybrid Journal   (Followers: 14)
Forests     Open Access   (Followers: 2)
Forests, Trees and Livelihoods     Partially Free   (Followers: 4)
Frontiers in Forests and Global Change     Open Access   (Followers: 2)
Ghana Journal of Forestry     Full-text available via subscription   (Followers: 2)
iForest : Biogeosciences and Forestry     Open Access   (Followers: 3)
Indian Forester     Full-text available via subscription   (Followers: 3)
Indonesian Journal of Forestry Research     Open Access   (Followers: 1)
INNOTEC : Revista del Laboratorio Tecnológico del Uruguay     Open Access  
International Forestry Review     Full-text available via subscription   (Followers: 5)
International Journal of Agriculture and Forestry     Open Access   (Followers: 6)
International Journal of Agriculture, Forestry and Life Sciences     Open Access  
International Journal of Forest Engineering     Hybrid Journal   (Followers: 1)
International Journal of Forestry Research     Open Access   (Followers: 2)
Iranian Journal of Forest and Poplar Research     Open Access  
Journal of Agriculture, Forestry and the Social Sciences     Full-text available via subscription   (Followers: 5)
Journal of Biodiversity Management & Forestry     Hybrid Journal   (Followers: 4)
Journal of Bioresources and Bioproducts     Open Access  
Journal of Environmental Extension     Full-text available via subscription  
Journal of Forest and Natural Resource Management     Open Access  
Journal of Forest Economics     Hybrid Journal   (Followers: 5)
Journal of Forestry     Hybrid Journal   (Followers: 15)
Journal of Forestry Research     Hybrid Journal   (Followers: 3)
Journal of Horticulture and Forestry     Open Access   (Followers: 6)
Journal of Natural Resources Policy Research     Hybrid Journal   (Followers: 10)
Journal of Research in Forestry, Wildlife and Environment     Open Access   (Followers: 5)
Journal of Sustainable Forestry     Hybrid Journal   (Followers: 6)
Journal of Wood Chemistry and Technology     Hybrid Journal   (Followers: 6)
Journal of Wood Science     Open Access   (Followers: 3)
Jurnal Ilmu Kehutanan     Open Access  
Jurnal Penelitian Kehutanan Wallacea     Open Access  
Jurnal Penelitian Sosial dan Ekonomi Kehutanan     Open Access  
Jurnal Pertanian Terpadu     Open Access  
Jurnal Sylva Lestari     Open Access  
La Calera     Open Access  
Landscapes     Hybrid Journal   (Followers: 18)
Lesnoy Zhurnal     Open Access  
Madera y Bosques     Open Access  
Maderas. Ciencia y tecnología     Open Access  
Natural Areas Journal     Full-text available via subscription   (Followers: 10)
New Forests     Hybrid Journal   (Followers: 2)
New Zealand Journal of Forestry Science     Open Access   (Followers: 3)
Open Journal of Forestry     Open Access   (Followers: 1)
Ormancılık Araştırma Dergisi / Turkish Journal of Forestry Research     Open Access  
Parks Stewardship Forum     Open Access  
Peer Community Journal     Open Access   (Followers: 5)
Proceedings of the Forestry Academy of Sciences of Ukraine     Open Access  
Quebracho. Revista de Ciencias Forestales     Open Access  
Research Journal of Forestry     Open Access   (Followers: 2)
Revista Chapingo. Serie Ciencias Forestales y del Ambiente     Open Access  
Revista Cubana de Ciencias Forestales     Open Access  
Revista de Agricultura Neotropical     Open Access  
Revista Ecologia e Nutrição Florestal - ENFLO     Open Access   (Followers: 1)
Revista Forestal Mesoamericana Kurú     Open Access  
Revista Verde de Agroecologia e Desenvolvimento Sustentável     Open Access   (Followers: 2)
Revue forestière française     Full-text available via subscription   (Followers: 4)
Rural Sustainability Research     Open Access   (Followers: 2)
Rwanda Journal     Full-text available via subscription  
Savannah Journal of Research and Development     Open Access  
Scandinavian Journal of Forest Research     Hybrid Journal   (Followers: 7)
Science, Technology and Arts Research Journal     Open Access   (Followers: 1)
Selbyana     Open Access  
Silva Balcanica     Open Access  
Small-scale Forestry     Hybrid Journal   (Followers: 1)
Southern Forests : a Journal of Forest Science     Hybrid Journal   (Followers: 3)
Tanzania Journal of Forestry and Nature Conservation     Full-text available via subscription   (Followers: 2)
Textual : Análisis del Medio Rural Latinoamericano     Open Access  
Trees     Hybrid Journal   (Followers: 3)
Trees, Forests and People     Open Access   (Followers: 1)
Urban Forestry & Urban Greening     Hybrid Journal   (Followers: 10)
Wahana Forestra : Jurnal Kehutanan     Open Access  
Wood and Fiber Science     Full-text available via subscription   (Followers: 2)

