A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 124 journals)
Showing 1 - 30 of 30 Journals sorted alphabetically
Acta Astronautica     Hybrid Journal   (Followers: 220)
Advances in Aerospace Engineering     Open Access   (Followers: 74)
Advances in Aerospace Science and Technology     Open Access   (Followers: 14)
Advances in Astronautics Science and Technology     Hybrid Journal   (Followers: 2)
Advances in Space Research     Hybrid Journal   (Followers: 295)
Aeronautical Journal, The     Hybrid Journal   (Followers: 9)
Aerospace     Open Access   (Followers: 64)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 22)
Aerospace Science and Technology     Hybrid Journal   (Followers: 305)
Aerospace Systems     Hybrid Journal   (Followers: 10)
Aerospace technic and technology     Open Access   (Followers: 7)
Aerotecnica Missili & Spazio : Journal of Aerospace Science, Technologies & Systems     Hybrid Journal   (Followers: 6)
AIAA Journal     Hybrid Journal   (Followers: 1002)
Air Medical Journal     Hybrid Journal   (Followers: 6)
Aircraft Engineering and Aerospace Technology     Hybrid Journal   (Followers: 139)
Artificial Satellites     Open Access   (Followers: 21)
ASTRA Proceedings     Open Access   (Followers: 3)
Astrodynamics     Hybrid Journal   (Followers: 4)
Aviation     Open Access   (Followers: 12)
Aviation in Focus - Journal of Aeronautical Sciences     Open Access   (Followers: 7)
Aviation Psychology and Applied Human Factors     Hybrid Journal   (Followers: 23)
Aviation Week     Full-text available via subscription   (Followers: 410)
Canadian Aeronautics and Space Journal     Full-text available via subscription   (Followers: 31)
CEAS Aeronautical Journal     Hybrid Journal   (Followers: 30)
Chinese Journal of Aeronautics     Open Access   (Followers: 19)
Ciencia y Poder Aéreo     Open Access   (Followers: 3)
Civil Aviation High Technologies     Open Access   (Followers: 6)
Control Systems     Hybrid Journal   (Followers: 235)
Cosmic Research     Hybrid Journal   (Followers: 5)
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 25)
Fatigue of Aircraft Structures     Open Access   (Followers: 21)
Frontiers in Aerospace Engineering     Open Access   (Followers: 20)
Frontiers in Astronomy and Space Sciences     Open Access   (Followers: 15)
Gyroscopy and Navigation     Hybrid Journal   (Followers: 177)
IEEE Aerospace and Electronic Systems Magazine     Full-text available via subscription   (Followers: 251)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 2)
IEEE Transactions on Aerospace and Electronic Systems     Hybrid Journal   (Followers: 280)
IEEE Transactions on Circuits and Systems I: Regular Papers     Hybrid Journal   (Followers: 43)
International Journal of Aeroacoustics     Hybrid Journal   (Followers: 37)
International Journal of Aerodynamics     Hybrid Journal   (Followers: 46)
International Journal of Aeronautical and Space Sciences     Hybrid Journal   (Followers: 4)
International Journal of Aerospace Engineering     Open Access   (Followers: 86)
International Journal of Aerospace Innovations     Full-text available via subscription   (Followers: 23)
International Journal of Aerospace Psychology     Hybrid Journal   (Followers: 22)
International Journal of Aerospace Sciences     Open Access   (Followers: 36)
International Journal of Applied Geospatial Research     Hybrid Journal   (Followers: 7)
International Journal of Aviation Management     Hybrid Journal   (Followers: 5)
International Journal of Aviation Technology, Engineering and Management     Full-text available via subscription   (Followers: 8)
International Journal of Aviation, Aeronautics, and Aerospace     Open Access   (Followers: 9)
International Journal of Crashworthiness     Hybrid Journal   (Followers: 10)
International Journal of Micro Air Vehicles     Open Access   (Followers: 11)
International Journal of Satellite Communications Policy and Management     Hybrid Journal   (Followers: 15)
International Journal of Space Science and Engineering     Hybrid Journal   (Followers: 13)
International Journal of Space Structures     Full-text available via subscription   (Followers: 19)
International Journal of Space Technology Management and Innovation     Full-text available via subscription   (Followers: 11)
International Journal of Sustainable Aviation     Hybrid Journal   (Followers: 5)
Investigación Pecuaria     Open Access   (Followers: 1)
Journal of Aerodynamics     Open Access   (Followers: 27)
Journal of Aeronautical Materials     Open Access   (Followers: 10)
