Authors:Czerwiński; Sebastian Abstract: A harmonious coloring of a $k$-uniform hypergraph $H$ is a vertex coloring such that no two vertices in the same edge have the same color, and each $k$-element subset of colors appears on at most one edge. The harmonious number $h(H)$ is the least number of colors needed for such a coloring. The paper contains a new proof of the upper bound $h(H)=O(\sqrt[k]{k!m})$ on the harmonious number of hypergraphs of maximum degree $\Delta$ with $m$ edges. We use the local cut lemma of A. Bernshteyn. PubDate: Tue, 16 Jul 2024 07:10:02 +000

Authors:Coudert; David, Coulomb, Samuel, Ducoffe, Guillaume Abstract: Let u and v be vertices in a connected graph G = (V, E). For any integer k such that 0 ≤ k ≤ dG (u, v), the k-slice Sk (u, v) contains all vertices x on a shortest uv-path such that dG (u, x) = k. The leanness of G is the maximum diameter of a slice. This metric graph invariant has been studied under different names, such as "interval thinness" and "fellow traveler property". Graphs with leanness equal to 0, a.k.a. geodetic graphs, also have received special attention in Graph Theory. The practical computation of leanness in real-life complex networks has been studied recently (Mohammed et al., COMPLEX NETWORKS'21). In this paper, we give a finer-grained complexity analysis of two related problems, namely: deciding whether the leanness of a graph G is at most some small value ℓ; and computing the leanness on specific graph classes. We obtain improved algorithms in some cases, and time complexity lower bounds under plausible hypotheses. PubDate: Mon, 08 Jul 2024 15:21:39 +000

Authors:Adenbaum; Ben, Wilson, Alexander Abstract: We introduce coloring groups, which are permutation groups obtained from a proper edge coloring of a graph. These groups generalize the generalized toggle groups of Striker (which themselves generalize the toggle groups introduced by Cameron and Fon-der-Flaass). We present some general results connecting the structure of a coloring group to the structure of its graph coloring, providing graph-theoretic characterizations of the centralizer and primitivity of a coloring group. We apply these results particularly to generalized toggle groups arising from trees as well as coloring groups arising from the independence posets introduced by Thomas and Williams. PubDate: Sun, 07 Jul 2024 15:24:33 +000

Authors:Darbinyan; Samvel Kh. Abstract: In this paper we prove the following new sufficient condition for a digraph to be Hamiltonian: {\it Let $D$ be a 2-strong digraph of order $n\geq 9$. If $n-1$ vertices of $D$ have degrees at least $n+k$ and the remaining vertex has degree at least $n-k-4$, where $k$ is a non-negative integer, then $D$ is Hamiltonian}. This is an extension of Ghouila-Houri's theorem for 2-strong digraphs and is a generalization of an early result of the author (DAN Arm. SSR (91(2):6-8, 1990). The obtained result is best possible in the sense that for $k=0$ there is a digraph of order $n=8$ (respectively, $n=9$) with the minimum degree $n-4=4$ (respectively, with the minimum $n-5=4$) whose $n-1$ vertices have degrees at least $n-1$, but it is not Hamiltonian. We also give a new sufficient condition for a 3-strong digraph to be Hamiltonian-connected. PubDate: Mon, 24 Jun 2024 12:52:03 +000

Authors:Baste; Julien Abstract: Given two integers $\ell$ and $p$ as well as $\ell$ graph classes $\mathcal{H}_1,\ldots,\mathcal{H}_\ell$, the problems $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, \break $\mathsf{VertPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$, and $\mathsf{EdgePart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$ ask, given graph $G$ as input, whether $V(G)$, $V(G)$, $E(G)$ respectively can be partitioned into $\ell$ sets $S_1, \ldots, S_\ell$ such that, for each $i$ between $1$ and $\ell$, $G[S_i] \in \mathcal{H}_i$, $G[S_i] \in \mathcal{H}_i$, $(V(G),S_i) \in \mathcal{H}_i$ respectively. Moreover in $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, we request that the number of edges with endpoints in different sets of the partition is bounded by $p$. We show that if there exist dynamic programming tree-decomposition-based algorithms for recognizing the graph classes $\mathcal{H}_i$, for each $i$, then we can constructively create a dynamic programming tree-decomposition-based algorithms for $\mathsf{GraphPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell,p)$, $\mathsf{VertPart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$, and $\mathsf{EdgePart}(\mathcal{H}_1, \ldots, \mathcal{H}_\ell)$. We apply this approach to known problems. For well-studied problems, like VERTEX COVER and GRAPH $q$-COLORING, we obtain running times that are comparable to those of the best known problem-specific algorithms. For an exotic problem from bioinformatics, called DISPLAYGRAPH, this approach improves the known algorithm parameterized by treewidth. PubDate: Mon, 24 Jun 2024 07:03:42 +000