           

Similar Journals
Journal Cover
Annals of Forest Science
Journal Prestige (SJR): 0.986
Citation Impact (citeScore): 2
Number of Followers: 5  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1286-4560 - ISSN (Online) 1297-966X
Published by Springer-Verlag Homepage  [2469 journals]
  • Closing the gap between phenotyping and genotyping: review of advanced,
           image-based phenotyping technologies in forestry

    • Free pre-print version: Loading...

      Abstract: Key message The lack of efficient phenotyping capacities has been recognized as a bottleneck in forestry phenotyping and breeding. Modern phenotyping technologies use systems equipped with various imaging sensors to automatically collect high volume phenotypic data that can be used to assess trees' various attributes. Context Efficient phenotyping has the potential to spark a new Green Revolution, and it would provide an opportunity to acquire growth parameters and dissect the genetic bases of quantitative traits. Phenotyping platforms aim to link information from several sources to derive knowledge about trees' attributes. Aims Various tree phenotyping techniques were reviewed and analyzed along with their different applications. Methods This article presents the definition and characteristics of forest tree phenotyping and reviews newly developed imaging-based practices in forest tree phenotyping. Results This review addressed a wide range of forest trees phenotyping applications, including a survey of actual inter- and intra-specific variability, evaluating genotypes and species response to biotic and abiotic stresses, and phenological measurements. Conclusion With the support of advanced phenotyping platforms, the efficiency of traits phenotyping in forest tree breeding programs is accelerated.
      PubDate: 2022-05-09
       
  • Stand development stages and recruitment patterns influence fine-scale
           spatial genetic structure in two Patagonian Nothofagus species

    • Free pre-print version: Loading...

      Abstract: Key message Nothofagus alpina (Poepp. et Endl.) Oerst. and Nothofagus obliqua (Mirb.) Oerst forests have strong fine-scale spatial genetic structures. The intensity of genetic structure patterns differed according to species, stand development stages, life stages, and spatial arrangement of regeneration groups. This data becomes useful for forest management as it provides an understanding of how populations evolve as well as of the consequences of disturbances and enables the establishment of sampling strategies. Context The understanding of fine-scale spatial genetic structure in natural populations is useful for forest management. Although Nothofagus alpina (Poepp. et Endl.) Oerst. and N. obliqua (Mirb.) are important species of the Patagonian forest, little is known about the genetic structure of their populations. Aims The main objectives were to investigate the differences in fine-scale spatial genetic structure among mature tree populations of both species considering two stands at different development stages. Genetic structure was also evaluated among life stages and spatial distribution groups of regeneration within the old-growth stand. Methods Genetic structure was examined by microsatellite DNA analysis of regeneration and mature tree populations of both species (around 1300 individuals). Gene dispersal distance was additionally estimated. Results In both stands and species, strong fine-scale spatial genetic structure and short dispersal distance were found. This pattern was stronger in the early successional forest, in N. obliqua populations, in earlier life stages, and in scattered regeneration. Conclusion Stand development stages and recruitment patterns influence the fine-scale spatial genetic structure of both Nothofagus species. However, the genetic structure also differs between species.
      PubDate: 2022-05-02
       
  • Spruce (Picea abies L.) planting leads post-clearcut bird assemblages to a
           novel successional pathway—a comparative study in hemiboreal mixed
           forests

    • Free pre-print version: Loading...

