A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 124 journals)
Showing 1 - 30 of 30 Journals sorted by number of followers
AIAA Journal     Hybrid Journal   (Followers: 1071)
SpaceNews     Free   (Followers: 819)
Journal of Spacecraft and Rockets     Hybrid Journal   (Followers: 735)
Journal of Propulsion and Power     Hybrid Journal   (Followers: 596)
Aviation Week     Full-text available via subscription   (Followers: 449)
Aerospace Science and Technology     Hybrid Journal   (Followers: 340)
IEEE Transactions on Aerospace and Electronic Systems     Hybrid Journal   (Followers: 330)
Advances in Space Research     Hybrid Journal   (Followers: 324)
IEEE Aerospace and Electronic Systems Magazine     Full-text available via subscription   (Followers: 290)
Journal of Aircraft     Hybrid Journal   (Followers: 287)
Control Systems     Hybrid Journal   (Followers: 258)
Acta Astronautica     Hybrid Journal   (Followers: 252)
Journal of Navigation     Hybrid Journal   (Followers: 215)
Gyroscopy and Navigation     Hybrid Journal   (Followers: 212)
Journal of Guidance, Control, and Dynamics     Hybrid Journal   (Followers: 211)
Aircraft Engineering and Aerospace Technology     Hybrid Journal   (Followers: 171)
Space Science International     Open Access   (Followers: 155)
Space Science Reviews     Hybrid Journal   (Followers: 92)
Propulsion and Power Research     Open Access   (Followers: 91)
International Journal of Aerospace Engineering     Open Access   (Followers: 83)
Progress in Aerospace Sciences     Full-text available via subscription   (Followers: 79)
Advances in Aerospace Engineering     Open Access   (Followers: 75)
Aerospace     Open Access   (Followers: 73)
Journal of Aerospace Engineering     Full-text available via subscription   (Followers: 60)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 53)
Space Safety Magazine     Free   (Followers: 49)
International Journal of Aerodynamics     Hybrid Journal   (Followers: 47)
IEEE Transactions on Circuits and Systems I: Regular Papers     Hybrid Journal   (Followers: 46)
Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering     Hybrid Journal   (Followers: 42)
Space Research Today     Full-text available via subscription   (Followers: 42)
International Journal of Aeroacoustics     Hybrid Journal   (Followers: 36)
International Journal of Aerospace Sciences     Open Access   (Followers: 35)
Journal of Aeronautics & Aerospace Engineering     Open Access   (Followers: 31)
Aviation Psychology and Applied Human Factors     Hybrid Journal   (Followers: 30)
Journal of Aerodynamics     Open Access   (Followers: 30)
Space Policy     Hybrid Journal   (Followers: 29)
Canadian Aeronautics and Space Journal     Full-text available via subscription   (Followers: 29)
CEAS Aeronautical Journal     Hybrid Journal   (Followers: 29)
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 29)
Journal of Space Weather and Space Climate     Open Access   (Followers: 29)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 27)
Journal of Wind Engineering and Industrial Aerodynamics     Hybrid Journal   (Followers: 26)
International Journal of Aerospace Innovations     Full-text available via subscription   (Followers: 26)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 25)
Nonlinear Dynamics     Hybrid Journal   (Followers: 24)
Russian Aeronautics (Iz VUZ)     Hybrid Journal   (Followers: 24)
International Journal of Aerospace Psychology     Hybrid Journal   (Followers: 22)
Frontiers in Aerospace Engineering     Open Access   (Followers: 22)
Artificial Satellites     Open Access   (Followers: 21)
Chinese Journal of Aeronautics     Open Access   (Followers: 20)
Journal of Aerospace Engineering & Technology     Full-text available via subscription   (Followers: 20)
Proceedings of the Human Factors and Ergonomics Society Annual Meeting     Hybrid Journal   (Followers: 20)
International Journal of Space Structures     Full-text available via subscription   (Followers: 19)
International Journal of Satellite Communications Policy and Management     Hybrid Journal   (Followers: 18)
Fatigue of Aircraft Structures     Open Access   (Followers: 17)
Research & Reviews : Journal of Space Science & Technology     Full-text available via subscription   (Followers: 17)
Advances in Aerospace Science and Technology     Open Access   (Followers: 17)
Frontiers in Astronomy and Space Sciences     Open Access   (Followers: 15)
Aeronautical Journal, The     Hybrid Journal   (Followers: 14)
