A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 124 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Space Science Reviews
Journal Prestige (SJR): 3.262
Citation Impact (citeScore): 7
Number of Followers: 92  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1572-9672 - ISSN (Online) 0038-6308
Published by Springer-Verlag Homepage  [2468 journals]
  • Searching for Strong Gravitational Lenses

    • Free pre-print version: Loading...

      Abstract: Abstract Strong gravitational lenses provide unique laboratories for cosmological and astrophysical investigations, but they must first be discovered – a task that can be met with significant contamination by other astrophysical objects and asterisms. Here we review strong lens searches, covering various sources (quasars, galaxies, supernovae, FRBs, GRBs, and GWs), lenses (early- and late-type galaxies, groups, and clusters), datasets (imaging, spectra, and lightcurves), and wavelengths. We first present the physical characteristics of the lens and source populations, highlighting relevant details for constructing targeted searches. Search techniques are described based on the main lensing feature that is required for the technique to work, namely one of: (i) an associated magnification, (ii) multiple spatially-resolved images, (iii) multiple redshifts, or (iv) a non-zero time delay between images. To use the current lens samples for science, and for the design of future searches, we list several selection biases that exist due to these discovery techniques. We conclude by discussing the future of lens searches in upcoming surveys and the new population of lenses that will be discovered.
      PubDate: 2024-02-21
       
  • Tidal Dissipation in Giant Planets

    • Free pre-print version: Loading...

      Abstract: Abstract Tidal interactions between moons and planets can have major effects on the orbits, spins, and thermal evolution of the moons. In the Saturn system, tidal dissipation in the planet transfers angular momentum from Saturn to the moons, causing them to migrate outwards. The rate of migration is determined by the mechanism of dissipation within the planet, which is closely tied to the planet’s uncertain structure. We review current knowledge of giant planet internal structure and evolution, which has improved thanks to data from the Juno and Cassini missions. We discuss general principles of tidal dissipation, describing both equilibrium and dynamical tides, and how dissipation can occur in a solid core or a fluid envelope. Finally, we discuss the possibility of resonance locking, whereby a moon can lock into resonance with a planetary oscillation mode, producing enhanced tidal migration relative to classical theories, and possibly explaining recent measurements of moon migration rates.
      PubDate: 2024-02-20
       
  • Thermal and Tidal Evolution of Ice Giants with Growing Frozen Cores: The
           Case of Neptune

    • Free pre-print version: Loading...

      Abstract: Abstract The contrasting internal luminosity of Uranus and Neptune present a challenge to our understanding of the origin and evolution of these bodies, as well as extra-solar ice giants. The thermal evolution of Neptune is known to be nearly consistent with an entirely fluid interior, but this is not a unique solution, and does not account for the tidal dissipation required by the migration of its moons. We examine a model that has been previously shown to explain the thermal and tidal evolution of Uranus: one that features a growing, frozen core. The core traps heat in the interior, affecting the cooling time scale, and provides a source of tidal dissipation. We review the growing, frozen core model, and the computation of thermal and tidal evolution. We then apply this model to Neptune. We find that the growing frozen core model can account for the observed internal luminosity of Neptune and the migration of its moons, in the form of resonances that were either encountered or avoided in the past. We discuss prospects for observational tests of the growing frozen core model and possible implications for understanding the gas giants.
      PubDate: 2024-02-19
       
  • Long-Term Evolution of the Saturnian System

    • Free pre-print version: Loading...

      Abstract: Abstract Here we present the current state of knowledge on the long-term evolution of Saturn’s moon system due to tides within Saturn. First we provide some background on tidal evolution, orbital resonances and satellite tides. Then we address in detail some of the present and past orbital resonances between Saturn’s moons (including the Enceladus-Dione and Titan-Hyperion resonances) and what they can tell us about the evolution of the system. We also present the current state of knowledge on the spin-axis dynamics of Saturn: we discuss arguments for a (past or current) secular resonance of Saturn’s spin precession with planetary orbits, and explain the links of this resonance to the tidal evolution of Titan and a possible recent cataclysm in the Saturnian system. We also address how the moons’ orbital evolution, including resonances, affects the evolution of their interiors. Finally, we summarize the state of knowledge about the Saturnian system’s long-term evolution and discuss prospects for future progress.
      PubDate: 2024-02-19
       
  • Strong Lensing by Galaxy Clusters

    • Free pre-print version: Loading...

