A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 124 journals)
Showing 1 - 30 of 30 Journals sorted by number of followers
AIAA Journal     Hybrid Journal   (Followers: 1003)
SpaceNews     Free   (Followers: 779)
Journal of Spacecraft and Rockets     Hybrid Journal   (Followers: 702)
Journal of Propulsion and Power     Hybrid Journal   (Followers: 570)
Aviation Week     Full-text available via subscription   (Followers: 412)
Aerospace Science and Technology     Hybrid Journal   (Followers: 307)
Advances in Space Research     Hybrid Journal   (Followers: 296)
IEEE Transactions on Aerospace and Electronic Systems     Hybrid Journal   (Followers: 281)
Journal of Aircraft     Hybrid Journal   (Followers: 264)
IEEE Aerospace and Electronic Systems Magazine     Full-text available via subscription   (Followers: 252)
Control Systems     Hybrid Journal   (Followers: 235)
Acta Astronautica     Hybrid Journal   (Followers: 220)
Gyroscopy and Navigation     Hybrid Journal   (Followers: 178)
Journal of Navigation     Hybrid Journal   (Followers: 178)
Journal of Guidance, Control, and Dynamics     Hybrid Journal   (Followers: 165)
Aircraft Engineering and Aerospace Technology     Hybrid Journal   (Followers: 139)
Space Science International     Open Access   (Followers: 118)
Space Science Reviews     Hybrid Journal   (Followers: 92)
Propulsion and Power Research     Open Access   (Followers: 89)
International Journal of Aerospace Engineering     Open Access   (Followers: 86)
Progress in Aerospace Sciences     Full-text available via subscription   (Followers: 82)
Advances in Aerospace Engineering     Open Access   (Followers: 74)
Journal of Aerospace Engineering     Full-text available via subscription   (Followers: 66)
Aerospace     Open Access   (Followers: 64)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 57)
Space Safety Magazine     Free   (Followers: 50)
International Journal of Aerodynamics     Hybrid Journal   (Followers: 46)
IEEE Transactions on Circuits and Systems I: Regular Papers     Hybrid Journal   (Followers: 43)
Space Research Today     Full-text available via subscription   (Followers: 43)
Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering     Hybrid Journal   (Followers: 42)
International Journal of Aeroacoustics     Hybrid Journal   (Followers: 37)
International Journal of Aerospace Sciences     Open Access   (Followers: 36)
Canadian Aeronautics and Space Journal     Full-text available via subscription   (Followers: 31)
Space Policy     Hybrid Journal   (Followers: 30)
Journal of Space Weather and Space Climate     Open Access   (Followers: 30)
CEAS Aeronautical Journal     Hybrid Journal   (Followers: 30)
Journal of Aerodynamics     Open Access   (Followers: 27)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 27)
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 25)
Russian Aeronautics (Iz VUZ)     Hybrid Journal   (Followers: 23)
International Journal of Aerospace Innovations     Full-text available via subscription   (Followers: 23)
Aviation Psychology and Applied Human Factors     Hybrid Journal   (Followers: 23)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 22)
International Journal of Aerospace Psychology     Hybrid Journal   (Followers: 22)
Journal of Aerospace Engineering & Technology     Full-text available via subscription   (Followers: 22)
Journal of Wind Engineering and Industrial Aerodynamics     Hybrid Journal   (Followers: 21)
Artificial Satellites     Open Access   (Followers: 21)
Fatigue of Aircraft Structures     Open Access   (Followers: 21)
Research & Reviews : Journal of Space Science & Technology     Full-text available via subscription   (Followers: 20)
Frontiers in Aerospace Engineering     Open Access   (Followers: 20)
International Journal of Space Structures     Full-text available via subscription   (Followers: 19)
Nonlinear Dynamics     Hybrid Journal   (Followers: 19)
Chinese Journal of Aeronautics     Open Access   (Followers: 19)
Proceedings of the Human Factors and Ergonomics Society Annual Meeting     Hybrid Journal   (Followers: 16)
International Journal of Satellite Communications Policy and Management     Hybrid Journal   (Followers: 15)
Frontiers in Astronomy and Space Sciences     Open Access   (Followers: 15)
Journal of Aircraft and Spacecraft Technology     Open Access   (Followers: 15)