Aviation     Open Access   (Followers: 12)
Journal of Airline and Airport Management     Open Access   (Followers: 12)
Journal of Aviation Technology and Engineering     Open Access   (Followers: 12)
Journal of the Astronautical Sciences     Hybrid Journal   (Followers: 12)
Journal of Aircraft and Spacecraft Technology     Open Access   (Followers: 12)
International Journal of Crashworthiness     Hybrid Journal   (Followers: 11)
International Journal of Micro Air Vehicles     Open Access   (Followers: 11)
International Journal of Space Technology Management and Innovation     Full-text available via subscription   (Followers: 11)
Aerospace Systems     Hybrid Journal   (Followers: 11)
Population Space and Place     Hybrid Journal   (Followers: 10)
Journal of the American Helicopter Society     Full-text available via subscription   (Followers: 10)
International Journal of Space Science and Engineering     Hybrid Journal   (Followers: 10)
Air Force Magazine     Full-text available via subscription   (Followers: 10)
Journal of Aerospace Technology and Management     Open Access   (Followers: 10)
Journal of Aeronautical Materials     Open Access   (Followers: 9)
International Journal of Applied Geospatial Research     Hybrid Journal   (Followers: 8)
Journal of Space Safety Engineering     Hybrid Journal   (Followers: 8)
International Journal of Aviation, Aeronautics, and Aerospace     Open Access   (Followers: 8)
Aerotecnica Missili & Spazio : Journal of Aerospace Science, Technologies & Systems     Hybrid Journal   (Followers: 8)
Transportmetrica A : Transport Science     Hybrid Journal   (Followers: 7)
International Journal of Aviation Technology, Engineering and Management     Full-text available via subscription   (Followers: 7)
Aerospace technic and technology     Open Access   (Followers: 7)
Air Medical Journal     Hybrid Journal   (Followers: 6)
Space and Polity     Hybrid Journal   (Followers: 6)
International Journal of Aviation Management     Hybrid Journal   (Followers: 6)
Aviation in Focus - Journal of Aeronautical Sciences     Open Access   (Followers: 6)
New Space     Hybrid Journal   (Followers: 6)
Journal of Astrobiology & Outreach     Open Access   (Followers: 6)
RocketSTEM     Free   (Followers: 6)
Civil Aviation High Technologies     Open Access   (Followers: 6)
Cosmic Research     Hybrid Journal   (Followers: 5)
International Journal of Sustainable Aviation     Hybrid Journal   (Followers: 5)
Transport and Aerospace Engineering     Open Access   (Followers: 5)
Life Sciences in Space Research     Hybrid Journal   (Followers: 5)
International Journal of Aeronautical and Space Sciences     Hybrid Journal   (Followers: 5)
Journal of Spatial Science     Hybrid Journal   (Followers: 4)
Journal of KONBiN     Open Access   (Followers: 4)
Unmanned Systems     Hybrid Journal   (Followers: 4)
REACH - Reviews in Human Space Exploration     Full-text available via subscription   (Followers: 4)
Astrodynamics     Hybrid Journal   (Followers: 4)
Advances in Astronautics Science and Technology     Hybrid Journal   (Followers: 4)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 4)
Perspectives of Earth and Space Scientists i     Open Access   (Followers: 4)
Microgravity Science and Technology     Hybrid Journal   (Followers: 3)
ASTRA Proceedings     Open Access   (Followers: 3)
npj Microgravity     Open Access   (Followers: 3)
Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering     Open Access   (Followers: 3)
Ciencia y Poder Aéreo     Open Access   (Followers: 3)
Open Aerospace Engineering Journal     Open Access   (Followers: 3)
Journal of Engineering and Technological Sciences     Open Access   (Followers: 2)
MAD - Magazine of Aviation Development     Open Access   (Followers: 2)
Journal of Aviation/Aerospace Education & Research     Open Access   (Followers: 2)
Investigación Pecuaria     Open Access   (Followers: 2)
Transactions on Aerospace Research     Open Access   (Followers: 2)
Вісник Національного Авіаційного Університету     Open Access   (Followers: 1)
Science and Education : Scientific Publication of BMSTU     Open Access   (Followers: 1)
Spatial Information Research     Hybrid Journal   (Followers: 1)
Journal of the Australasian Society of Aerospace Medicine     Open Access   (Followers: 1)
Mekanika : Jurnal Teknik Mesin i     Open Access   (Followers: 1)
Xibei Gongye Daxue Xuebao / Journal of Northwestern Polytechnical University     Open Access   (Followers: 1)