Journal of Aerospace Engineering     Full-text available via subscription   (Followers: 66)
Journal of Aerospace Engineering & Technology     Full-text available via subscription   (Followers: 22)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 27)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 57)
Journal of Aerospace Technology and Management     Open Access   (Followers: 10)
Journal of Aircraft     Hybrid Journal   (Followers: 261)
Journal of Aircraft and Spacecraft Technology     Open Access   (Followers: 15)
Journal of Airline and Airport Management     Open Access   (Followers: 11)
Journal of Astrobiology & Outreach     Open Access   (Followers: 5)
Journal of Aviation Technology and Engineering     Open Access   (Followers: 10)
Journal of Aviation/Aerospace Education & Research     Open Access   (Followers: 2)
Journal of Engineering and Technological Sciences     Open Access   (Followers: 2)
Journal of Guidance, Control, and Dynamics     Hybrid Journal   (Followers: 165)
Journal of KONBiN     Open Access   (Followers: 4)
Journal of Navigation     Hybrid Journal   (Followers: 176)
Journal of Propulsion and Power     Hybrid Journal   (Followers: 569)
Journal of Space Safety Engineering     Hybrid Journal   (Followers: 8)
Journal of Space Weather and Space Climate     Open Access   (Followers: 30)
Journal of Spacecraft and Rockets     Hybrid Journal   (Followers: 702)
Journal of Spatial Science     Hybrid Journal   (Followers: 4)
Journal of the American Helicopter Society     Full-text available via subscription   (Followers: 9)
Journal of the Astronautical Sciences     Hybrid Journal   (Followers: 11)
Journal of the Australasian Society of Aerospace Medicine     Open Access   (Followers: 3)
Journal of Wind Engineering and Industrial Aerodynamics     Hybrid Journal   (Followers: 21)
Life Sciences in Space Research     Hybrid Journal   (Followers: 5)
MAD - Magazine of Aviation Development     Open Access   (Followers: 3)
Mekanika : Jurnal Teknik Mesin i     Open Access  
Microgravity Science and Technology     Hybrid Journal   (Followers: 3)
New Space     Hybrid Journal   (Followers: 6)
Nonlinear Dynamics     Hybrid Journal   (Followers: 19)
npj Microgravity     Open Access   (Followers: 3)
Open Aerospace Engineering Journal     Open Access   (Followers: 4)
Perspectives of Earth and Space Scientists i     Open Access   (Followers: 1)
Population Space and Place     Hybrid Journal   (Followers: 10)
Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering     Open Access   (Followers: 3)
Proceedings of the Human Factors and Ergonomics Society Annual Meeting     Hybrid Journal   (Followers: 16)
Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering     Hybrid Journal   (Followers: 42)
Progress in Aerospace Sciences     Full-text available via subscription   (Followers: 82)
Propulsion and Power Research     Open Access   (Followers: 89)
REACH - Reviews in Human Space Exploration     Full-text available via subscription   (Followers: 5)
Research & Reviews : Journal of Space Science & Technology     Full-text available via subscription   (Followers: 20)
RocketSTEM     Free   (Followers: 5)
Russian Aeronautics (Iz VUZ)     Hybrid Journal   (Followers: 23)
Science and Education : Scientific Publication of BMSTU     Open Access   (Followers: 1)
Space and Polity     Hybrid Journal   (Followers: 6)
Space Policy     Hybrid Journal   (Followers: 30)
Space Research Today     Full-text available via subscription   (Followers: 43)
Space Safety Magazine     Free   (Followers: 50)
Space Science International     Open Access   (Followers: 117)
Space Science Reviews     Hybrid Journal   (Followers: 92)
SpaceNews     Free   (Followers: 778)
Spatial Information Research     Hybrid Journal   (Followers: 1)
Transactions on Aerospace Research     Open Access   (Followers: 1)
Transport and Aerospace Engineering     Open Access   (Followers: 4)
Transportmetrica A : Transport Science     Hybrid Journal   (Followers: 7)
Unmanned Systems     Hybrid Journal   (Followers: 4)
Xibei Gongye Daxue Xuebao / Journal of Northwestern Polytechnical University     Open Access  
Вісник Національного Авіаційного Університету     Open Access   (Followers: 1)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Aerotecnica Missili & Spazio : Journal of Aerospace Science, Technologies & Systems
Number of Followers: 6  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0365-7442 - ISSN (Online) 2524-6968
Published by Springer-Verlag Homepage  [2469 journals]
  • Evaluation of the Biomechanical Responses During an Aircraft Emergency
           Landing