      Abstract: Key message Bird assemblages in planted spruce (Picea abies L.) forests were compositionally distinct from those in naturally regenerated mixed stands. Despite rapid stand development on productive soils, even-aged silviculture cannot host most old-forest species. However, their habitat quality could be supported in landscape mosaics with retention forestry and set-asides. Context The most productive forest lands have naturally the richest bird assemblages but tend to be also most intensively managed. Sustainable solutions to this conflict are unclear. Aim To assess bird assemblages and their successional dynamics in planted Norway spruce (Picea abies L.) stands compared to naturally developing stands. Methods We mapped breeding bird assemblages in forty 5-ha plots on highly productive soils in Estonia. The plots included sets of naturally regenerated and planted stands, and (as successional endpoints) clear-cuts and old stands. Results Planted stands had fewer bird species and pairs than naturally regenerated stands; the latter having a species composition resembling late-successional deciduous-dominated stands. Importantly, the species composition in mature spruce plantations converged toward the composition observed in late-successional conifer-dominated stands. Downed dead wood, stand age, deciduous trees, and stock density were the most significant stand characteristics shaping bird assemblages. Conclusion The habitat value of established spruce plantations can be primarily improved by allowing for some deciduous trees and gaps with deciduous undergrowth. At the landscape scale, the bird diversity of even-aged systems would be enhanced by multi-scale applications of retention forestry—from retention trees to old-growth set-asides.
      PubDate: 2022-04-14
       
  • Offering the appetite for the monitoring of European forests a diversified
           diet

    • Free pre-print version: Loading...

      Abstract: Key message Forest monitoring in Europe is turning matter of renewed political concern, and a possible role for ICP Forests health monitoring has been suggested to meet this goal (Ann For Sci 78:94, 2021). Multipurpose national forest inventory (NFI) surveys yet offer a sampling effort by two orders of magnitude greater than ICP level 1, have accomplished substantial methodological and harmonization progresses in the recent years, and therefore form a decisive contributor to future European forest monitoring incentives. Possible paths for the future development of a pan-European, comprehensive and more accurate monitoring are designed that stress a crucial need to build on the assets of the existing forest monitoring programs and favor their cooperation, in order to limit the co-existence of distinct forest monitoring processes.
      PubDate: 2022-04-11
       
  • Managing forest risks in uncertain times of climate change

    • Free pre-print version: Loading...

      Abstract: Key message Managing forest risks in uncertain times of climate change necessitates novel and adaptive forest decision approaches. Multiple risks (biotic and abiotic) and sources of uncertainty should be identified, and their quantities over decision horizon should be propagated in searching for robust solutions. The solutions may ask for changes in classical forest decisions, e.g., rotation age or beyond, e.g., forest insurance.
      PubDate: 2022-04-07
       
  • Responses to defoliation of Robinia pseudoacacia L. and Sophora japonica
           L. are soil water condition dependent

    • Free pre-print version: Loading...

      Abstract: Key message Defoliation significantly affected biomass allocation of Robinia pseudoacacia L. and Sophora japonica L., but leaf physiology readjusted to control levels at the end of the experiment. Considering carbon or sink limitation and relative height growth rate, defoliated R. pseudoacacia grew faster than S. japonica under well-watered conditions, while defoliated S. japonica and R. pseudoacacia had similar performance under drought conditions. Context Climate change may result in increases of both drought intensity and insect survival, thereby affecting both exotic and native trees in warm temperate forests. Aims In this study, we examined the interaction effects of defoliation and drought on an exotic species Robinia pseudoacacia and a native species Sophora japonica in a warm temperate area, to provide a theoretical basis for predicting the distribution and dynamics of the two species under future climate change. Methods In a greenhouse, both species were exposed to three soil moisture (75%, 55%, and 35% of field capacity) and three defoliation treatments (no defoliation, 50% defoliation, and 100% defoliation). Leaf physiology, biomass, and non-structural carbohydrate were determined. Results Leaf physiology of defoliated trees did not differ from controls trees, but defoliated seedlings allocated relatively more resources to the leaves at the end of the experiment. In well-watered conditions, defoliated R. pseudoacacia was not carbon or sink limited and defoliated S. japonica was carbon limited, while defoliated individuals of the two species were sink limited under drought. Defoliated R. pseudoacacia grow more rapidly than S. japonica in well-watered conditions. Defoliated R. pseudoacacia had a similar growth rate to S. japonica in drought. Conclusions Defoliation clearly affects biomass allocation of the two species, but not leaf physiology. Considering the carbon or sink limitation, the growth of S. japonica and R. pseudoacacia may be limited by future global climate change scenarios.
      PubDate: 2022-04-07
       
  • The role of wood harvest from sustainably managed forests in the carbon
           cycle

    • Free pre-print version: Loading...