              [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
Aerospace Systems
Number of Followers: 11  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 2523-3947 - ISSN (Online) 2523-3955
Published by Springer-Verlag Homepage  [2468 journals]
  • Stability of a dielectric rectangular plate in a longitudinal magnetic
           field in the presence of a supersonic flow field

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, we investigate the critical magneto-aeroelastic behavior of dielectric rectangular isotropic plates. The incident flow of a perfectly conducting supersonic gas and a magnetic field cause the perturbed pressure, which we can determine using magneto-aero-elastic stability and dynamic models as well as find the critical flutter speed of the flowing stream. Here, we present the analytical description of the generalized formula of pressure obtained from the “piston theory” of the classical theory of gas dynamics for the case of elastic plates in a magneto-hydro-dynamic flow. We implemented some parametric studies to show the influence of the magnetic field on the flutter boundary. Influence of magnetic field on the dependency “amplitude–frequency” is investigated for several geometrical parameters of examined plate. It is shown that the noted dependency can be as a single-value, as well as a multi-value function. It is shown also that strong magnetic fields have a great influence on the nature of the amplitude–frequency dependence, which is inherent to the case of nonlinear natural oscillations of shells.
      PubDate: 2023-12-01
       
  • Evaluations on VCCT and CZM methods of delamination propagation simulation
           for composite specimens

    • Free pre-print version: Loading...

      Abstract: Abstract Fiber-reinforced composite laminates are widely used in aerospace and other fields. Delamination damage is the main damage form of laminates, which has always been one of the focus problems of composite mechanics. Virtual crack closure technique (VCCT) and cohesive zone modeling (CZM) are two well-known numerical methods frequently used for crack propagation modeling. In this study, to better understand the advantages and limitations of these two methods, as well as the process of practical application, the evaluations on them are conducted. A double cantilever beam (DCB) specimen, an end notched flexure (ENF) specimen, and a mixed-mode bending (MMB) specimen as benchmark examples are modeled in ABAQUS. The mode I, mode II, and mixed-mode (I + II) delamination initiation and propagation behaviors of unidirectional specimens are simulated using two above methods. Finite element (FE) results are compared with experimental results available in the literature to verify the validity of the FE models. Finally, the accuracy, convergence speed, run-time, mesh dependency, and influence of modeling parameters of each method are discussed based on the simulation of DCB test.
      PubDate: 2023-12-01
       
  • Ionospheric irregularities measurement using Indian SBAS-GAGAN

    • Free pre-print version: Loading...

      Abstract: Abstract In order to improve the performance of a navigation systems, scintillation studies and Ionospheric Total electron content (TEC) are important. The amplitude scintillation index (S4), S4 corrections and Rate of change of TEC index (ROTI) parameters are analysed for different seasons. For the analysis Visakhapatnam station (Lat: 17.78, Long: 83.22) and Lucknow (Lat: 26.76, Long: 80.88) station, GAGAN receiver data for the year 2016 is considered based on four quiet days and four disturbed days and consider the highest Kp index values for Visakhapatnam station and Lucknow station. This work shows the variation of S4 index and ROTI parameter variation during different seasons for both the stations. The correlation coefficient (CC) of S4 index and ROTI are presented. The results show that the CC are high for disturbed days compared to the quiet days for both the considered stations. For Lucknow station, it is observed that CC values are high compared to the Visakhapatnam station.
      PubDate: 2023-12-01
       
  • Numerical modeling of hybrid rocket engine

    • Free pre-print version: Loading...

