A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort alphabetically]   [Restore default list]

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 121 journals)
Showing 1 - 30 of 30 Journals sorted by number of followers
AIAA Journal     Hybrid Journal   (Followers: 1188)
SpaceNews     Free   (Followers: 826)
Journal of Spacecraft and Rockets     Hybrid Journal   (Followers: 772)
Journal of Propulsion and Power     Hybrid Journal   (Followers: 609)
Acta Astronautica     Hybrid Journal   (Followers: 493)
Advances in Space Research     Full-text available via subscription   (Followers: 458)
Aviation Week     Full-text available via subscription   (Followers: 436)
Aerospace Science and Technology     Hybrid Journal   (Followers: 428)
IEEE Transactions on Aerospace and Electronic Systems     Hybrid Journal   (Followers: 384)
Journal of Aircraft     Hybrid Journal   (Followers: 335)
Control Systems     Hybrid Journal   (Followers: 314)
IEEE Aerospace and Electronic Systems Magazine     Full-text available via subscription   (Followers: 278)
Journal of Navigation     Hybrid Journal   (Followers: 277)
Gyroscopy and Navigation     Hybrid Journal   (Followers: 259)
Journal of Guidance, Control, and Dynamics     Hybrid Journal   (Followers: 204)
Space Science International     Open Access   (Followers: 198)
Space Science Reviews     Hybrid Journal   (Followers: 97)
International Journal of Aerospace Engineering     Open Access   (Followers: 82)
Progress in Aerospace Sciences     Full-text available via subscription   (Followers: 80)
Journal of Aerospace Engineering     Full-text available via subscription   (Followers: 69)
Advances in Aerospace Engineering     Open Access   (Followers: 69)
Propulsion and Power Research     Open Access   (Followers: 68)
Aerospace     Open Access   (Followers: 60)
Space Safety Magazine     Free   (Followers: 51)
Space Research Today     Full-text available via subscription   (Followers: 48)
Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering     Hybrid Journal   (Followers: 46)
International Journal of Aeroacoustics     Hybrid Journal   (Followers: 40)
IEEE Transactions on Circuits and Systems I: Regular Papers     Hybrid Journal   (Followers: 39)
International Journal of Aerodynamics     Hybrid Journal   (Followers: 37)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 34)
Canadian Aeronautics and Space Journal     Full-text available via subscription   (Followers: 34)
International Journal of Aerospace Sciences     Open Access   (Followers: 32)
Journal of Aeronautics & Aerospace Engineering     Open Access   (Followers: 31)
Space Policy     Hybrid Journal   (Followers: 30)
CEAS Aeronautical Journal     Hybrid Journal   (Followers: 29)
Aviation Psychology and Applied Human Factors     Hybrid Journal   (Followers: 27)
Journal of Space Weather and Space Climate     Open Access   (Followers: 27)
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 24)
Russian Aeronautics (Iz VUZ)     Hybrid Journal   (Followers: 24)
Artificial Satellites     Open Access   (Followers: 23)
International Journal of Aerospace Psychology     Hybrid Journal   (Followers: 23)
Annual of Navigation     Open Access   (Followers: 22)
Journal of Aerospace Information Systems     Hybrid Journal   (Followers: 22)
Chinese Journal of Aeronautics     Open Access   (Followers: 21)
Nonlinear Dynamics     Hybrid Journal   (Followers: 20)
Aerospace Medicine and Human Performance     Full-text available via subscription   (Followers: 19)
Aerospace Scientific Journal     Open Access   (Followers: 18)
Journal of Aerospace Engineering & Technology     Full-text available via subscription   (Followers: 18)
Journal of Aerodynamics     Open Access   (Followers: 18)
Research & Reviews : Journal of Space Science & Technology     Full-text available via subscription   (Followers: 17)
Journal of Wind Engineering and Industrial Aerodynamics     Hybrid Journal   (Followers: 17)
Aviation     Open Access   (Followers: 17)
International Journal of Space Structures     Full-text available via subscription   (Followers: 17)
Proceedings of the Human Factors and Ergonomics Society Annual Meeting     Hybrid Journal   (Followers: 16)
Fatigue of Aircraft Structures     Open Access   (Followers: 15)
International Journal of Satellite Communications Policy and Management     Hybrid Journal   (Followers: 13)
International Journal of Crashworthiness     Hybrid Journal   (Followers: 12)
Aeronautical Journal, The     Hybrid Journal   (Followers: 12)
Frontiers in Astronomy and Space Sciences     Open Access   (Followers: 12)
Journal of Airline and Airport Management     Open Access   (Followers: 12)