Advances in Aerospace Science and Technology     Open Access   (Followers: 14)
International Journal of Space Science and Engineering     Hybrid Journal   (Followers: 13)
Aviation     Open Access   (Followers: 12)
International Journal of Micro Air Vehicles     Open Access   (Followers: 11)
Journal of Airline and Airport Management     Open Access   (Followers: 11)
Journal of the Astronautical Sciences     Hybrid Journal   (Followers: 11)
International Journal of Space Technology Management and Innovation     Full-text available via subscription   (Followers: 11)
Population Space and Place     Hybrid Journal   (Followers: 10)
Journal of Aviation Technology and Engineering     Open Access   (Followers: 10)
Journal of Aeronautical Materials     Open Access   (Followers: 10)
Aerospace Systems     Hybrid Journal   (Followers: 10)
International Journal of Crashworthiness     Hybrid Journal   (Followers: 10)
Journal of Aerospace Technology and Management     Open Access   (Followers: 10)
Aeronautical Journal, The     Hybrid Journal   (Followers: 9)
Journal of the American Helicopter Society     Full-text available via subscription   (Followers: 9)
International Journal of Aviation, Aeronautics, and Aerospace     Open Access   (Followers: 9)
International Journal of Aviation Technology, Engineering and Management     Full-text available via subscription   (Followers: 8)
Journal of Space Safety Engineering     Hybrid Journal   (Followers: 8)
International Journal of Applied Geospatial Research     Hybrid Journal   (Followers: 7)
Transportmetrica A : Transport Science     Hybrid Journal   (Followers: 7)
Aerospace technic and technology     Open Access   (Followers: 7)
Aviation in Focus - Journal of Aeronautical Sciences     Open Access   (Followers: 7)
New Space     Hybrid Journal   (Followers: 6)
Space and Polity     Hybrid Journal   (Followers: 6)
Aerotecnica Missili & Spazio : Journal of Aerospace Science, Technologies & Systems     Hybrid Journal   (Followers: 6)
Civil Aviation High Technologies     Open Access   (Followers: 6)
Air Medical Journal     Hybrid Journal   (Followers: 6)
REACH - Reviews in Human Space Exploration     Full-text available via subscription   (Followers: 5)
RocketSTEM     Free   (Followers: 5)
International Journal of Sustainable Aviation     Hybrid Journal   (Followers: 5)
Journal of Astrobiology & Outreach     Open Access   (Followers: 5)
Life Sciences in Space Research     Hybrid Journal   (Followers: 5)
International Journal of Aviation Management     Hybrid Journal   (Followers: 5)
Cosmic Research     Hybrid Journal   (Followers: 5)
Journal of Spatial Science     Hybrid Journal   (Followers: 4)
Journal of KONBiN     Open Access   (Followers: 4)
Astrodynamics     Hybrid Journal   (Followers: 4)
International Journal of Aeronautical and Space Sciences     Hybrid Journal   (Followers: 4)
Unmanned Systems     Hybrid Journal   (Followers: 4)
Transport and Aerospace Engineering     Open Access   (Followers: 4)
Open Aerospace Engineering Journal     Open Access   (Followers: 4)
Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering     Open Access   (Followers: 3)
Microgravity Science and Technology     Hybrid Journal   (Followers: 3)
Journal of the Australasian Society of Aerospace Medicine     Open Access   (Followers: 3)
npj Microgravity     Open Access   (Followers: 3)
ASTRA Proceedings     Open Access   (Followers: 3)
MAD - Magazine of Aviation Development     Open Access   (Followers: 3)
Ciencia y Poder Aéreo     Open Access   (Followers: 3)
Journal of Aviation/Aerospace Education & Research     Open Access   (Followers: 2)
Advances in Astronautics Science and Technology     Hybrid Journal   (Followers: 2)
Journal of Engineering and Technological Sciences     Open Access   (Followers: 2)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 2)
Perspectives of Earth and Space Scientists i     Open Access   (Followers: 1)
Investigación Pecuaria     Open Access   (Followers: 1)
Transactions on Aerospace Research     Open Access   (Followers: 1)
Вісник Національного Авіаційного Університету     Open Access   (Followers: 1)
Science and Education : Scientific Publication of BMSTU     Open Access   (Followers: 1)
Spatial Information Research     Hybrid Journal   (Followers: 1)
Xibei Gongye Daxue Xuebao / Journal of Northwestern Polytechnical University     Open Access  
Mekanika : Jurnal Teknik Mesin i     Open Access  