Authors:Hengeveld; Simon, Miltzow, Tillmann Abstract: Given a closed simple polygon $P$, we say two points $p,q$ see each other if the segment $pq$ is fully contained in $P$. The art gallery problem seeks a minimum size set $G\subset P$ of guards that sees $P$ completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods and is attributed to Sharir. As the art gallery problem is ER-complete, it seems unlikely to avoid algebraic methods, without additional assumptions. In this paper, we introduce the notion of vision stability. In order to describe vision stability consider an enhanced guard that can see "around the corner" by an angle of $\delta$ or a diminished guard whose vision is by an angle of $\delta$ "blocked" by reflex vertices. A polygon $P$ has vision stability $\delta$ if the optimal number of enhanced guards to guard $P$ is the same as the optimal number of diminished guards to guard $P$. We will argue that most relevant polygons are vision stable. We describe a one-shot vision stable algorithm that computes an optimal guard set for visionstable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision stable polygon. We implemented an iterative visionstable algorithm and show its practical performance is slower, but comparable with other state of the art algorithms. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord $c$ of a polygon, we denote by $n(c)$ the number of vertices visible from $c$. The chord-width of a polygon is the maximum $n(c)$ over all possible chords $c$. The set of vision stable polygons admits an FPT algorithm when parametrized by the chord-width. Furthermore, the one-shot algorithm runs in FPT time, when parameterized by the number of reflex vertices. PubDate: Mon, 24 Jun 2024 07:01:22 +000

Authors:Wu; Deyu, Zhang, Yipei, Wang, Xiumei Abstract: An edge $e$ of a matching covered graph $G$ is removable if $G-e$ is also matching covered. Carvalho, Lucchesi, and Murty showed that every brick $G$ different from $K_4$ and $\overline{C_6}$ has at least $\Delta-2$ removable edges, where $\Delta$ is the maximum degree of $G$. In this paper, we generalize the result to irreducible near-bricks, where a graph is irreducible if it contains no single ear of length three or more. PubDate: Wed, 19 Jun 2024 15:38:38 +000

Authors:Göring; Frank, Hofmann, Tobias Abstract: A graph on at least ${{k+1}}$ vertices is uniformly $k$-connected if each pair of its vertices is connected by $k$ and not more than $k$ independent paths. We reinvestigate a recent constructive characterization of uniformly $3$-connected graphs and obtain a more detailed result that relates the number of vertices to the operations involved in constructing a respective uniformly $3$-connected graph. Furthermore, we investigate how crossing numbers and treewidths behave under the mentioned constructions. We demonstrate how these results can be utilized to study the structure and properties of uniformly $3$-connected graphs with minimum number of vertices of minimum degree. PubDate: Fri, 07 Jun 2024 11:10:58 +000

Authors:Casselgren; Carl Johan, Granholm, Jonas B., Petros, Fikre B. Abstract: We consider the problem of extending partial edge colorings of iterated cartesian products of even cycles and paths, focusing on the case when the precolored edges satisfy either an Evans-type condition or is a matching. In particular, we prove that if $G=C^d_{2k}$ is the $d$th power of the cartesian product of the even cycle $C_{2k}$ with itself, and at most $2d-1$ edges of $G$ are precolored, then there is a proper $2d$-edge coloring of $G$ that agrees with the partial coloring. We show that the same conclusion holds, without restrictions on the number of precolored edges, if any two precolored edges are at distance at least $4$ from each other. For odd cycles of length at least $5$, we prove that if $G=C^d_{2k+1}$ is the $d$th power of the cartesian product of the odd cycle $C_{2k+1}$ with itself ($k\geq2$), and at most $2d$ edges of $G$ are precolored, then there is a proper $(2d+1)$-edge coloring of $G$ that agrees with the partial coloring. Our results generalize previous ones on precoloring extension of hypercubes [Journal of Graph Theory 95 (2020) 410--444]. PubDate: Tue, 04 Jun 2024 07:37:54 +000