      Abstract: Abstract Galaxy clusters as gravitational lenses play a unique role in astrophysics and cosmology: they permit mapping the dark matter distribution on a range of scales; they reveal the properties of high and intermediate redshift background galaxies that would otherwise be unreachable with telescopes; they constrain the particle nature of dark matter and are a powerful probe of global cosmological parameters, like the Hubble constant. In this review we summarize the current status of cluster lensing observations and the insights they provide, and offer a glimpse into the capabilities that ongoing, and the upcoming next generation of telescopes and surveys will deliver. While many open questions remain, cluster lensing promises to remain at the forefront of discoveries in astrophysics and cosmology.
      PubDate: 2024-02-15
       
  • Dynamical Phenomena in the Martian Atmosphere Through Mars Express Imaging

    • Free pre-print version: Loading...

      Abstract: Abstract This review describes the dynamic phenomena in the atmosphere of Mars that are visible in images taken in the visual range through cloud formation and dust lifting. We describe the properties of atmospheric features traced by aerosols covering a large range of spatial and temporal scales, including dynamical interpretations and modelling when available. We present the areographic distribution and the daily and seasonal cycles of those atmospheric phenomena. We rely primarily on images taken by cameras on Mars Express.
      PubDate: 2024-02-12
       
  • Shapes, Rotations, Photometric and Internal Properties of Jupiter Trojans

    • Free pre-print version: Loading...

      Abstract: Abstract The Jupiter Trojans, being trapped around the stable L4 and L5 Jupiter Lagrangian points, are thought to be more primitive than the Main Belt asteroids. They are believed to have originated from a range of heliocentric distances in the trans-Neptunian region, to have subsequently been scattered inwards, and finally captured in their current location during the phase of Giant Planet migration. As a consequence, their bulk composition is expected to reflect that of the protoplanetary disk at the time and location of their formation. The photometric properties of Trojans appear to have a bi-modal distribution. A few Trojans have been discovered to be binary systems, suspected contact binaries, or to possess moonlets, which has revealed consistently low bulk densities (around \(1\times 10^{3}\) kg \(\mathrm {m}^{-3}\) ) for those systems. Those estimates, together with the presence of a spin barrier between 4 and 4.8 h rotation period, suggest that low densities are a general property of the population, similar to that of cometary nuclei. Current Trojan physical properties provide clues that relate to their formation that can, in turn, be traced back to the origin of the solar system. We review here our current knowledge on the physical properties of Trojans and the methods used for their determinations. Most of these methods are based on Earth-bound observations, and are limited by the large distance to these objects. The next breakthrough will be made possible by the Lucy mission, which, by visiting several Trojans during a tour through both clouds, will address many open questions and probably raise new ones. The combination of the ground truth for select objects provided by Lucy with the context view given by the Earth-bound observations will result in powerful synergy.
      PubDate: 2024-02-12
       
  • Planned Geological Investigations of the Europa Clipper Mission

    • Free pre-print version: Loading...

      Abstract: Abstract Geological investigations planned for the Europa Clipper mission will examine the formation, evolution, and expression of geomorphic structures found on the surface. Understanding geologic features, their formation, and any recent activity are key inputs in constraining Europa’s potential for habitability. In addition to providing information about the moon’s habitability, the geologic study of Europa is compelling in and of itself. Here we provide a high-level, cross-instrument, and cross-discipline overview of the geologic investigations planned within the Europa Clipper mission. Europa’s fascinating collection of ice-focused geology provides an unparalleled opportunity to investigate the dynamics of icy shells, ice-ocean exchange processes, and global-scale tectonic and tidal stresses. We present an overview of what is currently known about the geology of Europa, from global to local scales, highlighting outstanding issues and open questions, and detailing how the Europa Clipper mission will address them. We describe the mission’s strategy for searching for and characterizing current activity in the form of possible active plumes, thermal anomalies, evidence for surface changes, and extremely fresh surface exposures. The complementary and synergistic nature of the data sets from the various instruments and their integration will be key to significantly advancing our understanding of Europa’s geology.
      PubDate: 2024-02-12
       
  • Multiple Probe Measurements at Uranus Motivated by Spatial Variability

    • Free pre-print version: Loading...