    • Free pre-print version: Loading...

      Abstract: Abstract Passengers’ safety in unconventional situations, such as those of an emergency landing, has become more and more important due to the increase of air traffic. To improve passengers’ safety, certification authorities have imposed specific crashworthiness requirements in airworthiness regulations as defined in Title 14 of Federal Regulations Code—Part 25 for transport aircraft. Over the years, a series of drop tests were carried out to evaluate the structural performance of the airframe and seats and their effects on the occupants. However, the development of a single test is not only time-consuming but also very expensive. In this context, computer modelling and simulation have become increasingly popular for efficient and quick investigations on aircraft’s dynamic behaviour. This study aims to develop a numerical procedure to assess passengers’ safety during a crash landing and optimize the occupant lumbar load for which the impacts of different seat cushion foams are analysed. The experimental data have been collected as part of the research project, which involved the Department of Industrial Engineering Federico II on a drop test of a full-scale fuselage section equipped with two Anthropomorphic Test Devices (ATDs). The finite element model of the test article is generated through the pre/post-processor LS-PREPOST® and is solved using the non-linear explicit dynamic finite element code LS-DYNA®. The parametric study confirms the importance of choosing the appropriate foam material of the aeronautical seat cushion, as it has been observed that DAX 55 foams resulted in a lumbar load peak reduced by 20.6% with reference to the conventional polyurethane foam.
      PubDate: 2022-04-29
       
  • Development of a Solid Propellant Rocket in the Frame of the Cabo Tuna
           Mexican Program

    • Free pre-print version: Loading...

      Abstract: Abstract This work presents the experimental results of launching of Fénix I-2 “Alejandro Pedroza Meléndez” (F2APM), a Mexican manufacture single-stage solid propellant rocket motor from Cabo Tuna Range in Charcas, San Luis Potosí, México. The solid fuel sounding rocket motor was KN-Sorbitol propellant type. The rocket performed its flight at perfect weather and visibility conditions, reaching a maximum altitude of about 6 000 m. Engine and flight trajectory showed very good agreement with the theoretical data measurement obtained from captive-fired experiment. At burnt-out, locked-in resonance increased drag limiting the maximum vertical reach.
      PubDate: 2022-04-29
       
  • Evaluation of a Single-Stage Light-Gas Gun Facility in Malta: Business
           Analysis and Preliminary Design

    • Free pre-print version: Loading...

      Abstract: Abstract Impact testing is a critical activity for many aerospace activities. Data on impacts can be employed to evaluate materials survivability, operations safety, and, if possible, to plan prompt maintenance. A classical impact testing facility usually employs Light-Gas Guns (LGGs) to evaluate the effect of collisions in a controlled laboratory environment. In particular, single stage LGGs are relatively simple in their working principle, as they consist in a pressurized gas reservoir and a barrel with a projectile placed in front of the experiment target. When the shot command is executed, the gas from the reservoir accelerates the projectile through the barrel; in first approximation, its velocity is related to the reservoir pressure, the barrel geometry, and the projectile velocity. In this context, The Malta College of Arts, Science and Technology (MCAST) and the Centre of Studies and Activities for Space CISAS “Giuseppe Colombo” of the University of Padova have started a collaboration to develop a single stage LGG impact facility in Malta. In this paper, the conceptual evaluation and the development of the facility is introduced. First, the potential application of such facility in the framework of Malta aviation market as well as the business opportunities in the emerging space sector are presented. In a second part of this work, the LGG main design drivers are defined and a preliminary evaluation of the achievable projectile velocities is performed.
      PubDate: 2022-03-21
       
  • Correction to: Optimum Induced Drag of Wingtip Devices: The Concept of
           Best Winglet Design

    • Free pre-print version: Loading...

      PubDate: 2022-03-20
       
  • A Linear Transformation for the Reconstruction of the Responses of Systems
           in Similitude

    • Free pre-print version: Loading...