      Abstract: Abstract Recent development in space mission demands safer and more cost-effective space missions. Hybrid rocket engine technological advancements have prolonged a critical stage in their development and it is the better option for such space missions, as it has a lot of advantages over the solid rocket motor and liquid rocket engine. It is simple in design, has high thrust density, low weight, and is safer than a liquid rocket engine. It has restarted capability, safe, low explosion risk, and high specific impulse than a solid rocket motor. This paper shows the numerical analysis of a hybrid rocket engine. The paper highlights the initial boundary conditions in the analysis of a 300-N hybrid rocket engine. The process started with a chemical kinematic examination of engine-compatible fuels and oxidizers. This investigation provided the fundamental parameters required for the design and subsequent dimensioning of a hybrid rocket engine. It also produced a three-dimensional design model, performed numerical analysis using ANSYS software, and validated the findings using existing literature. Using the k– \(\varepsilon\) turbulence model and transient solver on 8 mm port diameter for analyzing. The computational fluid dynamics model offered the qualities of a real hybrid rocket engine and it will be helpful to researchers and the scientific community in the future.
      PubDate: 2023-12-01
       
  • Adaptive control for excitation and parameter identification of a
           three-axis spacecraft simulator with full-state constraints

    • Free pre-print version: Loading...

      Abstract: Abstract The three degrees of freedom spacecraft attitude simulator is of vital importance in verifying spacecraft control strategies and many other space techniques. It requires accurate knowledge of simulator inertia parameters which can be identified by a variety of estimation methods under appropriate excitation situation. However, constraints on the rotation range, angular velocity, and torque may lead to a bad parameter estimation performance and cause security problem in excitation process. A new adaptive reorientation controller is proposed in this paper to solve these problems. By deriving the expression of parameter estimation error and analyzing the ill-conditioned problem resulted from the attitude constraint, a preconditioned adaptive parameter estimation law is designed and then combined with a new proposed reorientation controller, such that the errors of parameter identification and reorientation excitation simultaneously converge to zero. And the constraints can also be met. Compared to conventional parameter identification schemes, the proposed controller can simultaneously achieve the closed-loop reorientation excitation for security requirement and the more efficient parameter identification outcome. The effectiveness of the adaptive controller is finally demonstrated by numerical simulations.
      PubDate: 2023-12-01
       
  • Model predictive control switching strategy for safe small satellite
           cluster formation flight

    • Free pre-print version: Loading...

      Abstract: Abstract This paper presents the development and analysis of a spacecraft formation flying architecture. The desired state of each spacecraft is maintained using a model predictive control-based control framework that is based on the Hill–Clohessy–Wiltshire equations and a polytope boundary constraint as a switching surface. This framework can be used to maintain the desired cluster formation while also guaranteeing internal cluster flight. The polytope boundaries are designed, such that no two agents have overlapping regions, allowing the vehicles to execute avoidance strategies without continually maintaining the trajectories of other agents. The model predictive control framework combined with the convex polytope boundary enables a scalable method that can support clusters of satellites to coordinate to safely achieve mission objectives while minimizing fuel usage. As part of the implementation of this control scheme, the authors created two spacecraft formation flying control approaches. The first approach uses fewer, large maneuvers to control a spacecraft to the center of a keep-in-volume. The second approach allows the spacecraft to perform many small maneuvers to stay just inside the boundary of the keep-in-volume. This paper compares the fuel cost savings of these two approaches. The results presented in this paper demonstrate that the first approach produces the lower total fuel usage, but if a lower amount of fuel per maneuver is required, then the second approach should be used. This work also compares the computation requirements and fuel usage for \(\hbox {L}_1\) , \(\hbox {L}_2\) , and \(\hbox {L}_\infty \) norms formulations of the framework, the \(\hbox {L}_1\) and \(\hbox {L}_2\) norms require the least amount of fuel usage, while the \(\hbox {L}_2\) requires the least amount of computation time.
      PubDate: 2023-12-01
       
  • Prediction method for shear stability of composite hat-stringer stiffened
           panel