Authors:Gonçalves; Daniel, Limouzy, Vincent, Ochem, Pascal Abstract: This paper is devoted to the study of particular geometrically defined intersection classes of graphs. Those were previously studied by Magnant and Martin, who proved that these graphs have arbitrary large chromatic number, while being triangle-free. We give several structural properties of these graphs, and we raise several questions. PubDate: Fri, 17 May 2024 09:14:11 +000

Authors:Godbole; Anant, Swickheimer, Hannah Abstract: Let $\pi_n$ be a uniformly chosen random permutation on $[n]$. Using an analysis of the probability that two overlapping consecutive $k$-permutations are order isomorphic, the authors of a recent paper showed that the expected number of distinct consecutive patterns of all lengths $k\in\{1,2,\ldots,n\}$ in $\pi_n$ is $\frac{n^2}{2}(1-o(1))$ as $n\to\infty$. This exhibited the fact that random permutations pack consecutive patterns near-perfectly. We use entirely different methods, namely the Stein-Chen method of Poisson approximation, to reprove and slightly improve their result. PubDate: Fri, 03 May 2024 08:35:37 +000

Authors:Iraids; Jānis, Smotrovs, Juris Abstract: We show that the coefficients of the representing polynomial of any monotone Boolean function are the values of the M\"obius function of an atomistic lattice related to this function. Using this we determine the representing polynomial of any Boolean function corresponding to a ST-CONNECTIVITY problem in acyclic quivers (directed acyclic multigraphs). Only monomials corresponding to unions of paths have non-zero coefficients which are $(-1)^D$ where $D$ is an easily computable function of the quiver corresponding to the monomial (it is the number of plane regions in the case of planar graphs). We determine that the number of monomials with non-zero coefficients for the two-dimensional $n \times n$ grid connectivity problem is $2^{\Omega(n^2)}$. PubDate: Mon, 29 Apr 2024 07:39:18 +000

Authors:Dourado; Mitre C., Gutierrez, Marisa, Protti, Fábio, Tondato, Silvia Abstract: A walk $u_0u_1 \ldots u_{k-1}u_k$ is a \textit{weakly toll walk} if $u_0u_i \in E(G)$ implies $u_i = u_1$ and $u_ju_k\in E(G)$ implies $u_j=u_{k-1}$. A set $S$ of vertices of $G$ is {\it weakly toll convex} if for any two non-adjacent vertices $x,y \in S$ any vertex in a weakly toll walk between $x$ and $y$ is also in $S$. The {\em weakly toll convexity} is the graph convexity space defined over weakly toll convex sets. Many studies are devoted to determine if a graph equipped with a convexity space is a {\em convex geometry}. An \emph{extreme vertex} is an element $x$ of a convex set $S$ such that the set $S\backslash\{x\}$ is also convex. A graph convexity space is said to be a convex geometry if it satisfies the Minkowski-Krein-Milman property, which states that every convex set is the convex hull of its extreme vertices. It is known that chordal, Ptolemaic, weakly polarizable, and interval graphs can be characterized as convex geometries with respect to the monophonic, geodesic, $m^3$, and toll convexities, respectively. Other important classes of graphs can also be characterized in this way. In this paper, we prove that a graph is a convex geometry with respect to the weakly toll convexity if and only if it is a proper interval graph. Furthermore, some well-known graph invariants are studied with respect to the weakly toll convexity. PubDate: Thu, 18 Apr 2024 08:34:56 +000

Authors:Forcan; Jovana, Qi, Jiayue Abstract: We study the Maker-Breaker domination game played by Dominator and Staller on the vertex set of a given graph. Dominator wins when the vertices he has claimed form a dominating set of the graph. Staller wins if she makes it impossible for Dominator to win, or equivalently, she is able to claim some vertex and all its neighbours. Maker-Breaker domination number $\gamma_{MB}(G)$ ($\gamma '_{MB}(G)$) of a graph $G$ is defined to be the minimum number of moves for Dominator to guarantee his winning when he plays first (second). We investigate these two invariants for the Cartesian product of any two graphs. We obtain upper bounds for the Maker-Breaker domination number of the Cartesian product of two arbitrary graphs. Also, we give upper bounds for the Maker-Breaker domination number of the Cartesian product of the complete graph with two vertices and an arbitrary graph. Most importantly, we prove that $\gamma'_{MB}(P_2\square P_n)=n$ for $n\geq 1$, $\gamma_{MB}(P_2\square P_n)$ equals $n$, $n-1$, $n-2$, for $1\leq n\leq 4$, $5\leq n\leq 12$, and $n\geq 13$, respectively. For the disjoint union of $P_2\square P_n$s, we show that $\gamma_{MB}'(\dot\cup_{i=1}^k(P_2\square P_n)_i)=k\cdot n$ ($n\geq 1$), and that $\gamma_{MB}(\dot\cup_{i=1}^k(P_2\square P_n)_i)$ equals $k\cdot n$, $k\cdot n-1$, $k\cdot n-2$ for $1\leq n\leq 4$, $5\leq n\leq 12$, and $n\geq 13$, respectively. PubDate: Fri, 12 Apr 2024 07:57:46 +000

