for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> MATHEMATICS (Total: 910 journals)
    - APPLIED MATHEMATICS (75 journals)
    - GEOMETRY AND TOPOLOGY (20 journals)
    - MATHEMATICS (677 journals)
    - MATHEMATICS (GENERAL) (41 journals)
    - NUMERICAL ANALYSIS (19 journals)
    - PROBABILITIES AND MATH STATISTICS (78 journals)

MATHEMATICS (677 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 538 Journals sorted alphabetically
Abakós     Open Access   (Followers: 4)
Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg     Hybrid Journal   (Followers: 3)
Academic Voices : A Multidisciplinary Journal     Open Access   (Followers: 2)
Accounting Perspectives     Full-text available via subscription   (Followers: 7)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Mathematical Software (TOMS)     Hybrid Journal   (Followers: 6)
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 25)
Acta Applicandae Mathematicae     Hybrid Journal   (Followers: 1)
Acta Mathematica     Hybrid Journal   (Followers: 11)
Acta Mathematica Hungarica     Hybrid Journal   (Followers: 2)
Acta Mathematica Scientia     Full-text available via subscription   (Followers: 5)
Acta Mathematica Sinica, English Series     Hybrid Journal   (Followers: 6)
Acta Mathematica Vietnamica     Hybrid Journal  
Acta Mathematicae Applicatae Sinica, English Series     Hybrid Journal  
Advanced Science Letters     Full-text available via subscription   (Followers: 9)
Advances in Applied Clifford Algebras     Hybrid Journal   (Followers: 3)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 6)
Advances in Complex Systems     Hybrid Journal   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 18)
Advances in Decision Sciences     Open Access   (Followers: 5)
Advances in Difference Equations     Open Access   (Followers: 2)
Advances in Fixed Point Theory     Open Access   (Followers: 5)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 11)
Advances in Linear Algebra & Matrix Theory     Open Access   (Followers: 2)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Mathematical Physics     Open Access   (Followers: 5)
Advances in Mathematics     Full-text available via subscription   (Followers: 10)
Advances in Numerical Analysis     Open Access   (Followers: 4)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Pure and Applied Mathematics     Hybrid Journal   (Followers: 6)
Advances in Pure Mathematics     Open Access   (Followers: 4)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Aequationes Mathematicae     Hybrid Journal   (Followers: 2)
African Journal of Educational Studies in Mathematics and Sciences     Full-text available via subscription   (Followers: 5)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Afrika Matematika     Hybrid Journal   (Followers: 1)
Air, Soil & Water Research     Open Access   (Followers: 9)
AKSIOMA Journal of Mathematics Education     Open Access   (Followers: 1)
Al-Jabar : Jurnal Pendidikan Matematika     Open Access  
Algebra and Logic     Hybrid Journal   (Followers: 4)
Algebra Colloquium     Hybrid Journal   (Followers: 4)
Algebra Universalis     Hybrid Journal   (Followers: 2)
Algorithmic Operations Research     Full-text available via subscription   (Followers: 5)
Algorithms     Open Access   (Followers: 11)
Algorithms Research     Open Access   (Followers: 1)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Mathematical Analysis     Open Access  
American Journal of Mathematics     Full-text available via subscription   (Followers: 7)
American Journal of Operations Research     Open Access   (Followers: 5)
American Mathematical Monthly     Full-text available via subscription   (Followers: 7)
An International Journal of Optimization and Control: Theories & Applications     Open Access   (Followers: 8)
Analele Universitatii Ovidius Constanta - Seria Matematica     Open Access   (Followers: 1)
Analysis     Hybrid Journal   (Followers: 2)
Analysis and Applications     Hybrid Journal   (Followers: 1)
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 3)
Analysis Mathematica     Full-text available via subscription  
Annales Mathematicae Silesianae     Open Access  
Annales mathématiques du Québec     Hybrid Journal   (Followers: 4)
Annales UMCS, Mathematica     Open Access   (Followers: 1)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica     Open Access  