      Abstract: Abstract Recent years have seen an increasing interest towards similitude methods. In fact, the possibility of testing a scaled model, instead of a full-scale prototype, leads to many advantages: financial and time savings, easier experimental setups, etc. However, similitudes have drawbacks, too, mainly due to non-scalable effects and partial similitude, which prevent from an accurate reconstruction of the prototype response. For these reasons, an alternative method which can bypass these limitations is needed. A new method, called VOODOO (Versatile Offset Operator for the Discrete Observation of Objects), is herein proposed: it is based on the definition of a transformation matrix which links the outputs of a given linear systems to those belonging to another system, which may be a scaled model. The responses are acquired on a discrete number of points for both the systems. This work aims at investigating the method’s strengths and limitations of the method. The results show that, although VOODOO exhibits some lack of accuracy in off-design conditions due to the loss of spatial correlation, it is able to overcome some major restrictions that affect all similitude methods.
      PubDate: 2022-03-09
       
  • Strain-Rates Dependent Constitutive Law for Crashworthiness and Parameter
           Sensitivity Analysis of Woven Composites

    • Free pre-print version: Loading...

      Abstract: Abstract The prediction of dynamic crushing behavior of aerospace-grade composites is a hard challenge for researchers. At coupons scale, such behavior implies the understanding of the initiation and propagation of the elementary damage mechanisms. Many results of the research confirm that the modulus and strength of composites increases with strain-rate. This paper presents the improvement of the constitutive model UL-Crush by adding dynamic stiffness modulus and strengths. The improved tool uses new approach by updating the stiffness and the strength values depending on strain-rates. In addition, parameter sensitivity investigations were conducted to assess the specific energy absorption capabilities of different material configurations. A new on-axis compression fixture was designed and manufactured to carry out tests of plain weave fabric composites, under quasi-static (QS) and low-velocity compression using MTS Insight 100 loading frame and drop tower CEAST Instron9340 facility. Two types of cross-section geometries were used: flat-plate and Hat-Shape coupons. Four types of triggering mechanism were adopted, including saw teeth, chamfer45°, steeple and corrugated, to ensure a continuous and stable crushing mode of failure. Detailed parameter sensitivity investigations were performed, including dimension scale, stacking sequences, trigger types and strain-rates. It was shown that the crush response is strain-rate dependent, and dynamic load decreases absorbed energy, which is indicative of microstructure disintegrating. Globally, big dimension scale, corrugated trigger, [0/45/45/0]s layup and decreasing strain-rate are the parameters to enhance the energy absorption capability of composite coupons. It has been observed that the improved numerical tool UL-Crush was able to significantly capture most crush mechanisms, reasonably correlate with experiments, and give an accurate dynamic response for crashworthy structures.
      PubDate: 2022-03-03
      DOI: 10.1007/s42496-022-00108-7
       
  • AIDAA News #13

    • Free pre-print version: Loading...

      PubDate: 2022-03-02
      DOI: 10.1007/s42496-022-00112-x
       
  • Optimum Induced Drag of Wingtip Devices: The Concept of Best Winglet
           Design

    • Free pre-print version: Loading...

      Abstract: Abstract Sustainable air transportation requires aerodynamically efficient airplanes. Thus, reduction of drag is of paramount importance. From a pure induced drag perspective, this goal can be achieved by the adoption of nonplanar configurations such as C-Wings, Joined Wings or with other design options such as wingtip devices (winglets). Under the assumption of inviscid flow with wake aligned with the freestream velocity, several winglet designs are investigated and general properties are demonstrated. In particular, under optimal conditions, given a closed simply connected wingtip region bounded by a curve, any winglet design geometrically included in that region will be less efficient than the winglet whose lifting line is represented by the bounding curve. Moreover, closed winglets are characterized by undetermined optimal aerodynamic load but unique and global minimum for the induced drag. Finally the Box Winglet and several variations of it are proposed as effective forms to reduce induced drag.
      PubDate: 2022-03-01
      DOI: 10.1007/s42496-022-00110-z
       
  • Aerotecnica M&S 100 Years Ago: A Study on Aircraft
           Longitudinal Stability

    • Free pre-print version: Loading...

      PubDate: 2022-02-15
      DOI: 10.1007/s42496-022-00111-y
       
  • Handling Qualities in Rotorcraft Conceptual Design

    • Free pre-print version: Loading...