Elsevier Astrodynamics Series     Full-text available via subscription   (Followers: 12)
International Journal of Space Science and Engineering     Hybrid Journal   (Followers: 11)
Air Force Magazine     Full-text available via subscription   (Followers: 11)
Journal of Aviation Technology and Engineering     Open Access   (Followers: 11)
COSPAR Colloquia Series     Full-text available via subscription   (Followers: 11)
International Journal of Micro Air Vehicles     Full-text available via subscription   (Followers: 11)
International Journal of Space Technology Management and Innovation     Full-text available via subscription   (Followers: 10)
Aviation in Focus - Journal of Aeronautical Sciences     Open Access   (Followers: 10)
Journal of Aeronautical Materials     Open Access   (Followers: 9)
International Journal of Aviation Management     Hybrid Journal   (Followers: 9)
Transportmetrica A : Transport Science     Hybrid Journal   (Followers: 9)
Journal of the Astronautical Sciences     Hybrid Journal   (Followers: 9)
Journal of Aircraft and Spacecraft Technology     Open Access   (Followers: 9)
Population Space and Place     Hybrid Journal   (Followers: 9)
Advances in Aerospace Science and Technology     Open Access   (Followers: 8)
Air Medical Journal     Hybrid Journal   (Followers: 8)
Journal of Space Safety Engineering     Hybrid Journal   (Followers: 8)
International Journal of Applied Geospatial Research     Hybrid Journal   (Followers: 7)
Journal of Aerospace Technology and Management     Open Access   (Followers: 7)
International Journal of Aviation Technology, Engineering and Management     Full-text available via subscription   (Followers: 7)
Journal of the American Helicopter Society     Full-text available via subscription   (Followers: 7)
Aerospace Systems     Hybrid Journal   (Followers: 6)
RocketSTEM     Free   (Followers: 6)
New Space     Hybrid Journal   (Followers: 6)
International Journal of Turbo and Jet-Engines     Hybrid Journal   (Followers: 6)
Unmanned Systems     Hybrid Journal   (Followers: 5)
REACH - Reviews in Human Space Exploration     Full-text available via subscription   (Followers: 5)
Aviation Advances & Maintenance     Open Access   (Followers: 5)
Cosmic Research     Hybrid Journal   (Followers: 5)
International Journal of Sustainable Aviation     Hybrid Journal   (Followers: 5)
Civil Aviation High Technologies     Open Access   (Followers: 5)
International Journal of Aviation, Aeronautics, and Aerospace     Open Access   (Followers: 5)
Space and Polity     Hybrid Journal   (Followers: 4)
Aerotecnica Missili & Spazio : Journal of Aerospace Science, Technologies & Systems     Hybrid Journal   (Followers: 4)
Astrodynamics     Hybrid Journal   (Followers: 4)
Life Sciences in Space Research     Hybrid Journal   (Followers: 4)
Journal of Spatial Science     Hybrid Journal   (Followers: 3)
Investigación Pecuaria     Open Access   (Followers: 3)
Journal of Astrobiology & Outreach     Open Access   (Followers: 3)
Aerospace technic and technology     Open Access   (Followers: 3)
npj Microgravity     Open Access   (Followers: 3)
ASTRA Proceedings     Open Access   (Followers: 3)
Journal of KONBiN     Open Access   (Followers: 3)
Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa / Problems of Mechatronics. Armament, Aviation, Safety Engineering     Open Access   (Followers: 3)
Journal of Aviation/Aerospace Education & Research     Open Access   (Followers: 2)
Microgravity Science and Technology     Hybrid Journal   (Followers: 2)
MAD - Magazine of Aviation Development     Open Access   (Followers: 2)
IEEE Journal on Miniaturization for Air and Space Systems     Hybrid Journal   (Followers: 2)
Вісник Національного Авіаційного Університету     Open Access   (Followers: 2)
International Journal of Aeronautical and Space Sciences     Hybrid Journal   (Followers: 2)
Ciencia y Poder Aéreo     Open Access   (Followers: 2)
Journal of the Australasian Society of Aerospace Medicine     Open Access   (Followers: 1)
Open Aerospace Engineering Journal     Open Access   (Followers: 1)
Advances in Astronautics Science and Technology     Hybrid Journal   (Followers: 1)
Science and Education : Scientific Publication of BMSTU     Open Access   (Followers: 1)
Technical Soaring     Full-text available via subscription   (Followers: 1)
Spatial Information Research     Hybrid Journal   (Followers: 1)
Mekanika : Jurnal Teknik Mesin i     Open Access   (Followers: 1)
Journal of Engineering and Technological Sciences     Open Access   (Followers: 1)
Perspectives of Earth and Space Scientists i     Open Access  