              [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
International Journal of Aeroacoustics
Journal Prestige (SJR): 0.284
Citation Impact (citeScore): 1
Number of Followers: 37  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1475-472X - ISSN (Online) 2048-4003
Published by Sage Publications Homepage  [1174 journals]
  • Guest editor biography

    • Free pre-print version: Loading...

      Authors: Tatiana Kozubskaya
      Pages: 3 - 3
      Abstract: International Journal of Aeroacoustics, Volume 21, Issue 1-2, Page 3-3, March 2022.

      Citation: International Journal of Aeroacoustics
      PubDate: 2022-03-25T04:45:19Z
      DOI: 10.1177/1475472X221087008
      Issue No: Vol. 21, No. 1-2 (2022)
       
  • Noise shielding of a deflected flap for comparing numerical predictions
           with flyover experiments

    • Free pre-print version: Loading...

      Authors: Michael Mößner, Jan W Delfs, Michael Pott-Pollenske
      Pages: 57 - 73
      Abstract: International Journal of Aeroacoustics, Volume 21, Issue 1-2, Page 57-73, March 2022.
      Comparing acoustic simulations against experimental data is an essential step in order to prove the correctness of numerical tools. This can be done with wind tunnel experiments where the environmental conditions can be adjusted very accurately. Ultimately, the tools must be capable of predicting real-word scenarios like aircraft flyovers. However, obtaining precise data from flyover experiments is challenging and often important input data is missing. The current paper shows, that by extracting the shielding effect of a small detail, a deflecting flap of an aircraft with rear-mounted engines, it is possible to reproduce flyover measurements with a boundary element method, even when only little engine information is known. The boundary element method can only take a constant mean flow into account, but by additionally evaluating results of a volume-resolved discontinuous Galerkin method more insights into the expected effects of a realistic mean flow is given.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-03-25T04:43:06Z
      DOI: 10.1177/1475472X221079560
      Issue No: Vol. 21, No. 1-2 (2022)
       
  • Investigation on aerodynamic noise generated from the simplified
           high-speed train leading cars

    • Free pre-print version: Loading...

      Authors: Chaowei Li, Jianyue Zhu, Zhiwei Hu, Zhenyu Lei, Yingmou Zhu
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      The aerodynamic noise behavior of flow passing the simplified leading car and nose car scale models of a high-speed train is investigated through the vortex sound theory and acoustic analogy approach. The unsteady flow developed around the geometries is solved numerically and the data are applied to study the near-field quadrupole sound source and calculate the far-field noise radiated. It is found that the turbulent flow developed around the leading car is characterized by multi-scale vortices separated from the geometries. The intensity of volume dipole source is much larger than that of volume quadrupole source and the volume dipole source becomes the predominate source of the near-field quadrupole noise. The flow is separated noticeably in the regions of the nose, bogies, bogie cavities, and train tail of the leading car where the pressure fluctuations are generated largely upon the solid surfaces and correspondingly a dipole noise of high level is produced. By comparison, the noise contribution from the leading bogie and bogie cavity is larger than that from the other components. Moreover, the numerical and experimental results of train nose car model demonstrate that the flow around the bogie region is the dominant aerodynamic sound source. Therefore, the flow-induced noise generated from the leading cars may be reduced efficiently within a certain frequency range and specific direction by mitigating the flow interactions around the areas of leading bogie and bogie cavity.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-05-18T06:17:36Z
      DOI: 10.1177/1475472X221093701
       
  • Effect of 2D ice accretion on turbulent boundary layer and trailing-edge
           noise

    • Free pre-print version: Loading...