Authors:Chen; Daniel, Ohlig, Sebastian Abstract: We explore new connections between complete non-ambiguous trees (CNATs) and permutations. We give a bijection between tree-like tableaux and a specific subset of CNATs. This map is used to establish and solve a recurrence relation for the number of tree-like tableaux of a fixed size without occupied corners, proving a conjecture by Laborde-Zubieta. We end by establishing a row/column swapping operation on CNATs and identify new areas for future research. PubDate: Wed, 03 Apr 2024 06:22:56 +000

Authors:Albert; Michael, Bouvel, Mathilde, Féray, Valentin, Noy, Marc Abstract: We prove that the class of 231-avoiding permutations satisfies a logical limit law, i.e. that for any first-order sentence $\Psi$, in the language of two total orders, the probability $p_{n,\Psi}$ that a uniform random 231-avoiding permutation of size $n$ satisfies $\Psi$ admits a limit as $n$ is large. Moreover, we establish two further results about the behavior and value of $p_{n,\Psi}$: (i) it is either bounded away from $0$, or decays exponentially fast; (ii) the set of possible limits is dense in $[0,1]$. Our tools come mainly from analytic combinatorics and singularity analysis. PubDate: Tue, 02 Apr 2024 07:53:07 +000

Authors:Beaudou; Laurent, Brosse, Caroline, Defrain, Oscar, Foucaud, Florent, Lagoutte, Aurélie, Limouzy, Vincent, Pastor, Lucas Abstract: The Grundy number of a graph is the maximum number of colours used by the "First-Fit" greedy colouring algorithm over all vertex orderings. Given a vertex ordering $\sigma= v_1,\dots,v_n$, the "First-Fit" greedy colouring algorithm colours the vertices in the order of $\sigma$ by assigning to each vertex the smallest colour unused in its neighbourhood. By restricting this procedure to vertex orderings that are connected, we obtain {\em connected greedy colourings}. For some graphs, all connected greedy colourings use exactly $\chi(G)$ colours; they are called {\em good graphs}. On the opposite, some graphs do not admit any connected greedy colouring using only $\chi(G)$ colours; they are called {\em ugly graphs}. We show that no perfect graph is ugly. We also give simple proofs of this fact for subclasses of perfect graphs (block graphs, comparability graphs), and show that no $K_4$-minor free graph is ugly. Moreover, our proofs are constructive, and imply the existence of polynomial-time algorithms to compute good connected orderings for these graph classes. PubDate: Tue, 02 Apr 2024 07:48:27 +000

Authors:Schwieger; Robert, Tonello, Elisa Abstract: To simplify the analysis of Boolean networks, a reduction in the number of components is often considered. A popular reduction method consists in eliminating components that are not autoregulated, using variable substitution. In this work, we show how this method can be extended, for asynchronous dynamics of Boolean networks, to the elimination of vertices that have a negative autoregulation, and study the effects on the dynamics and interaction structure. For elimination of non-autoregulated variables, the preservation of attractors is in general guaranteed only for fixed points. Here we give sufficient conditions for the preservation of complex attractors. The removal of so called mediator nodes (i.e. vertices with indegree and outdegree one) is often considered, and frequently does not affect the attractor landscape. We clarify that this is not always the case, and in some situations even subtle changes in the interaction structure can lead to a different asymptotic behaviour. Finally, we use properties of the more general elimination method introduced here to give an alternative proof for a bound on the number of attractors of asynchronous Boolean networks in terms of the cardinality of positive feedback vertex sets of the interaction graph. PubDate: Fri, 22 Mar 2024 15:56:47 +000