              [Sort alphabetically]   [Restore default list]

Similar Journals
Journal Cover
Aeronautical Journal, The
Number of Followers: 12  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0001-9240 - ISSN (Online) 2059-6464
Published by Cambridge University Press Homepage  [394 journals]
  • AER volume 125 issue 1286 Cover and Front matter
    • PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2021.4
      Issue No: Vol. 125, No. 1286 (2021)
       
  • AER volume 125 issue 1286 Cover and Back matter
    • PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2021.5
      Issue No: Vol. 125, No. 1286 (2021)
       
  • Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual
           design studies
    • Authors: O. Şugar-Gabor; A. Koreanschi
      Pages: 593 - 617
      Abstract: In this paper, recent developments in quasi-3D aerodynamic methods are presented. At their core, these methods are based on the lifting-line theory and vortex lattice method, but with a relaxed set of hypotheses, while also considering the effect of viscosity (to a certain degree) by introducing a strong non-linear coupling with two-dimensional viscous aerofoil aerodynamics. These methods can provide more accurate results compared with their inviscid classical counterparts and have an extended range of applicability with respect to the lifting surface geometry. Verification results are presented for both steady-state and unsteady flows, as well as case studies related to their integration into aerodynamic shape optimisation tools. The good accuracy achieved using relatively low computational time makes such quasi-3D methods a solid choice for conducting conceptual-level design and optimisation of lifting surfaces.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.128
      Issue No: Vol. 125, No. 1286 (2021)
       
  • New flight trajectory optimisation method using genetic algorithms
    • Authors: R.I. Dancila; R.M. Botez
      Pages: 618 - 671
      Abstract: This paper presents a new flight trajectory optimisation method, based on genetic algorithms, where the selected optimisation criterion is the minimisation of the total cost. The candidate flight trajectories evaluated in the optimisation process are defined as flight plans with two components: a lateral flight plan (the set of geographic points that define the flight trajectory track segments) and a vertical flight plan (the set of data that define the altitude and speed profiles, as well as the points where the altitude and/or speed changes occur). The lateral components of the candidate flight plans are constructed by selecting a set of adjacent nodes from a routing grid. The routing grid nodes are generated based on the orthodromic route between the flight trajectory’s initial and final points, a selected maximum lateral deviation from the orthodromic route and a selected grid node step size along and across the orthodromic route. Two strategies are investigated to handle invalid flight plans (relative to the aircraft’s flight envelope) and to compute their flight performance parameters. A first strategy is to assign a large penalty total cost to invalid flight profiles. The second strategy is to adjust the invalid flight plan parameters (altitude and/or speed) to the nearest limit of the flight envelope, with priority being given to maintaining the planned altitude. The tests performed in this study show that the second strategy is computationally expensive (requiring more than twice the execution time relative to the first strategy) and yields less optimal solutions. The performance of the optimal profiles identified by the proposed optimisation method, using the two strategies regarding invalid flight profile performance evaluation, were compared with the performance data of a reference flight profile, using identical input data: initial aircraft weight, initial and final aircraft geographic positions, altitudes and speed, cost index, and atmospheric data. The initial and final aircraft geographic positions, and the reference flight profile data, were retrieved from the FlightAware web site. This data corresponds to a real flight performed with the aircraft model used in this study. Tests were performed for six Cost Index values. Given the randomness of the genetic algorithms, the convergence to a global optimal solution is not guaranteed (the solution may be non-optimal or a local optima). For a better evaluation of the performance of the proposed method, ten test runs were performed for each Cost Index value. The total cost reduction for the optimal flight plans obtained using the proposed method, relative to the reference flight plan, was between 0.822% and 3.042% for the cases when the invalid flight profiles were corrected, and between 1.598% and 3.97% for the cases where the invalid profiles were assigned a penalty total cost.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.138
      Issue No: Vol. 125, No. 1286 (2021)
       