      Abstract: Key message We investigate the flux balance of managed and protected forests and the effects of using wood. Flux parameters of CO2 uptake and respiration do not differ between managed and protected forests. Accounting of harvest as immediate emission by IPCC guidelines results in a bias of forest climate mitigation towards storage and neglects the avoidance of fossil-fuel use by wood use.
      PubDate: 2022-04-07
       
  • Recolonization by Indigenous broadleaved species of a conifer plantation
           (Cupressus spp.) in Northern Iran after 25 years

    • Free pre-print version: Loading...

      Abstract: Key message A vegetation analysis revealed the extent of recolonization by native vegetation of a 25-year-old Cupressus spp. plantation in northern Iran. A young indigenous Quercus-Carpinus community replaced the conifers in the low-slope areas with deeper, heavier, and more fertile soils. Context Reforestation of degraded or clear-cut-harvested lands can modify site conditions, facilitating succession and reestablishing native forests. It is critical to investigate the plantation in terms of vegetation, natural regeneration, and environmental variables to better understand ecological restoration. Aims This study examines the recolonization of a Cypress plantation by native vegetation in the deforested Hyrcanian broadleaf forests and determines which edaphic, topographic, and structural variables are correlated to the degree of reconstitution. Methods A systematic random sampling method was used to establish 55 plots in a 25-year-old Cupressus plantation, followed by plot classification using TWINSPAN and environment-vegetation analysis using CCA. The classification groups were compared using an analysis of variance. Tested variables included floristic composition, stand structure, regeneration, topography, and soil parameters. Results Four vegetation groups were identified based on an analysis of floristic composition. The first group demonstrated the least degree of native forest reconstitution, as planted conifers (Cupressus spp.) were established alongside pioneer broadleaf shrubs, enhancing Zelkova carpinifolia (Pall.) K.Koch regeneration. While most conifers disappeared in the third group, Carpinus betulus L., Zelkova carpinifolia, and Quercus castaneifolia C.A. Mey became dominant. The most influential environmental factors in reestablishing indigenous communities were a low-slope, heavier soil with a higher organic carbon and potassium content. Conclusion On low-slope lands with fertile soils, the Hyrcanian native broadleaf forest can recolonize the coniferous plantation; however, on steep lands with poor sandy soils, planted Cupressus trees as well as relatively xerophytic shrubs in the understory may establish.
      PubDate: 2022-03-29
       
  • Towards sustainable management of forest residues in the southern Apennine
           Mediterranean mountain forests: a scenario-based approach

    • Free pre-print version: Loading...

      Abstract: Key message Managing forest residues according to the carbon content of the soil helps to minimize the ecological footprint of their removal. Context In Mediterranean mountain ecosystems, unsustainable harvesting of wood residues might contribute to land degradation, carbon, and nutrient depletion in forest soils. Aims This study aimed to assess the amount of forest biomass residues that should be left on-site to minimize the depletion of soil fertility. Methods We estimated the availability of biomass residues in the public forest land of the Basilicata region of Southern Italy by collecting stand-scale inventory attributes from forest management plans. Subsequently, we quantified the amount of forest biomass residue released by implementing a scenario-based approach. Results Approximately 5800 m3 year−1 of forest residues could be potentially available for bio-based industries at the regional scale within the next 10 years. Such residues mainly belong to broadleaved forest types, having a high variability in their soil organic stock (228.5–705.8 Mg C ha−1) and altitudinally spanning from 400 to 1500 m a.s.l. In these forests, the simulated scenarios displayed a wide range of average harvestable residues from 2.5 to 5.5 m3 ha−1, containing approximately 1.1 to 2.1 Mg ha−1 of organic carbon. Conclusion Our study suggests that forest management plans are a useful source of information to estimate the available forest biomass residues consistently. In southern Mediterranean mountain forests, the management of forest residues according to soil carbon content helps to minimize the environmental impact and increase their sustainability.
      PubDate: 2022-03-28
       
  • Position, size, and spatial patterns of bark stripping wounds inflicted by
           red deer (Cervus elavus L.) on Norway spruce using generalized additive
           models in Austria

    • Free pre-print version: Loading...