      Abstract: Abstract A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions—regarding the planet’s formation and evolution, and conditions in the protoplanetary disk—are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus’ atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.
      PubDate: 2024-02-09
       
  • Microlensing of Strongly Lensed Quasars

    • Free pre-print version: Loading...

      Abstract: Abstract Strong gravitational lensing of quasars has the potential to unlock the poorly understood physics of these fascinating objects, as well as serve as a probe of the lensing mass distribution and of cosmological parameters. In particular, gravitational microlensing by compact bodies in the lensing galaxy can enable mapping of quasar structure to \(<10^{-6}\) arcsec scales. Some of this potential has been realized over the past few decades, however the upcoming era of large sky surveys promises to bring this promise to full fruition. In this article, we review the theoretical framework of this field, describe the prominent current methods for parameter inference from quasar microlensing data across different observing modalities, and discuss the constraints so far derived on the geometry and physics of quasar inner structure. We also review the application of strong lensing and microlensing to constraining the granularity of the lens potential, i.e. the contribution of the baryonic and dark matter components, and the local mass distribution in the lens, i.e. the stellar mass function. Finally, we discuss the future of the field, including the new possibilities that will be opened by the next generation of large surveys and by new analysis methods now being developed.
      PubDate: 2024-02-07
       
  • Strong Gravitational Lensing and Microlensing of Supernovae

    • Free pre-print version: Loading...

      Abstract: Abstract Strong gravitational lensing and microlensing of supernovae (SNe) are emerging as a new probe of cosmology and astrophysics in recent years. We provide an overview of this nascent research field, starting with a summary of the first discoveries of strongly lensed SNe. We describe the use of the time delays between multiple SN images as a way to measure cosmological distances and thus constrain cosmological parameters, particularly the Hubble constant, whose value is currently under heated debates. New methods for measuring the time delays in lensed SNe have been developed, and the sample of lensed SNe from the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST) is expected to provide competitive cosmological constraints. Lensed SNe are also powerful astrophysical probes. We review the usage of lensed SNe to constrain SN progenitors, acquire high-z SN spectra through lensing magnifications, infer SN sizes via microlensing, and measure properties of dust in galaxies. The current challenge in the field is the rarity and difficulty in finding lensed SNe. We describe various methods and ongoing efforts to find these spectacular explosions, forecast the properties of the expected sample of lensed SNe from upcoming surveys particularly the LSST, and summarize the observational follow-up requirements to enable the various scientific studies. We anticipate the upcoming years to be exciting with a boom in lensed SN discoveries.
      PubDate: 2024-02-05
       
  • Essentials of Strong Gravitational Lensing

    • Free pre-print version: Loading...

      Abstract: Abstract Of order one in \(10^{3}\) quasars and high-redshift galaxies appears in the sky as multiple images as a result of gravitational lensing by unrelated galaxies and clusters that happen to be in the foreground. While the basic phenomenon is a straightforward consequence of general relativity, there are many non-obvious consequences that make multiple-image lensing systems (aka strong gravitational lenses) remarkable astrophysical probes in several different ways. This article is an introduction to the essential concepts and terminology in this area, emphasizing physical insight. The key construct is the Fermat potential or arrival-time surface: from it the standard lens equation, and the notions of image parities, magnification, critical curves, caustics, and degeneracies all follow. The advantages and limitations of the usual simplifying assumptions (geometrical optics, small angles, weak fields, thin lenses) are noted, and to the extent possible briefly, it is explained how to go beyond these. Some less well-known ideas are discussed at length: arguments using wavefronts show that much of the theory carries over unchanged to the regime of strong gravitational fields; saddle-point contours explain how even the most complicated image configurations are made up of just two ingredients. Orders of magnitude, and the question of why strong lensing is most common for objects at cosmological distance, are also discussed. The challenges of lens modeling, and diverse strategies developed to overcome them, are discussed in general terms, without many technical details.
      PubDate: 2024-02-05
       
  • Science with a Small Two-Band UV-Photometry Mission I: Mission Description
           and Follow-up Observations of Stellar Transients

    • Free pre-print version: Loading...