  • Enhanced cruise range prediction for narrow-body turbofan commercial
           aircraft based on QAR data
    • Authors: V.E. Atasoy; C. Cetek
      Pages: 672 - 701
      Abstract: Aircraft performance parameters play a critical role in maintaining economic and environmental sustainability in aviation. Furthermore, the ability to calculate aircraft performance parameters accurately for the cruise range contributes to aviation in areas such as the preliminary design of aircraft and air traffic management. This study is focused on cruise range performance, as this is critical to both the evaluation and understanding of the economic and environmental impacts of commercial aircraft. Quick Access Recorders (QAR) data were used for more accurate analysis of the cruise range. The QAR data used in this study included 6,574 short-distance domestic flights by narrow-body turbofan commercial aircraft between 31 different city pairs. To obtain a more accurate cruise range equation, parameters affecting the cruise range performance were determined and studied. First, the drag polar model was improved to take the cambered profile, compressibility effects and cruise airspeeds of commercial aircraft into consideration using the real flight data. Second, Thrust-Specific Fuel Consumption (TSFC) models were compared and the most suitable one for the cruise phase was selected. After these steps, cruise range values were calculated using the Breguet range equation with these improved parameters. When the results of this enhanced range model were compared with the real flight data, the mean absolute percentage error (MAPE) was found to be 2.5% for all the Aircraft and Engine Type Groups (AETGs) considered in the data. This figure corresponds to a 7.9% smaller error than provided by previous range models based on simple parabolic drag polar and TSFC models. According to these results, the application of a simple parabolic drag polar and TSFC is not appropriate for cruise range calculations.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.121
      Issue No: Vol. 125, No. 1286 (2021)
       
  • Influence of distorted inflows on the performance of a contra-rotating fan
    • Authors: M.P. Manas; A.M. Pradeep
      Pages: 702 - 719
      Abstract: A contra-rotating fan offers several aerodynamic advantages that make it a potential candidate for future aircraft engine configurations. Stall in a contra-rotating axial fan is interesting since instabilities could arise from either or both of the rotors. In this experimental study, a contra-rotating axial fan is analysed under clean or distorted inflow conditions to understand its performance and stall inception characteristics. The steady and unsteady measurements identified the relative contribution of each rotor towards the performance of the stage. The tip of rotor-1 is identified to be the most critical region of the contra-rotating fan. The contribution of rotor-2 to the overall loading of the stage is observed to be relatively less than rotor-1. The penalty due to distortion in the stage pressure rise is mostly felt by rotor-1, while rotor-2 also shows a reduction in performance for distorted inflows. Rotor-2 stalls at a high flow coefficient marking the initiation of partial stall of the stage, and the stall of the whole stage occurs once rotor-1 stalls. A fluid phenomenon that is attached to the blade surface marks the stall of rotor-1, and this fluid phenomenon initially rotates at a speed close to the speed of rotation of the blade. As the stage moves towards the fully developed stall, this fluid phenomenon sheds from the blade surface. The fluid phenomenon thus propagates at a speed much lower than the rotational speed of the blade during fully developed stall.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.120
      Issue No: Vol. 125, No. 1286 (2021)
       