      Abstract: Key message Bark stripping wounds by red deer (Cervus elavus L.) were assessed on 9026 Norway spruce trees. Wound variables (length, width, area, relative width, height above ground, and angle) were analysed using generalized additive models with spatial soap film smoothers. Wounds located at the uphill side of trees were larger in summer than winter, and wound size depended on the diameter at breast height (DBH) and was spatially clustered. Context In Austria, red deer (Cervus elaphus L.) is the main species causing bark stripping wounds. In winter, they often gnaw at the bark because of food scarcity; in summer, large pieces of bark are detached to help digestion, water, and nutrient uptake or as social behaviour. Aims The aim of this study was to analyse wound size (length, width, area, relative width (i.e., width divided by stem circumference)) and wound position (height above ground, angle (i.e., deviation between wound azimuth from slope line)) for winter and summer bark stripping wounds by red deer depending on stand attributes and to describe the spatial patterns of wound size within stands. Methods A total of 3832 wounds on 9026 trees in nine experimental stands of Norway spruce (Picea abies (L.) Karst.) located at 47° 19’ N and 14° 46’ E at an elevation of 1009–1622 m were analysed. A linear regression model was fit for wound length over wound width for each season. For all wound variables (wound length, width, area, relative width, position, height above ground, and angle) generalized additive models (GAM) with soap film smoothers, which predict spatial patterns, were fitted. Results Of all wounds, 79.5 % were inflicted in winter and 20.5 % in summer. Wound length (31.9 cm ± 31.2 SD), width (11.7 cm ± 6.0 SD), area (446.5 cm2± 558.1 SD), and relative wound width (0.177 cm ± 0.098 SD) were modelled depending on summer or winter bark peeling, DBH, and tree coordinates. For wound height above ground (119.4 cm± 26.8 SD) and angle (− 1.9 ± 97.3 SD), no meaningful GAM could be calculated. Seasonal differences between wound length and area were more pronounced than for wound width; differences in height above ground were minimal, but significant. Analyses further showed that wounds were mainly located at the uphill side of the trees. Conclusion The spatial clustering of wound sizes might reduce the efficiency of thinning to remove heavily damaged trees in bark-peeled stands and might increase the number of sample points required to assess deer impact in forest inventories. Also, the uphill location of damages is an important information in inventories.
      PubDate: 2022-03-24
       
  • Climate and ungulate browsing impair regeneration dynamics in
           spruce-fir-beech forests in the French Alps

    • Free pre-print version: Loading...

      Abstract: Key message Different components of water balance and temperature reduce density and height growth of saplings of Picea abies (L.) H. Karst (Norway spruce), Abies alba Mill. (silver fir) and Fagus sylvatica L. (European beech) in mixed uneven-aged forests in the French Alps and Jura mountains. Ungulate browsing is an additional pressure on fir and beech that could jeopardise the renewal of these species in the future. Context The uncertainty in tree recruitment rates raises questions about the factors affecting regeneration processes in forests. Factors such as climate, light, competition and ungulate browsing pressure may play an important role in determining regeneration, forest structures and thus future forest composition. Aims The objective of this study was to quantify sapling densities and height increments of spruce, fir and beech and to identify dominant environmental variables influencing them in mixed uneven-aged forests in the French Alps and Jura mountains. Methods Sapling height increment and density were recorded in 152 plots, and non-linear mixed models were obtained to establish relations between them and environmental factors known to affect regeneration, namely altitude, slope, aspect, canopy openness, soil characteristics, temperature, precipitation and ungulate browsing. Results Regeneration density, varying from 0 to 7 saplings per m 2, decreased with sapling height and was also negatively affected for spruce by PET, but positively for fir by precipitation and for beech by mean annual soil water content. Height increment reached up to 50 cm annually, increasing with sapling height and canopy openness and decreasing under high maximum summer temperatures for spruce and beech. The statistical effect of different environmental variables varied slightly among species but trends were quite similar. Additionally, ungulate browsing was high, with fir being the most intensely browsed, followed closely by beech, while spruce was rarely browsed. Conclusions All these results suggest that more temperature warming and a decrease in water availability could negatively impact sapling growth and density in the three species, with possible reduction of forest renewal fluxes. The observed increase of ungulate populations leading to increased browsing could be particularly detrimental to fir saplings.
      PubDate: 2022-03-23
       
  • Temperature and precipitation affect seasonal changes in mite communities
           (Acari: Mesostigmata) in decomposing litter of broadleaved and coniferous
           temperate tree species

    • Free pre-print version: Loading...