      Authors: Hyunjune Gill, Seongkyu Lee
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      Trailing-edge noise is known to be sensitive to airfoil shapes, and ice accretion is one cause of an airfoil shape deformation. This paper investigates how trailing-edge noise is affected by the airfoil shape deformation due to ice accretion. The formation of ice-induced flow separation and the development of a turbulent boundary layer are analyzed to understand the correlation between the altered flow physics due to ice accretion inside the boundary layer and trailing-edge noise. The near-wall flow behind the leading-edge ice accretion is analyzed by using Reynolds-Averaged Navier Stokes CFD in OpenFOAM, and trailing-edge noise is investigated using an empirical wall pressure spectrum model in conjunction with Amiet’s trailing-edge noise theory. Validations of tools against measurement data are presented. Liquid water content, freestream velocity, and ambient temperature are varied to investigate the impact of flow conditions on the ice accretion shape and the resulting boundary layer flow characteristics at the trailing edge. It is found that a more significant leading edge deformation due to ice accretion generates larger ice-induced flow separation bubbles, which increases the trailing-edge boundary layer thickness. As a result, an increase in low- and mid-frequency noise is observed. The purpose of this paper is not only to understand the effect of ice accretion on trailing-edge noise but also to comprehensively analyze how flow physics inside the turbulent boundary layer is altered by the presence of various ice accretion shapes.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-05-14T12:39:25Z
      DOI: 10.1177/1475472X221099497
       
  • A study on an integrated aero-vibro-acoustic analysis procedure for a
           small-scale supersonic jet and surrounding thin plates

    • Free pre-print version: Loading...

      Authors: Hyunshik Joo, Taeyoung Park, Seung-Hoon Kang, Sangjoon Shin, Won-Suk Ohm
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      The goal of this paper is to examine the computational approaches for predicting both of the overall sound pressure level (OASPL) at a few locations and acceleration power spectral density (APSD) of surrounding thin plates due to the aero-acoustic pressure generated by a cold jet with M = 1.8. First, computational fluid dynamics (CFD), particularly delayed detached eddy simulation, are applied to predict the OASPL at the near-field and compute the acoustic properties. Second, the linearized boundary element method (BEM), that is, the Helmholtz-Kirchhoff method is utilized to propagate the pressure and obtain the OASPL at the far-field. Finally, the finite element method is implemented to predict the APSD for a clamped thin plate based on the optimal triangle membrane element, discrete Kirchhoff triangle plate bending element, and Newmark-β time integration scheme. Using the present CFD and BEM, the OASPLs are compared with the experimental results measured by microphones at both the near- and far-fields, respectively. Moreover, APSDs are compared with the experimental results obtained by an accelerometer at a few different locations. Although OASPLs are overestimated because of the coarse meshes in the higher-angle area and low order scheme of the present CFD analysis, the present integrated aero-vibro-acoustic analysis is capable of predicting the OASPL and APSD generated by a cold jet with M = 1.8.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-05-12T12:46:23Z
      DOI: 10.1177/1475472X221093702
       
  • Advanced analysis of fan noise measurements supported by theoretical
           source models

    • Free pre-print version: Loading...

      Authors: Lukas Klähn, Antoine Moreau, Luciano Caldas, Robert Jaron, Ulf Tapken
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      With the objective to improve the understanding of the dominant fan noise source mechanisms, a comprehensive experimental study was conducted at a low speed fan test rig. The aerodynamic fan map as well as the acoustic characteristics of the fan was measured for a new blade integrated disk (Blisk) rotor with systematic variation of the shaft speed and throttling. The interpretation of the results is supported by simulations of the experiment with a physics-based analytical in-house tool for fan noise prediction. For the acoustic measurements, an array of wall-flushed microphones was used in the inlet section. By means of radial mode analysis techniques, the broadband and tonal sound powers are calculated for each operating point. In the obtained comprehensive database, systematic variations of the tonal and broadband sound power with the flow rate are found. These patterns can only partly be correlated to the varying incidence angle of the rotor blades. Comparing the mode distributions of the measured noise and the analytical models then allows conclusions on the predominant noise sources of rotor–stator interaction and inflow-rotor interaction.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-26T01:17:00Z
      DOI: 10.1177/1475472X221093703
       
  • Aerodynamic noise from long circular and non-circular cylinders using
           large eddy simulations

    • Free pre-print version: Loading...