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, the shear stability of a composite hat-stringer stiffened panel was studied by the means of both shear frame test and theoretical analysis. The test specimen is a typical flat composite stiffened panel composed of skin, five hat-shaped stringers, two Z-shaped transverse frames and reinforcement layers. Firstly, a method that can quantitatively capture the buckling load and buckling morphology was proposed. Then, considering the shear-loading fixture as an elastic system with hinged and bolted connections, a finite element model including both shear-loading fixture and specimen was established. The linear buckling analysis was carried out using the subspace method. The first-order buckling mode was in good agreement with the buckling morphology obtained from the test. Furthermore, the deformed configuration of the first buckling mode was multiplied by the mode scale factor, and then introduced into the model as the initial defect. Based on this model, the nonlinear buckling analysis was performed via arc length method. The analysis results were in good agreement with the test. The relative errors between the predicted buckling loads and the test results were 7.0 \(\%\) and \(-\) 3.8 \(\%\) from linear and nonlinear buckling analyses, respectively. Nonlinear buckling analysis has higher accuracy and tends to be conservative than linear buckling analysis.
      PubDate: 2023-12-01
       
  • Robust attitude consensus control of multi-spacecraft with stochastic link
           failure

    • Free pre-print version: Loading...

      Abstract: Abstract This paper presents an adaptive attitude consensus controller for a group of spacecrafts subject to stochastic communication link failure and external disturbances. By leveraging the sliding-mode control technique and the super-martingales convergence method, the proposed adaptive controller is robust to the bounded but unknown disturbances and ensures almost sure consensus on the attitude among multi-spacecraft, respectively. Moreover, when compared with the existing results dealing with attitude consensus control with indeterministic communication topology, our approach can drive the attitude of multi-spacecraft to a desired attitude of a virtual spacecraft. To verify the effectiveness of the proposed approach, an attitude consensus control of a group of six spacecraft with a virtual leader is carried out.
      PubDate: 2023-12-01
       
  • Estimation of satellite attitude dynamics and external torques via mixed
           Kalman/H-infinity filter under inertia uncertainties

    • Free pre-print version: Loading...

      Abstract: Abstract In this work, a mixed Kalman/H-infinity filter is designed for the attitude estimation of a low Earth orbit microsatellite and the external disturbance torques acting on it. The state vector will be formed by satellite's attitude along with angular rates and the external disturbances. An improved external disturbance modeled as a random walk acting (slowly varying) around three axis attitude was proposed. This external disturbance is mainly generated by the aerodynamic torque, the residual magnetic moment and the gravity gradient torque. The satellite has only magnetometer on board as the attitude sensor. The proposed algorithm is tested using simulated data for a microsatellite, and the results of this study are tested in different scenarios. The first two scenarios are the cases with and without uncertainty in the satellite’s inertia. The last scenario is extensive Monte Carlo simulations with uniformly distributed initial conditions of the Euler angle and angular rate. The major purpose of this work is to demonstrate that we can estimate external disturbances and attitude dynamic parameters of a satellite using a simple filter that combines the best features of Kalman and \({\mathrm{H}}_{\infty }\) filters. The simulation results show that the attitude RMS error is less than \(\pm 1\) deg (acceptable accuracy). Also, Monte Carlo simulation gives good results of the proposed filter. This latter estimates the attitude with accuracy less than 0.8 deg, the rate order is 1 milli-deg/s and the external disturbances around 1.5 μNm.
      PubDate: 2023-12-01
       
  • A novel on–off linear quadratic regulator control approach for
           satellite rendezvous

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, a novel on–off linear quadratic regulator (LQR) control for satellite rendezvous as an example of linear systems with on–off inputs has been proposed for the first time. It simultaneously benefits from unique potentials of LQR control method and the extensive applications of systems with on–off inputs in various areas. The on–off LQR control approach has been applied on the system of orbital rendezvous and docking of satellites equipped with thrusters which are appropriate samples of systems with on–off inputs. Because of the energy consumption significance in many practical applications, the proposed approach is designed to consume less energy as well. Simulation results show the energy consumption of the presented method has been reduced about 36% compared to the continuous LQR approach.
      PubDate: 2023-12-01
       
  • Intention recognition of UAV swarm with data-driven methods

    • Free pre-print version: Loading...