      Abstract: Abstract This paper presents the development of a rotorcraft conceptual design tool able to incorporate handling qualities assessment at an early design stage. After a first conventional sizing, performed utilizing NASA’s NDARC software, a linearized model of the rotorcraft flight mechanics is built. The linear model is augmented by a simplified control system, designed according to structured \(H_{\infty }\) techniques, to determine augmentation requirements, rather than design the actual flight control system. ADS-33 Bandwidth and Phase-Delay standards are exploited to objectively assess the handling qualities of the current design and to drive an iterative redesign process aimed at enhancing the handling qualities ratings. The rotorcraft parameters resulting from the augmented sizing are subsequently used to automatically generate a real-time capable multibody model, which can be used for the subjective evaluation of its handling qualities via piloted flight simulation. The tool capabilities are demonstrated by designing a conventional lightweight helicopter of the class of the Airbus Helicopters BO105.
      PubDate: 2022-02-03
      DOI: 10.1007/s42496-022-00107-8
       
  • Evaluation of Satellite’s Point-Ahead Angle Derived from TLE for
           Laser Communication

    • Free pre-print version: Loading...

      Abstract: Abstract Advances in lasers, optics and electronics for Satellite’s optical communication are opening the possibility of very high performance near Earth space links with data rate up to several Gbps. Being the divergence of the laser beam typically of tens of \(\mu\) rad, an extremely high precision pointing is needed to correctly establish and maintain data optical link. In particular, the relative motion between the satellite and the ground station shall be accurately evaluated to estimate how to correct pointing angles for future orbital locations. This correction is made via a point-ahead mirror (PAM) mechanism, which deviates the laser beam by an angle called point-ahead angle (PAA). The purpose of this paper is evaluate the possibility of accurately estimate the point-ahead angle in advance using the two-line elements sets for the orbiting satellite, which are available before the ground station overpass. The study evaluated TLE-based orbital evolution of Sentinel-6 satellite, comparing the results with the high precision data obtained by laser ranging from the crustal dynamics data information system (CDDIS). The maximum error observed between the estimated and measured point-ahead angles was less than 1 \(\mu\) rad, demonstrating the possibility of this point-ahead correction technique for LEO orbiting satellites.
      PubDate: 2022-02-02
      DOI: 10.1007/s42496-022-00106-9
       
  • Aerotecnica M&S 100 Years Ago: the Italian Civil Aviation in
           1921

    • Free pre-print version: Loading...

      PubDate: 2021-12-09
      DOI: 10.1007/s42496-021-00105-2
       
  • AIDAA News #12

    • Free pre-print version: Loading...

      PubDate: 2021-11-09
      DOI: 10.1007/s42496-021-00104-3
       
  • Elastoplastic Micromechanical Analysis of Fiber-Reinforced Composites with
           Defects

    • Free pre-print version: Loading...

      Abstract: Abstract The objective of the present work is the computational micromechanical analysis of unidirectional fiber-reinforced composites, considering defects. The micromechanical model uses refined beam theories based on the Carrera unified formulation (CUF) and involves using the component-wise (CW) approach, resulting in a high-fidelity model. Defects are introduced in the representative volume element (RVE) in the form of matrix voids by modifying the material properties of a certain quantity of the Gauss points associated with the matrix. The quantity of Gauss points thus modified is based on the required void volume fraction, and the resulting set is prescribed a material property with negligible stiffness to model voids. Two types of void distribution are considered in the current work—randomly distributed voids within the matrix and voids clustered in a region of the RVE. The current study investigates the influence of the volume fraction of voids present in the matrix and their distribution throughout the RVE domain on the macroscale mechanical response. Material nonlinearity is considered for the matrix phase. Numerical assessments are performed to investigate the influence of the volume fraction and the distribution of the voids on the macroscopic response.
      PubDate: 2021-11-08
      DOI: 10.1007/s42496-021-00103-4
       
  • Micro-satellite Reconfigurable Attitude Control Laws with Reaction Wheels
           Desaturation and Fault Management

    • Free pre-print version: Loading...

      Abstract: Abstract This paper proposes a new reconfigurable control strategy for the attitude control of a Low Earth Orbit (LEO) micro-satellite equipped with reaction control wheels and reaction control thrusters (used as a secondary actuation system). Control laws are combined with control allocation algorithms that enable the optimal allocation of control effort in case of reaction wheels saturation and/or faults as well as when control limits are reached (e.g. maximum torques provided by reaction wheels). This allows to effectively use the redundancy of the actuators set and guarantee robust stability and control of the satellite attitude. The effectiveness of the proposed strategy has been assessed through a numerical analysis that includes several simulation scenarios, where different initial conditions have been set and also the fault of a reaction wheel has been simulated. Simulations have shown the ability of the control architecture to effectively manage several control issues (i.e. maximum achievable torques, reaction wheel saturation and faults) through the allocation of control effort among all the available control effectors.
      PubDate: 2021-11-06
      DOI: 10.1007/s42496-021-00102-5
       
  • Solar Sail Simplified Optimal Control Law for Reaching High Heliocentric
           Distances

    • Free pre-print version: Loading...