      Authors: Joemon Jacob, Subrata Kumar Bhattacharya
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      Flow-induced aerodynamic noise from four cylindrical shapes of infinite length at a low subcritical flow regime is studied using Large Eddy Simulation (LES) and acoustic analogy. Numerical simulations are performed for short-span (length to diameter ratio of 3) cylinders, and a sound correction method based on equivalent/spatial coherence length has been applied to estimate noise from long-span cylinders. An attempt is made to compare spatial coherence lengths of four cross-sections at the same Reynolds number (Re). The sound correction method that is well established for circular cylinders proved effective for non-circular cross-sections also. Owing to the limitation in computational capacity, a well-resolved LES is still unachievable for higher Re flows and long-span cylinders without adopting a sound correction methodology. A grid resolution based on the characteristic length and velocity scale was adopted in simulation and proved effective for computing aerodynamic and aeroacoustic characteristics. An ‘effective frequency band’ of sound pressure level-frequency curve is proposed that predicts over 99.5% of the overall sound pressure level, and features of this band for four cross-sections are presented.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-23T08:54:51Z
      DOI: 10.1177/1475472X221093713
       
  • Flow-noise characteristics of turbocharger compressors with rotational
           balance cuttings

    • Free pre-print version: Loading...

      Authors: Sang Hyun Kim, Tae Seon Park
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      To correct the balance of the rotating assembly of a turbocharger, some parts of the compressor wheel are removed by cutting. A numerical investigation of the turbulent flows and flow noises produced by compressor wheels modified with such cutting parts was performed by a turbulence model and detached-eddy simulations. For the 6-cutting case, 0, 2, 4, and 6 circular cuttings and two additional—rectangular and triangular—shapes were used.To investigate the effects of the balance cuttings in a compressor wheel, the evaluation process using computational fluid dynamics was tried. It was found that the fluid forces due to the various wheel shapes have the potential to restore the eccentricity by approximately 50%. Severe variations of velocity, pressure, and turbulent kinetic energy in the interspace between the wheel and volute were observed. In particular, the wavelike patterns of pressure and turbulent kinetic energy were intensified for the modified wheels. The turbulent kinetic energy of the 6-cutting case had a dominant frequency at approximately 3000 Hz. The spectrum of the sound-pressure level of the modified compressor wheels exhibited the features of buzz-saw noise. The flow fields suggested that this feature of the sound pressure is related to the tip-clearance flow affected by the balance cuttings. In addition, the acoustic pressure and flow characteristics of the different types of modified compressor wheels were discussed and the resulting acoustic power was evaluated.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-22T11:00:21Z
      DOI: 10.1177/1475472X221093707
       
  • A fast 3D-MUSIC method for near-field sound source localization based on
           the bat algorithm

    • Free pre-print version: Loading...

      Authors: C Yang, LL Sun, H Guo, YS Wang, Y Shao
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      To improve the computation and real-time performances of the multiple signal classification (MUSIC) algorithm in 3D space, a fast sound source localization method based on the bat algorithm (BA) and the 3D-MUSIC, called BA-based 3D-MUSIC algorithm (3D-BMUSIC), is presented in this paper. 3D-BMUSIC greatly reduces the computation load by replacing the regular grid search with the BA. First, the near-field spherical wave model is established to obtain the spectral function of the 3D-MUSIC. Then, the spectral function is defined as the fitness function, which calculates the fitness value corresponding to each bat position. Finally, the global optimal bat position with the largest fitness value, as sound source localization, is obtained by successive iteration and sorting. The simulation and experiment show that 3D-BMUSIC accurately estimates the DOA and distance of near-field sources, and the root-mean-square error (RMSE) of 3D-BMUSIC is less than that of 3D-MUSIC. In addition, 3D-BMUSIC effectively reduces the computation time by approximately 96–98%. With shorter computation time and higher efficiency, 3D-BMUSIC promotes hardware implementation and is more suitable for high-precision localization of near-field sound sources.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-22T01:04:38Z
      DOI: 10.1177/1475472X221093711
       