      Abstract: Abstract UAVs have been increasingly used in military and commercial applications. The theory of UAV swarm behavir has gradually matured and moved to the real application stage. Fast and accurate recognition of the intentions of UAV swarms become a key part of dealing with coming swarms. This paper proposes a data-driven approach to realize the recognition of the typical intentions of UAV swarm. The UAV swarm’s intention is divided into three basic categories: expansion, free movement, and contraction. The dubins model is introduced to depict and study the dynamic characteristics of the movement of the UAV swarm. Simulation experiments are performed through software to collect data and to verify and refine the proposed data-driven intention recognition approach. Moreover, real flight experiments are conducted to test the feasibility and accuracy of the proposed approach, from which key steps about the neural network building and training for intention recognition have been summarized, and satisfying results in intention recognition with high accuracy and stability during the entire movement of the UAV swarm have been achieved.
      PubDate: 2023-12-01
       
  • Utilizing deep reinforcement learning for tactile-based autonomous capture
           of non-cooperative objects in space

    • Free pre-print version: Loading...

      Abstract: Abstract The focus of this research is the creation of a deep reinforcement learning approach to tackle the challenging task of robotic gripping through tactile sensor data feedback. Leveraging deep reinforcement learning, we have sidestepped the necessity to design features manually, which simplifies the issue and allows the robot to acquire gripping strategies via trial-and-error learning. Our technique utilizes an off-policy reinforcement learning model, integrating deep deterministic policy gradient structure and twin delayed attributes to facilitate maximum precision in gripping floating items. We have formulated a comprehensive reward function to provide the agent with precise, insightful feedback to facilitate the learning of the gripping task. The training of our model was executed solely in a simulated environment using the PyBullet framework and did not require demonstrations or pre-existing knowledge of the task. We examined a gripping task with a 3-finger Robotiq gripper for a case study, where the gripper had to approach a floating object, pursue it, and eventually grip it. This training methodology in a simulated setting allowed us to experiment with various scenarios and conditions, thereby enabling the agent to develop a resilient and adaptable grip policy.
      PubDate: 2023-11-24
       
  • ML-based LOS/NLOS/multipath signal classifiers for GNSS in simulated
           multipath environment

    • Free pre-print version: Loading...

      Abstract: Abstract The position accuracy of GNSS is limited by several errors including multipath error. The multipath error is well known as one of the dominant error sources in most of the high-precision GNSS applications, as its fast-changing and site-dependent nature make it challenging to model and mitigate. The Non-Line-of-Sight (NLOS) signals in combination with the original Line-of-Sight (LOS) signal lead to multipath (MP), which results in erroneous range estimation. To mitigate the effect of multipath, detecting the presence of NLOS/multipath signals plays a vital role. In this paper, GPS and IRNSS signals are considered in simulated multipath environment and in open-sky conditions. A machine learning (ML) approach for classification of LOS/NLOS/multipath is presented in both the environments. In this paper, two classifiers are proposed. The proposed classifiers are trained with signal strength, elevation angle, Doppler shift, delta pseudorange, and pseudorange residuals as attributes. The accuracies of these models are computed and compared and it is found that, among all the algorithms, K-Nearest Neighbors, Decision Tree, and its ensemble functions have demonstrated superior performance. Experimental results are presented using GPS L1, IRNSS L5, and S1 data. A comparative analysis on both the classifiers is also presented. Further, to substantiate these results, another experiment is conducted in a complex real-time dynamic multipath environment and the obtained results are also presented.
      PubDate: 2023-11-18
       
  • Numerical studies on uncontrolled and controlled shock wave/boundary layer
           interactions in hypersonic intake

    • Free pre-print version: Loading...

      Abstract: Abstract Understanding the phenomenon of Shock Wave/Boundary Layer Interaction (SBLI) is critical in developing hypersonic aircraft as it is associated with several penalties, such as huge total pressure loss, boundary layer separation, tremendous temperature rise, fluctuating pressure, and thermal load. The consequences become severe, particularly at hypersonic speeds. Thus, it is essential to control the occurrence of SBLIs to minimize these repercussions. With this in mind, the current study numerically investigates the efficacy of an array of Micro-Vortex Generators (MVGs) placed upstream and at the interaction region in the Mach 5.7 intake. The computational analysis was performed using the finite volume solver Ansys fluent and a 3-dimensional numerical model. MVGs of three different heights (0.5 mm, 0.7 mm, and 1.0 mm) were considered to understand the detailed impact of MVGs height on controlling interactions. The steady-state analysis was carried out using shear stress transport (SST) k–ω turbulence model. Besides, Delayed Detached Eddy Simulation (DES) combined with SST k-omega is specifically considered for unsteady analysis to observe the flow evolution. The quantitative and qualitative analysis has been conducted by examining the static pressure and velocity distributions over the ramp surface and visualizing the shock structures. A maximum of 9.84% reduction in wall static pressure is observed for the MVGs of 1.0 mm height when stationed at the interaction region. The MVGs of 0.7 mm height, placed upstream of the interaction region, are proved to be more efficient than other MVGs. However, pressure recovery and turbulence intensity are maximum for 0.5 mm MVGs, when deployed upstream of the interaction zone.
      PubDate: 2023-10-31
       