      Abstract: Abstract This is the first in a collection of three papers introducing the science with an ultra-violet (UV) space telescope on an approximately 130 kg small satellite with a moderately fast re-pointing capability and a real-time alert communication system approved for a Czech national space mission. The mission, called Quick Ultra-Violet Kilonova surveyor—QUVIK, will provide key follow-up capabilities to increase the discovery potential of gravitational wave observatories and future wide-field multi-wavelength surveys. The primary objective of the mission is the measurement of the UV brightness evolution of kilonovae, resulting from mergers of neutron stars, to distinguish between different explosion scenarios. The mission, which is designed to be complementary to the Ultraviolet Transient Astronomy Satellite—ULTRASAT, will also provide unique follow-up capabilities for other transients both in the near- and far-UV bands. Between the observations of transients, the satellite will target other objects described in this collection of papers, which demonstrates that a small and relatively affordable dedicated UV-space telescope can be transformative for many fields of astrophysics.
      PubDate: 2024-02-02
       
  • Atmospheric Science Questions for a Uranian Probe

    • Free pre-print version: Loading...

      Abstract: Abstract The Ice Giants represent a unique and relatively poorly characterized class of planets that have been largely unexplored since the brief Voyager 2 flyby in the late 1980s. Uranus is particularly enigmatic, due to its extreme axial tilt, offset magnetic field, apparent low heat budget, mysteriously cool stratosphere and warm thermosphere, as well as a lack of well-defined, long-lived storm systems and distinct atmospheric features. All these characteristics make Uranus a scientifically intriguing target, particularly for missions able to complete in situ measurements. The 2023-2032 Decadal Strategy for Planetary Science and Astrobiology prioritized a flagship orbiter and probe to explore Uranus with the intent to “...transform our knowledge of Ice Giants in general and the Uranian system in particular” (National Academies of Sciences, Engineering, and Medicine in Origins, worlds, and life: a decadal strategy for planetary science and astrobiology 2023-2032, The National Academies Press, Washington, 2022). In support of this recommendation, we present community-supported science questions, key measurements, and a suggested instrument suite that focuses on the exploration and characterization of the Uranian atmosphere by an in situ probe. The scope of these science questions encompasses the origin, evolution, and current processes that shape the Uranian atmosphere, and in turn the Uranian system overall. Addressing these questions will inform vital new insights about Uranus, Ice Giants and Gas Giants in general, the large population of Neptune-sized exoplanets, and the Solar System as a whole.
      PubDate: 2024-02-02
       
  • The Comet Interceptor Mission

    • Free pre-print version: Loading...

      Abstract: Abstract Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object' What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind' The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum \(\varDelta \) V capability of \(600\text{ ms}^{-1}\) . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
      PubDate: 2024-01-24
       
  • The Deep Oxygen Abundance in Solar System Giant Planets, with a New
           Derivation for Saturn

    • Free pre-print version: Loading...

      Abstract: Abstract Deep elemental composition is a challenging measurement to achieve in the giant planets of the solar system. Yet, knowledge of the deep composition offers important insights in the internal structure of these planets, their evolutionary history and their formation scenarios. A key element whose deep abundance is difficult to obtain is oxygen, because of its propensity for being in condensed phases such as rocks and ices. In the atmospheres of the giant planets, oxygen is largely stored in water molecules that condense below the observable levels. At atmospheric levels that can be investigated with remote sensing, water abundance can modify the observed meteorology, and meteorological phenomena can distribute water through the atmosphere in complex ways that are not well understood and that encompass deeper portions of the atmosphere. The deep oxygen abundance provides constraints on the connection between atmosphere and interior and on the processes by which other elements were trapped, making its determination an important element to understand giant planets. In this paper, we review the current constraints on the deep oxygen abundance of the giant planets, as derived from observations and thermochemical models.
      PubDate: 2024-01-22
       
  • Magnetic Reconnection at Planetary Bodies and Astrospheres

    • Free pre-print version: Loading...

      Abstract: Abstract Magnetic reconnection is a fundamental mechanism for the transport of mass and energy in planetary magnetospheres and astrospheres. While the process of reconnection is itself ubiquitous across a multitude of systems, the techniques used for its analysis can vary across scientific disciplines. Here we frame the latest understanding of reconnection theory by missions such as NASA’s Magnetospheric Multiscale (MMS) mission for use throughout the solar system and beyond. We discuss how reconnection can couple magnetized obstacles to both sub- and super-magnetosonic upstream flows. In addition, we address the need to model sheath plasmas and field-line draping around an obstacle to accurately parameterize the possibility for reconnection to occur. We conclude with a discussion of how reconnection energy conversion rates scale throughout the solar system. The results presented are not only applicable to within our solar system but also to astrospheres and exoplanets, such as the first recently detected exoplanet magnetosphere of HAT-11-1b.
      PubDate: 2024-01-19
       
  • The Scientific Calibration of the Dawn Framing Camera

    • Free pre-print version: Loading...