Annali di Matematica Pura ed Applicata     Hybrid Journal   (Followers: 1)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Discrete Mathematics     Full-text available via subscription   (Followers: 6)
Annals of Mathematics     Full-text available via subscription  
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of the Alexandru Ioan Cuza University - Mathematics     Open Access  
Annals of the Institute of Statistical Mathematics     Hybrid Journal   (Followers: 1)
Annals of West University of Timisoara - Mathematics     Open Access  
Annuaire du Collège de France     Open Access   (Followers: 5)
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applications of Mathematics     Hybrid Journal   (Followers: 1)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Mathematics     Open Access   (Followers: 3)
Applied Mathematics     Open Access   (Followers: 6)
Applied Mathematics & Optimization     Hybrid Journal   (Followers: 6)
Applied Mathematics - A Journal of Chinese Universities     Hybrid Journal  
Applied Mathematics Letters     Full-text available via subscription   (Followers: 1)
Applied Mathematics Research eXpress     Hybrid Journal   (Followers: 1)
Applied Network Science     Open Access   (Followers: 1)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Arab Journal of Mathematical Sciences     Open Access   (Followers: 3)
Arabian Journal of Mathematics     Open Access   (Followers: 2)
Archive for Mathematical Logic     Hybrid Journal   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Arkiv för Matematik     Hybrid Journal   (Followers: 1)
Arnold Mathematical Journal     Hybrid Journal   (Followers: 1)
Artificial Satellites : The Journal of Space Research Centre of Polish Academy of Sciences     Open Access   (Followers: 21)
Asia-Pacific Journal of Operational Research     Hybrid Journal   (Followers: 3)
Asian Journal of Algebra     Open Access   (Followers: 1)
Asian Journal of Current Engineering & Maths     Open Access  
Asian-European Journal of Mathematics     Hybrid Journal   (Followers: 2)
Australian Mathematics Teacher, The     Full-text available via subscription   (Followers: 7)
Australian Primary Mathematics Classroom     Full-text available via subscription   (Followers: 3)
Australian Senior Mathematics Journal     Full-text available via subscription   (Followers: 1)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Axioms     Open Access   (Followers: 1)
Baltic International Yearbook of Cognition, Logic and Communication     Open Access  
Basin Research     Hybrid Journal   (Followers: 5)
BIBECHANA     Open Access   (Followers: 2)
BIT Numerical Mathematics     Hybrid Journal  
BoEM - Boletim online de Educação Matemática     Open Access  
Boletim Cearense de Educação e História da Matemática     Open Access  
Boletim de Educação Matemática     Open Access  
Boletín de la Sociedad Matemática Mexicana     Hybrid Journal  
Bollettino dell'Unione Matematica Italiana     Full-text available via subscription   (Followers: 1)
British Journal of Mathematical and Statistical Psychology     Full-text available via subscription   (Followers: 21)
Bruno Pini Mathematical Analysis Seminar     Open Access  
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica     Open Access   (Followers: 11)
Bulletin des Sciences Mathamatiques     Full-text available via subscription   (Followers: 4)
Bulletin of Dnipropetrovsk University. Series : Communications in Mathematical Modeling and Differential Equations Theory     Open Access   (Followers: 1)
Bulletin of Mathematical Sciences     Open Access   (Followers: 1)
Bulletin of the Brazilian Mathematical Society, New Series     Hybrid Journal  
Bulletin of the London Mathematical Society     Hybrid Journal   (Followers: 4)
Bulletin of the Malaysian Mathematical Sciences Society     Hybrid Journal  
Calculus of Variations and Partial Differential Equations     Hybrid Journal  
Canadian Journal of Science, Mathematics and Technology Education     Hybrid Journal   (Followers: 20)
Carpathian Mathematical Publications     Open Access   (Followers: 1)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
CHANCE     Hybrid Journal   (Followers: 6)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
ChemSusChem     Hybrid Journal   (Followers: 7)
Chinese Annals of Mathematics, Series B     Hybrid Journal  