Authors:Dourado; Mitre C., Ponciano, Vitor S., da Silva, Rômulo L. O. Abstract: In this corrigendum, we give a counterexample to Theorem 5.2 in "On the monophonic rank of a graph" [Discrete Math. Theor. Comput. Sci. 24:2 (2022) #3]. We also present a polynomial-time algorithm for computing the monophonic rank of a starlike graph. PubDate: Fri, 22 Mar 2024 15:54:12 +000

Authors:Lafrenière; Nadia, Zhuang, Yan Abstract: This paper studies the relationship between the modified Foata$\unicode{x2013}$Strehl action (a.k.a. valley-hopping)$\unicode{x2014}$a group action on permutations used to demonstrate the $\gamma$-positivity of the Eulerian polynomials$\unicode{x2014}$and the number of rixed points $\operatorname{rix}$$\unicode{x2014}$a recursively-defined permutation statistic introduced by Lin in the context of an equidistribution problem. We give a linear-time iterative algorithm for computing the set of rixed points, and prove that the $\operatorname{rix}$ statistic is homomesic under valley-hopping. We also demonstrate that a bijection $\Phi$ introduced by Lin and Zeng in the study of the $\operatorname{rix}$ statistic sends orbits of the valley-hopping action to orbits of a cyclic version of valley-hopping, which implies that the number of fixed points $\operatorname{fix}$ is homomesic under cyclic valley-hopping. PubDate: Tue, 05 Mar 2024 14:23:00 +000

Authors:Fang; Wenjie Abstract: In a recent preprint, Matherne, Morales and Selover conjectured that two different representations of unit interval posets are related by the famous zeta map in $q,t$-Catalan combinatorics. This conjecture was proved recently by G\'elinas, Segovia and Thomas using induction. In this short note, we provide a bijective proof of the same conjecture with a reformulation of the zeta map using left-aligned colored trees, first proposed in the study of parabolic Tamari lattices. PubDate: Fri, 23 Feb 2024 16:38:00 +000

Authors:Lescanne; Pierre Abstract: Holonomic equations are recursive equations which allow computing efficiently numbers of combinatoric objects. Rémy showed that the holonomic equation associated with binary trees yields an efficient linear random generator of binary trees. I extend this paradigm to Motzkin trees and Schröder trees and show that despite slight differences my algorithm that generates random Schröder trees has linear expected complexity and my algorithm that generates Motzkin trees is in O(n) expected complexity, only if we can implement a specific oracle with a O(1) complexity. For Motzkin trees, I propose a solution which works well for realistic values (up to size ten millions) and yields an efficient algorithm. PubDate: Fri, 23 Feb 2024 13:48:42 +000

Authors:Gholami; Mostafa, Rowshan, Yaser Abstract: For the given bipartite graphs $G_1,G_2,\ldots,G_t$, the multicolor bipartite Ramsey number $BR(G_1,G_2,\ldots,G_t)$ is the smallest positive integer $b$ such that any $t$-edge-coloring of $K_{b,b}$ contains a monochromatic subgraph isomorphic to $G_i$, colored with the $i$th color for some $1\leq i\leq t$. We compute the exact values of the bipartite Ramsey numbers $BR(C_8,C_{2n})$ for $n\geq2$. PubDate: Fri, 16 Feb 2024 13:09:25 +000

Authors:Javanian; Mehri, Aguech, Rafik Abstract: The exponential recursive trees model several kinds of networks. At each step of growing of these trees, each node independently attracts a new node with probability p, or fails to do with probability 1 − p. Here, we investigate the number of protected nodes, total path length of protected nodes, and a mean study of the protected node profile of such trees. PubDate: Thu, 11 Jan 2024 19:09:25 +000

Authors:Pitois; François, Haddad, Mohammed, Seba, Hamida, Togni, Olivier Abstract: Inspired by the split decomposition of graphs and rank-width, we introduce the notion of $r$-splits. We focus on the family of $r$-splits of a graph of order $n$, and we prove that it forms a hypergraph with several properties. We prove that such hypergraphs can be represented using only $\mathcal O(n^{r+1})$ of its hyperedges, despite its potentially exponential number of hyperedges. We also prove that there exist hypergraphs that need at least $\Omega(n^r)$ hyperedges to be represented, using a generalization of set orthogonality. PubDate: Tue, 02 Jan 2024 14:39:20 +000