      Abstract: Abstract NASA’s Dawn mission visited the large main-belt asteroids Ceres and Vesta, returning a rich data set. Its science and navigation cameras, Framing Cameras 1 and 2, provided more than 100,000 surface images in total of both targets with seven colour and one panchromatic channels. This paper summarizes the scientific calibration of the Framing Camera images, combining information from on-ground and in-flight calibration campaigns. We describe the calibration methods, algorithms, and parameters that led to the final level 1c data product, including correcting stray light sources. In addition, we detail the performance and stability of both instruments.
      PubDate: 2024-01-09
       
  • Improved Design of an Advanced Ice Giants Net Flux Radiometer

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, the improved design of an Ice Giants Net Flux Radiometer (IG-NFR), for inclusion as a payload on a future Uranus probe mission, is given. IG-NFR will measure the net radiation flux, in seven spectral bands, each with a 10° Field-Of-View (FOV) and in five viewing angles as a function of altitude. Net flux measurements within spectral filter bands, ranging from solar to far-infrared, will help derive radiative heating and cooling profiles, and will significantly contribute to our understanding of the planet’s atmospheric heat balance and structure, tropospheric 3-D flow, and compositions and opacities of the cloud layers. The IG-NFR uses an array of non-imaging Winston cones integrated to a matched thermopile detector Focal Plane Assembly (FPA), with individual bandpass filters and windows, housed in a vacuum micro-vessel. The FPA thermopile detector signals are read out in parallel mode, amplified and processed by a multi-channel digitizer application specific integrated circuit (MCD ASIC) under field programmable gate array (FPGA) control. The vacuum micro-vessel rotates providing chopping between FOV’s of upward and downward radiation fluxes. This unique design allows for small net flux measurements in the presence of large ambient fluxes and rapidly changing temperatures during the probe descent to ≥10 bar pressure.
      PubDate: 2024-01-09
       
  • The Uranus Multi-Experiment Radiometer for Haze and Clouds
           Characterization

    • Free pre-print version: Loading...

      Abstract: Abstract The aerosols (clouds and hazes) on Uranus are one of the main elements for understanding the thermal structure and dynamics of its atmosphere. Aerosol particles absorb and scatter the solar radiation, directly affecting the energy balance that drives the atmospheric dynamics of the planet. In this sense, aerosol information such as the vertical distribution or optical properties is essential for characterizing the interactions between sunlight and aerosol particles at each altitude in the atmosphere and for understanding the energy balance of the planet’s atmosphere. Moreover, the distribution of aerosols in the atmosphere provides key information on the global circulation of the planet (e.g., regions of upwelling or subsidence). To address this challenge, we propose the Uranus Multi-experiment Radiometer (UMR), a lightweight instrument designed to characterize the aerosols in Uranus’ atmosphere as part of the upcoming Uranus Flagship mission’s descending probe payload. The scientific goals of UMR are: (1) to study the variation of the solar radiation in the ultra-violet (UV) with altitude and characterize the energy deposition in the atmosphere; (2) to study the vertical distribution of the hazes and clouds and characterize their scattering and optical properties; (3) to investigate the heating rates of the atmosphere by directly measuring the upward and downward fluxes; and (4) to study the cloud vertical distribution and composition at pressures where sunlight is practically negligible (p > 4-5 bars). The instrument includes a set of photodetectors, field-of-view masks, a light infrared lamp, and interference filters. It draws on the heritage of previous instruments developed at the Instituto Nacional de Técnica Aeroespacial (INTA) that participated in the exploration of Mars, where similar technology has demonstrated its endurance in extreme environments while utilizing limited resources regarding power consumption, mass and volume footprints, and data budget. The radiometer’s design and characteristics make it a valuable complementary payload for studying Uranus’ atmosphere with a high scientific return.
      PubDate: 2024-01-09
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.220.62.183
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> AERONAUTICS AND SPACE FLIGHT (Total: 124 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.220.62.183
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-