      Abstract: Abstract The aim of this paper is to analyze optimal trajectories of a solar sail-based spacecraft in missions towards the outer Solar System region. The paper proposes a simplified approach able to estimate the minimum flight time required to reach a given (sufficiently high) heliocentric distance. In particular, the effect of a set of solar photonic assists on the overall mission performance is analyzed with a simplified numerical approach. A comparison with results taken from the existing literature show the soundness of the proposed approach.
      PubDate: 2021-10-22
      DOI: 10.1007/s42496-021-00100-7
       
  • Aerodynamic Design of Airfoil Shape for Gust Generation in a Transonic
           Wind Tunnel

    • Free pre-print version: Loading...

      Abstract: Abstract This article presents the aerodynamic design of the airfoil of the gust generator system being developed in the GUDGET project and conceived to generate high-amplitude gusts in a transonic wind tunnel. The system is made of vanes creating a flow deviation in turn by flapping around a rotational axis or by blowing air though a suitable sonic jet located close to the vane trailing edge. The airfoil shape optimization has been carried out using a design of experiment technique (DOE) and response surface optimization along with URANS CFD. The computational model has been preliminarily validated using data provided by ONERA for the baseline design at a lower Mach number ( \(\hbox {M}=0.73\) ) and then compared with the one actually required by GUDGET in the test chamber ( \(\hbox {M}=0.82\) ). All the cases have been optimized at a frequency of 40 Hz and then investigated at a frequency of 80Hz.
      PubDate: 2021-10-07
      DOI: 10.1007/s42496-021-00098-y
       
  • Investigation of Boundary Avoidance Tracking Theory from Ocular Parameters
           Through Simulator and Inflight Studies

    • Free pre-print version: Loading...

      Abstract: Abstract Boundary Avoidance Tracking (BAT) theory has emerged as a novel theory in the area of Handling Qualities (HQ). The HQ of the aircraft in a given environment greatly influences the cognitive load of the pilot. Advancement in eye gaze tracking technologies has enabled non-invasive estimation of cognitive load of pilots, even in combat aircraft cockpits. This research is aimed to investigate BAT theory using a COTS-based eye gaze tracker to record ocular parameters like fixations and saccades to study the effects of boundary size/limits on the cognitive load of the pilot. The statistical model involved three independent variables, namely aircraft flying qualities, secondary task, and boundary size. Initially, experiments were conducted in two stages on a fixed-base variable-stability HQ research flight simulator. Further, the study was extended to inflight tests involving flights in Hawk and Jaguar aircraft maneuvering in high G conditions and undertaking various training combat missions. Both studies found statistically significant correlation between boundary size/limit and ocular parameters, in particular, the rate of fixations. The results proved the application and effectiveness BAT theory in HQ Stress Testing to elevate pilot gain, during flight testing of flight control system for a new aircraft program.
      PubDate: 2021-09-17
      DOI: 10.1007/s42496-021-00094-2
       
  • Correction to: A Computational Tool for the Design of Hybrid Rockets

    • Free pre-print version: Loading...

      PubDate: 2021-09-15
      DOI: 10.1007/s42496-021-00097-z
       
  • Reliability Centered Maintenance Analysis Using Analytic Hierarchy Process
           for Electro-mechanical Actuators

    • Free pre-print version: Loading...

      Abstract: Abstract There is an increasing trend for the usage of electrically powered equipment in the aviation industry. In this paper, a Reliability Centered Maintenance (RCM) analysis application is performed for Electro-Mechanical Actuators (EMA). We consider a new model for criticality classification for individual failure modes for the Reliability Centered Maintenance analysis stages using the Analytic Hierarchy Process (AHP) method. AHP method is used as a new tool for motor, electrical/electronic, and mechanical/structural failures in EMAs. A predictive maintenance planning model is also offered for Class A and B parts designated for electro-mechanical actuators.
      PubDate: 2021-08-10
      DOI: 10.1007/s42496-021-00089-z
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.170.82.159
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-