  • A generalised force equivalence-based modelling method for a dry
           wind-tunnel flutter test system
    • Authors: Z. Zhang; B. Gao, J. Wang, D. Xu, G. Chen, W. Yao
      Pages: 720 - 741
      Abstract: Dry wind-tunnel (DWT) flutter test systems model the unsteady distributed aerodynamic force using various electromagnetic exciters. They can be used to test the aeroelastic and aeroservoelastic stability of smart aircraft or high-speed flight vehicles. A new parameterised modelling method at the full system level based on the generalised force equivalence for DWT flutter systems is proposed herein. The full system model includes the structural dynamic model, electromechanical coupling model and fast aerodynamic computation model. An optimisation search method is applied to determine the best locations for measurement and excitation by introducing Fisher’s information matrix. The feasibility and accuracy of the proposed system-level numerical DWT modelling method have been validated for a plate aeroelastic model with four exciters/transducers. The effects of key parameters including the number of exciters, the control time delay, the noise interference and the electrical parameters of the electromagnetic exciter model have also been investigated. The numerical and experimental results indicate that the proposed modelling method achieves good accuracy (with deviations of less than 1.5% from simulations and 4.5% from experimental test results for the flutter speed) and robust performance even in uncertain environments with a 10% noise level.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.130
      Issue No: Vol. 125, No. 1286 (2021)
       
  • Experimental investigation of rotating instability in a contra-rotating
           axial flow compressor
    • Authors: S. Yue; Y. Wang, Z. Zhang, L. Wei, H. Wang
      Pages: 742 - 762
      Abstract: The rotating instability in a contra-rotating axial flow compressor is investigated by experiments. Twenty-four pressure sensors were installed on the casing to capture the unsteady flow in the rotor tip region simultaneously. A double-phase-locking technique suitable for the contra-rotating compressor was proposed to characterise the static pressure contours of the rotor tip. The mean and root-mean-square pressure contours indicate that rotating instability occurs before the rotating stall happened, and the rotor tip clearance vortex is located upstream of the rear rotor leading edge plane before stall. Fourier spectrum shows that rotating instability and rotating stall both happened under the stall condition, and the frequency band of rotating instability does not change with the flow rate. In the front rotor, the frequency of rotating instability is half of the blade passing frequency. It is verified that the modal estimation method can be implemented by using the average azimuthal phase velocity, which significantly reduced the number of pressure sensors required. Modal estimation results show that each peak of the rotating instability frequency band corresponds to a unique dominant circumferential mode. By optimising average azimuthal phase velocity, an improved modal estimation method is obtained, which can further improve the reliability of the modal estimation results.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.127
      Issue No: Vol. 125, No. 1286 (2021)
       
  • A non-iterative design for aileron to rudder interconnect gain
    • Authors: J. Myala; V.V. Patel, G.K. Singh
      Pages: 763 - 774
      Abstract: Aileron to Rudder Interconnect (ARI) gain is implemented on most fighter aircraft, primarily to reduce the side slip produced due to adverse yaw from pilot lateral control stick input and to improve the turn rate response. A systematic and non-iterative design procedure for ARI gain is proposed herein based on the evaluation of a transfer function magnitude at the aircraft roll mode frequency. The simplicity of the proposed method makes it useful for real-time flight control law reconfiguration in situations where the aileron control authority is diminished due to damage. This is demonstrated by a simulation example considering an aileron surface damage scenario.
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2020.131
      Issue No: Vol. 125, No. 1286 (2021)
       
  • A non-iterative design for aileron to rudder interconnect gain -
           CORRIGENDUM
    • Authors: J. Myala; V.V. Patel, G.K. Singh
      Pages: 775 - 775
      PubDate: 2021-04-01T00:00:00.000Z
      DOI: 10.1017/aer.2021.12
      Issue No: Vol. 125, No. 1286 (2021)
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.230.76.48
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-