  • Doppler collision analysis and mitigation using hybrid approach for NavIC
           system

    • Free pre-print version: Loading...

      Abstract: Abstract Doppler collision has a very important issue in satellite-based navigation systems. Navigation with the Indian Constellation (NavIC) comprises seven operational satellites, among which three are geo-stationary (GEO) satellites, and the rest are geosynchronous satellites. Due to the 'small line of sight velocities' of GEO satellites, estimated ranges suffer from the unique challenge of Doppler collision (DC). In this study, we present an analysis of DC events in both static and dynamic conditions, particularly in aerospace applications. We utilize experimental data acquired from the Indian Regional Navigation Satellite System (IRNSS)-GPS-Satellite Based Augmentation System (SBAS) (IGS) receiver located at a low altitude station to develop algorithms for the prediction, avoidance, and mitigation of DC events. The prediction of DC is based on the moving average method. We have devised an efficient algorithm to avoid the occurrence of DC, considering all possible combinations of IRNSS GEO satellites. Additionally, we perform the mitigation of DC using a proposed hybrid approach that involves both the space segment and user segment. The approach is based on repositioning the IRNSS 1C satellite and varying the loop bandwidth of the Delay Locked Loop (DLL). With the implementation of this proposed hybrid approach, the time duration of DC is reduced by 59.16% in static conditions and 16% in dynamic conditions.
      PubDate: 2023-10-20
       
  • Group motion control for UAV swarm confrontation using distributed dynamic
           target assignment

    • Free pre-print version: Loading...

      Abstract: Abstract For UAV swarm confrontation, group motion control is the key of UAV swarm to accomplish the assigned task, in which target assignment is the premise of group movement of UAVs. Most of the target assignment algorithms used in the traditional unmanned aerial vehicle (UAV) swarm confrontation are centralized, which can match and optimize targets in the static environment of limited aircraft units. However, many limitations will be generated if applied to the dynamic confrontation tasks of large-scale UAV clusters. Moreover, the countermeasures of the traditional UAV swarm countermeasure model are relatively simple and not suitable for the complex countermeasures task requirements in reality. To solve the above problems, a group motion control method using the extend consensus-based bundle algorithm (ECBBA) algorithm is proposed in this paper to carry out the dynamic grouping behavior of UAV swarm. The distributed target assignment algorithm is assembled to improve the efficiency of grouping, supporting the UAV dynamic real-time target assignment, for implementing large-scale group dynamic confrontation. The proposed group motion control strategy of UAV swarm is designed, based on the control of single-group motion and the setting of confrontation behavior. The effectiveness of the proposed ECBBA-based group motion control strategy is verified by simulation experiments.
      PubDate: 2023-10-15
       
  • Unerroric of assessment of professional competence for aviation personnel

    • Free pre-print version: Loading...

      Abstract: Abstract The questions connected with automation of testing of professional skills for aviation personnel on aircraft on-board facilities taking into account psychophysiological peculiarities of all tested persons are considered. The aim of the study is to find additional means of tightening the quality control of professional training for aviation personnel, taking into account the psychophysiological aspect of this control. To achieve the above-mentioned goal, the issues of tightening control for aviation personnel competence level during their training on computer simulators in conditions as close as possible to the real operating conditions of aviation equipment were solved. The research material is the obtained and processed information about the number of recorded changes in operating conditions of aviation equipment, the maximum speed for aviation personnel reaction to changes in its operating conditions, the median speed for aviation personnel reaction to changes in these conditions, the minimum speed of its reaction to changes in the same conditions, the number of decisions made by aviation personnel, the number of correctly made decisions, the number of incorrectly made decisions, and the maximum speed of decision-making by aviation personnel. In the process of research, the procedures of directed enumeration and comparative analysis for aviation personnel training results on computer simulators. When conducting the research, methods of software and hardware-software modeling for aviation personnel operation procedures on aircraft on-board facilities were used. The use of the so-called FLIGHTESTS as a set of individual tasks with control questions and electronic forms for the report on the performance of these tasks and answers to control questions is proposed. These FLIGHTESTS can and should be considered the basis for unerroric to assess the professional competence for aviation personnel. This unerroric will provide additional opportunities to tighten the quality control of professional training for aviation personnel.
      PubDate: 2023-10-13
       