      Abstract: Key message We identified the effect of microclimatic conditions on soil mite communities (Mesostigmata) during the decomposition of broadleaved and coniferous litter. The abundance, species richness, and diversity of mite communities decreased from spring to autumn regardless of litter quality and was related to changes in temperature and precipitation. Context Litter decomposition is one of the fundamental soil-supporting processes in terrestrial ecosystems. However, there is still a lack of knowledge on some general patterns of the relationships between litter quality (tree species), microclimate, and structure of soil mite assemblages. Aims The study aimed to analyze the impact of climatic conditions (temperature and precipitation) on mesostigmatid mite communities in the litter of 11 tree species through the vegetation season. Methods The experiment tested litter decomposition of 11 different tree species (693 litterbags), for seven consecutive months (April-October) under homogenous Scots pine (Pinus sylvestris L.) canopy monocultures in common garden conditions. Soil mites were extracted in Tullgren funnels. Results Mesostigmatid mite abundance was positively correlated with the temperature of the sampling month and negatively with the temperature of the previous month. Species richness depended on the sampling month temperature. Changes in litter mass loss in late autumn (after litterfall) and overwinter were important for colonization of litterbags by soil mesostigmatid mites in the following spring. Conclusions Changes in climatic conditions, i.e., temperature and precipitation between the sampling months (during the following vegetation period), may cause significant changes in mesostigmatid mite abundance and thus may impact ecosystem functions. The winter period is important for mesostigmatid mite abundance in the following vegetation period.
      PubDate: 2022-03-23
       
  • No carbon shortage in declining trees of the isohydric species Araucaria
           araucana (Molina) K. Koch under drought

    • Free pre-print version: Loading...

      Abstract: Key message At the sixth and seventh years of a drought event in south of Chile, non-structural carbohydrate (NSC) concentrations were similar between healthy and unhealthy trees of Araucaria araucana (Molina) K. Koch, and growth did not decrease, suggesting that leaf loss prevented C shortage in unhealthy trees. Context Tree drought resistance and resilience may be impaired by decreasing growth and non-structural carbohydrates (NSC). During a 7-year drought, the isohydric species Araucaria araucana (Araucariaceae) evidenced decline (foliage loss and browning). Aims To determine whether tree decline was related to an impaired carbon status and reduced growth. Methods In two sites of southern Chile, we selected healthy- and unhealthy-looking trees to study drought effects on NSC and growth. We measured the basal area increment (BAI) and NSC concentrations of needles and roots after 6 years of drought (2016) and following one less severe year in terms of drought (2017). Results At both years, healthy and unhealthy trees had similar NSC and sugar concentrations in needle and roots, and furthermore, they maintained their growth rates. In 2017, NSC, starch, and sugar concentrations of needles (but not roots) increased in both healthy and unhealthy trees at one of the study sites, while growth did not vary. Conclusion Unhealthy trees likely prevented C shortage through an acclimation mechanism such as foliage loss. The remarkable similar NSC concentrations found between healthy and unhealthy trees indicates the absence of C starvation in trees that lost a substantial fraction of their foliage under drought.
      PubDate: 2022-03-22
       
  • Development of a segregation method to sort fast-grown Eucalyptus nitens
           (H. Deane & Maiden) Maiden plantation trees and logs for higher
           quality structural timber products

    • Free pre-print version: Loading...