  • An improved algorithm for liner impedance eduction in low signal-to-noise
           ratio flow duct

    • Free pre-print version: Loading...

      Authors: Penglin Zhang, Cheng Yang, Yu Huang
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      The impedance eduction technique is widely used by the aeroacoustics community to obtain liner property in a flow duct. However, the obtained impedance is often found to be discontinuous in the frequency domain which violates theoretical liner models. The low signal-to-noise ratio (SNR, in dB) is one factor leading to this unexpected result. To overcome this, a weighting coefficient, represented by an SNR dependent sigmoid function with two control parameters, is introduced to the cost function in the iteration process. The proposed algorithm is employed to measure the impedances of two liners and results show an improvement in the smoothness of the resultant impedance curves over those obtained from conventional cost function.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-21T04:05:06Z
      DOI: 10.1177/1475472X221093710
       
  • Corrigendum to The effect of the convective momentum transfer on the
           acoustic boundary condition of perforated liners with grazing mean flow

    • Free pre-print version: Loading...

      Abstract: International Journal of Aeroacoustics, Ahead of Print.

      Citation: International Journal of Aeroacoustics
      PubDate: 2022-04-12T03:00:03Z
      DOI: 10.1177/1475472X221096743
       
  • Editorial

    • Free pre-print version: Loading...

      Authors: Tatiana Kozubskaya
      First page: 4
      Abstract: International Journal of Aeroacoustics, Ahead of Print.

      Citation: International Journal of Aeroacoustics
      PubDate: 2022-03-04T11:25:16Z
      DOI: 10.1177/1475472X221087007
       
  • Application of LES combined with a wave equation for the simulation of
           noise induced by a flow past a generic side mirror

    • Free pre-print version: Loading...

      Authors: Ekaterina Guseva, Yuri Egorov
      First page: 6
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      The paper presents validation results of a hybrid simulation method for aeroacoustics in turbulent flows at low Mach numbers. The hybrid method implemented in the Ansys Fluent® CFD package applies a scale-resolving turbulence model to compute the noise sources in an incompressible flow, while the noise propagation is modeled by a wave equation formulated for the acoustic potential. The selected test case deals with a flow and a sound field around a generic side view mirror of a car. The SBES model by Menter, which belongs to the class of the RANS-LES models, is used for the flow simulation. It switches to the Large Eddy Simulation (LES) mode in separated mixing layers and recirculation zone behind the mirror as well as in the following wake, where flow develops intensive turbulence and dominating noise sources. The acoustics wave equation is formulated in the model form of Kaltenbacher et al. and is applied in the time domain. The overall calculation is performed as a transient co-simulation on the same mesh using the finite-volume discretization method for both the flow and the acoustics parts. The wave equation is advanced in time using the HHT-α method. Obtained distribution of the mean wall pressure over the mirror surface closely matches the experimental one. Rich content of the resolved turbulent vortices in the separation zone and good agreement of the calculated and measured wall pressure spectra at sensor locations downstream the mirror evidence a proper LES resolution quality of noise sources. Comparison of the computed noise spectra at the remote microphones with the experimental data demonstrates the sound propagation accuracy and validates the overall aeroacoustics simulation method.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-02-23T11:34:53Z
      DOI: 10.1177/1475472X221079542
       
  • Adaptive RBF with hyperparameter optimisation for aeroacoustic
           applications

    • Free pre-print version: Loading...