  • Transient state flow and heat transfer performance over the flat tip of HP
           turbine

    • Free pre-print version: Loading...

      Abstract: Abstract To study the flow and heat transfer performance over the flat tip of high pressure (HP) turbine under transient conditions more accurately, a dynamic boundary condition model from one stable operating state to another stable operating state is established. The changes of model include inlet total temperature, inlet total pressure, inlet flow angle, and tip clearance. Furthermore, the steady-state solution is performed at the typical moments of the transient state, to study the feasibility of steady state replacing transient state performance. The results show that the heat transfer performance of the blade tip under transient conditions mainly focus on the pressure side. The separation vortex formed at the edge of the pressure side significantly affects the distribution of the heat transfer coefficient. The flow and heat transfer performance obtained under steady-state conditions are close to those under transient conditions. The maximum deviation of heat transfer coefficient and total pressure recovery coefficient at each typical moment does not exceed 0.1%.
      PubDate: 2023-09-12
       
  • Integrity performance characterization of BeiDou B1C and B2a
           signal-in-space error

    • Free pre-print version: Loading...

      Abstract: Abstract Global Navigation Satellite System (GNSS) Signal-In-Space (SIS) quality directly affects positioning integrity, which is an important metric for safety–critical applications. BeiDou Global Navigation Satellite System (BDS-3) broadcasts two new signals interoperable with GPS and Galileo, i.e., B1C and B2a. They are expected to serve civil aviation applications, following the Standards and Recommended Practices (SARPs) released by International Civil Aviation Organization (ICAO). Therefore, the SIS accuracy and integrity performance of BDS-3 B1C and B2a are evaluated in this work. The SIS Range Errors (SISREs) are achieved by comparing the broadcast satellite positions and clock offsets derived from Civil Navigation Message (CNAV) with the precise products from International GNSS Service (IGS). Specifically, given that the IGS precise products are referring to the equivalent phase center of BeiDou Regional System (BDS-2) B1I + B3I ionosphere-free combination, Differential Code Bias (DCB) from IGS is applied to realize time synchronization. This synchronization method is also meaningful to different frequencies in other constellations and supports the en-route, approaching, and landing phases. By analyzing 1-year data, an overall SIS characteristic picture of the 18 BDS-3 MEO satellites is presented here. The results show that most BDS-3 satellites are subject to an overbounding User Range Accuracy (URA) of 0.5 m to 0.85 m and a fault probability of \(1.4953\times {10}^{-5}\) to \(1.1975\times {10}^{-4}\) , with an integrity performance much better than that of BDS-2 and comparable to that of GPS. BDS-3 is now ready to serve civil aviation and other safety–critical applications.
      PubDate: 2023-09-11
       
  • Conceptual design for returning KITSAT-1

    • Free pre-print version: Loading...

      Abstract: Abstract The increasing number of orbiting satellites has motivated the development of active debris removal and on-orbit servicing missions. The KAIST Satellite Technology and Research Center plans to capture and de-orbit Korea’s first satellite, KITSAT-1, as one of the active debris removal missions. For the success of the project, mission planning for orbit transfer and rendezvous should be performed under consideration of the feasibility of required fuel. In this conceptual study, we designed a trajectory that could capture KITSAT-1 with a small satellite under 200 kg. The results was that the final relative RIC distance and the distance rate to KITSAT-1 are less than 0.01 km and 0.01 m/s order, and the required fuel mass was about 76 kg, which is feasible for a small capture satellite.
      PubDate: 2023-09-04
      DOI: 10.1007/s42401-023-00246-1
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.80.4.147
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-