      Abstract: Key message A method to segregate trees and logs of planted Eucalyptus nitens (H. Deane & Maiden) Maiden has been developed, showing that accounting for wood quality during the process of segregation and sorting of timber resources allows for the recovery of structural timber of the desired quality. Context Appropriate sorting of raw forest resources is necessary to allocate logs to different production streams, to ensure that the desired quality of timber is achieved. Acoustic wave velocity can be used to test the wood quality of trees and logs, and its use as a sorting tool needs to be investigated prior to the development of a segregation method to recover high-quality timber. Aims This study aimed to develop a segregation methodology for plantation E. nitens trees and logs to obtain high-quality structural boards. Methods Forty-nine logs of planted E. nitens were measured, assessed with acoustic wave velocity, and processed into 268 structural boards maintaining board, log, and tree identity. Board stiffness was determined via structural testing and boards were ranked in structural grades. Linear mixed effect models were used to predict board stiffness based on tree and log variables, and machine learning decision trees were used to create a segregation method for board grades. Different segregation options were compared through scenario simulation. Results The prediction of individual board stiffness with tree or log variables yielded low coefficients of variation due to large intra-log variability (R2 = 0.22 for tree variables and R2 = 0.28 for log variables). However, the decision tree identified acoustic wave velocity thresholds to segregate E. nitens trees and logs. When applied in scenario simulation, segregation based on log variables produced the best results, resulting in large shares of high-quality board grades, showing that a segregation method based on wood quality traits can yield larger higher recovery of higher quality timber, in respect to other scenarios. Conclusion Acoustic wave velocity can be used to segregate trees and logs for structural boards from plantation E. nitens, and machine learning decision trees can support the development of a segregation method to determine operational thresholds to increase the recovery of high-quality timber.
      PubDate: 2022-03-22
       
  • Correction to: Climate warming-induced replacement of mesic beech by
           thermophilic oak forests will reduce the carbon storage potential in
           aboveground biomass and soil

    • Free pre-print version: Loading...

      PubDate: 2022-03-17
       
  • Altitude is a better predictor of the habitat requirements of epixylic
           bryophytes and lichens than the presence of coarse woody debris in
           mountain forests: a study in Poland

    • Free pre-print version: Loading...

      Abstract: Key message In order to preserve the continuity of epiphytic and epixylic cryptogamic flora, two things are essential: maintaining the near-natural character of a forest community in relation to the montane zonation and more sustainable forest management in relation to deadwood. Context Lichens and bryophytes are common species that inhabit dead wood. The relationship between their habitat requirements, which can be expressed by their Ellenberg indicator values and the characteristics of dead logs, are not yet known. Aims We formulated the hypothesis that altitude is positively correlated with the demands of species for higher light and lower temperature, while the decomposition stage of deadwood is positively correlated with species’ requirements for nutrients and moisture. Moreover, we assumed that there would be differences in the habitat requirements among specific groups of species, i.e., lichens, liverworts, and mosses. Methods A total of 629 logs that were colonized by bryophytes and lichens were analyzed in terms of their mean Ellenberg indicator values in order to determine whether there is a link between the location, decomposition of logs and the species’ environmental requirements. Results Altitude correlated with the moisture and nutrients in the habitats of liverworts and mosses and light and soil acidification only in mosses. Conclusions The obtained results demonstrate that the altitudinal distribution of epixylic species in a montane region is of greater importance than the deadwood properties like decomposition stage and moisture content.
      PubDate: 2022-03-17
       
  • Potential of using surface temperature data to benchmark Sentinel-2-based
           forest phenometrics in boreal Finland

    • Free pre-print version: Loading...

      Abstract: Key message We present a new approach to calibrate timings of phenological events from satellite data (e.g., Sentinel-2 MSI data) with readily available surface temperature data. The new approach improves the estimation of growing season length in boreal forests. Context Satellite data is used to calibrate phenology models employed in land surface model components of climate models. However, realistic quantification of forest phenological transitions, such as the greenup and senescence, across large spatial scales remains challenging due to the lack of sufficient ground validation data representative of both forest tree canopy and forest understory species compositions. Aims The aim of this study was to develop a new approach to benchmark boreal forest land surface phenology obtained from Sentinel-2 (S2) against surface temperature data. Methods We computed S2 phenological transition dates and compared them to ground reference data on temperature from a network of meteorological stations across Finland (60–70N°). Results Our results showed that applying standard phenometrics directly to S2 data to estimate the growing season length in boreal forests may lead to clear biases in all species groups. Conclusion Our approach to use temperature data to calibrate boreal forest phenometrics allows flexible application across spatial scales (i.e., point or grid) and different satellite sensors. It can be combined with any vegetation land cover product to provide a link between surface temperature data and forest seasonal reflectance properties.
      PubDate: 2022-03-17
       
  • Measuring xylem hydraulic vulnerability for long-vessel species: an
           improved methodology with the flow centrifugation technique

    • Free pre-print version: Loading...