      Authors: Lorenzo Burghignoli, Monica Rossetti, Francesco Centracchio, Giorgio Palma, Umberto Iemma
      First page: 22
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      The present work reports an investigation on the use of adaptive metamodels based on radial basis functions (RBFs) for aeroacoustic applications of highly innovative configurations. The relevance of the topic lies on the paramount importance of metamodelling techniques within the design optimisation process of disruptive aircraft layouts. Indeed, the air traffic growth, consequently the hard environmental constraints imposed by regulations, will make a technological breakthrough, an imperative need within few years. As a consequence, the engineering community is paying particular attention to the development of innovative techniques for the design of unconventional configurations. For this class of applications, the designer cannot successfully rely on historical data or low-fidelity models, and the expensive direct simulations remain the only valuable design strategy. In this regard, it can be demonstrated that the use of surrogate models, i.e., metamodels, significantly reduces the computing costs, especially in view of a robust approach to the optimised design. In order to further improve the efficiency of metamodel-based techniques, dynamic approaches based on hyperparameter optimisation and adaptive sampling procedures have been recently developed. The case study presented here pertains the exploiting of dynamic RBF-based metamodels for noise shielding applications. The analysis of the metamodel performances and its convergence properties shows how the final number of direct simulations is significantly reduced by the hyperparameter optimisation algorithm, still strongly depending on the choice of the RBF kernel function.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-03-01T03:48:41Z
      DOI: 10.1177/1475472X221079545
       
  • Boundary element analysis on the fuselage scattering of drone noise

    • Free pre-print version: Loading...

      Authors: Hanbo Jiang, Siyang Zhong, Xin Zhang, Xun Huang
      First page: 43
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      Multi-rotor powered drones and urban mobility vehicles (UMV) have received considerable attention over recent years and attracted ever-increasing interest in their aerodynamic noise. Physics-based prediction tools for aerodynamic noise are of importance to facilitate quiet drone designs. In this work, a boundary element method (BEM) based solver is employed to evaluate the scattering of the rotor noise of a flying drone fuselage. The possible non-uniqueness of the solution is tackled using a Combined Helmholtz Interior integral Equation Formulation (CHIEF). The proposed method is applied to evaluate the noise scattering by a realistic fuselage configuration. Results suggest that the fuselage can visibly redirect propeller noise radiation at low frequencies because of wave diffractions. The fuselage can also affect the sound field by wave reflections at high frequencies, producing an apparent noise reduction.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-02-26T02:51:32Z
      DOI: 10.1177/1475472X221079549
       
  • Computational aeroacoustics of aerofoil leading edge noise using the
           volume penalization-based immersed boundary methods

    • Free pre-print version: Loading...

      Authors: Wei Ying, Ryu Fattah, Sinforiano Cantos, Siyang Zhong, Tatiana Kozubskaya
      First page: 74
      Abstract: International Journal of Aeroacoustics, Ahead of Print.
      Broadband noise due to the turbulence-aerofoil interaction, which is also called the leading edge noise, is one of the major noise sources of aircraft (including the engine). To study the noise properties numerically is a popular approach with the increasing power of computers. Conventional approaches of using body-fitted grids at the boundaries would be convoluted due to the complex geometries, which can constrain the efficiency of parametric studies. A promising approach to tackle this issue is to use the immersed boundary method (IBM). Among various IBM variants, the volume penalization (VP) approach employs a masking function to identify the immersed solid boundary, and continuous forcing terms are added to the original flow governing equations to account for the boundary conditions. It is, therefore, efficient and easy to implement into the existing computational aeroacoustics solvers. In this work, the VP-based IBM is used to simulate the leading edge noise by combining with the advanced synthetic turbulence method. The simulations are conducted for both the isolated aerofoils and cascade, and the results are compared with the well-validated body-fitted grid solutions. The viscosity effect is also highlighted by comparing the results obtained by solving both Euler and Navier–Stokes equations.
      Citation: International Journal of Aeroacoustics
      PubDate: 2022-03-04T12:29:30Z
      DOI: 10.1177/1475472X221079557
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.25.51
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-