      Abstract: Context Understanding plant resilience and adaptation to drought is a major challenge in crop and forest sciences. Several methods have been developed to assess the vulnerability to xylem embolism. The in situ flow centrifuge (or cavitron) is the fastest technique allowing to characterise this trait for plants having vessel lengths shorter than the rotor size. Aims We present (i) a series of changes to the earlier cavitron design, aimed at improving the accuracy and speed of measurement through automated operations, and (ii) a new development through the design of a large diameter rotor expanding the range of species that can be measured. Methods Both hardware and software modifications to the original design have been developed. In order to avoid artefacts caused by cut open vessels, a centrifuge with a large rotor (1 m) has been developed, and vulnerability curves obtained with this new device were compared with those obtained using reference methods. Results The new set-up expands the range of conductance measurable with a cavitron and enables it to accurately determine the absolute value of conductivity even for species having very low hydraulic conductivity. The large rotor cavitron shows good agreement with the reference techniques for conifers and diffuse-porous species but also for ring-porous species having long vessels. Conclusion The set-up described in this manuscript provides a faster, safer and more accurate method to construct vulnerability curves, compared to the original cavitron design, and extends the measurement capabilities to new species that are difficult to measure to date. Key message Recent improvements to cavitron setup enable to measure xylem vulnerability curves for an expanded number of plant species, with longer vessels or lower hydraulic conductivity.
      PubDate: 2022-03-17
       
  • A detailed time series of hourly circumference variations in Pinus pinea
           L. in Chile

    • Free pre-print version: Loading...

      Abstract: Key message The dataset provides digital dendrometer measurements on stem circumference of irrigated and non-irrigated Pinus pinea trees. Data were obtained in a xeric non-native habitat of central Chile. Forest mensuration was hourly collected from six adult trees during a growth year. This data can be re-used to perform different studies, including growth and tree water status temporal correlations, climate-growth relationships, and to compare stone pine stands growing in native and non-native habitats. Such studies could facilitate decisions for the species management and contribute to the understanding of its growth dynamics in a climate change context, providing valuable information for a climate-smart forestry. Dataset access is at https://doi.org/10.5281/zenodo.6010567. Associated metadata are available at metadata-afs.nancy.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/bcea7f69-2cf1-444b-8e5b-e9feb23683db
      PubDate: 2022-02-28
      DOI: 10.1186/s13595-022-01132-0
       
  • Desiccation does not increase frost resistance of pedunculate oak (Quercus
           robur L.) seeds

    • Free pre-print version: Loading...

      Abstract: Key message Decreasing acorns moisture content does not significantly increase the frost resistance of pedunculate oak seeds. Slight reduction in acorn moisture content below the relatively high, optimal level decreased seed survival at temperatures below − 5 °C. The limiting temperature for pedunculate oak’s acorns below which they lose their ability to germinate is about − 10 °C. Context Seed moisture content plays an important role in successful seed storage of many species, as desiccation increases frost resistance; however, oak seeds tolerate desiccation only to a very small extent. Aims In our study, we examined the impact of decreasing moisture content in acorns of pedunculate oak (Quercus robur L.) on their frost resistance (below − 3 °C) and the growth of seedling derived from frozen seeds. Methods Germination and seedling emergence of individual seeds, as well as the dry mass of their 3-month-old seedlings, were measured after acorn desiccation (24–40%, fresh weight basis) and desiccation followed by freezing at temperatures from − 3 °C to − 18 °C for 2 weeks. Results Decreasing acorns moisture content did not significantly increase the frost resistance of pedunculate oak seeds. The lowest temperature at which at least half seeds remain viable was − 10 °C. Slight acorns desiccation had only a small positive effect on seeds frozen below − 11 °C (down to − 13 °C), but in this case (acorn moisture content of 33%), low germinability after freezing made storage uneconomic because of the high mortality of seeds. Germinated seeds after desiccation and freezing showed no significant difference in later growth. Conclusion Fresh pedunculate oak seed can survive freezing temperature down to − 10 °C and produce good quality seedlings. Temperatures around − 11° to − 13 °C are near lethal to acorns and significantly reduce their viability. Overall, desiccation does not increase their frost resistance; therefore, in practice, it is important to keep acorns during a cold storage in the highly hydrated state.
      PubDate: 2022-02-24
      DOI: 10.1186/s13595-022-01121-3
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.25.51
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-