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chinese Journal of Mathematics     Open Access  
Clean Air Journal     Full-text available via subscription   (Followers: 2)
Cogent Mathematics     Open Access   (Followers: 2)
Cognitive Computation     Hybrid Journal   (Followers: 4)
Collectanea Mathematica     Hybrid Journal  
College Mathematics Journal     Full-text available via subscription   (Followers: 3)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Commentarii Mathematici Helvetici     Hybrid Journal   (Followers: 1)
Communications in Combinatorics and Optimization     Open Access  
Communications in Contemporary Mathematics     Hybrid Journal  
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications On Pure & Applied Mathematics     Hybrid Journal   (Followers: 3)
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Complex Variables and Elliptic Equations: An International Journal     Hybrid Journal  
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Comptes Rendus Mathematique     Full-text available via subscription   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computers & Mathematics with Applications     Full-text available via subscription   (Followers: 7)
Concrete Operators     Open Access   (Followers: 4)
Confluentes Mathematici     Hybrid Journal  
Contributions to Game Theory and Management     Open Access  
COSMOS     Hybrid Journal  
Cryptography and Communications     Hybrid Journal   (Followers: 14)
Cuadernos de Investigación y Formación en Educación Matemática     Open Access  
Cubo. A Mathematical Journal     Open Access  
Current Research in Biostatistics     Open Access   (Followers: 10)
Czechoslovak Mathematical Journal     Hybrid Journal   (Followers: 1)
Demographic Research     Open Access   (Followers: 11)
Demonstratio Mathematica     Open Access  
Dependence Modeling     Open Access  
Design Journal : An International Journal for All Aspects of Design     Hybrid Journal   (Followers: 28)
Developments in Clay Science     Full-text available via subscription   (Followers: 1)
Developments in Mineral Processing     Full-text available via subscription   (Followers: 3)
Dhaka University Journal of Science     Open Access  
Differential Equations and Dynamical Systems     Hybrid Journal   (Followers: 3)
Differentsial'nye Uravneniya     Open Access  
Discrete Mathematics     Hybrid Journal   (Followers: 8)
Discrete Mathematics & Theoretical Computer Science     Open Access  
Discrete Mathematics, Algorithms and Applications     Hybrid Journal   (Followers: 2)
Discussiones Mathematicae - General Algebra and Applications     Open Access  
Discussiones Mathematicae Graph Theory     Open Access   (Followers: 1)
Diskretnaya Matematika     Full-text available via subscription  
Dnipropetrovsk University Mathematics Bulletin     Open Access  
Doklady Akademii Nauk     Open Access  
Doklady Mathematics     Hybrid Journal  
Duke Mathematical Journal     Full-text available via subscription   (Followers: 1)
Eco Matemático     Open Access  
Edited Series on Advances in Nonlinear Science and Complexity     Full-text available via subscription  
Electronic Journal of Differential Equations     Open Access  
Electronic Journal of Graph Theory and Applications     Open Access   (Followers: 2)
Electronic Notes in Discrete Mathematics     Full-text available via subscription   (Followers: 2)
Elemente der Mathematik     Full-text available via subscription   (Followers: 4)
Energy for Sustainable Development     Hybrid Journal   (Followers: 9)
Enseñanza de las Ciencias : Revista de Investigación y Experiencias Didácticas     Open Access  
Ensino da Matemática em Debate     Open Access  
Entropy     Open Access   (Followers: 5)
ESAIM: Control Optimisation and Calculus of Variations     Full-text available via subscription   (Followers: 1)
European Journal of Combinatorics     Full-text available via subscription   (Followers: 5)

        1 2 3 4 | Last

Journal Cover Cognitive Computation
  [SJR: 0.692]   [H-I: 19]   [4 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1866-9964 - ISSN (Online) 1866-9956
   Published by Springer-Verlag Homepage  [2355 journals]
  • Rank-Adaptive Non-Negative Matrix Factorization
    • Authors: Dong Shan; Xinzheng Xu; Tianming Liang; Shifei Ding
      Abstract: Dimension reduction is a challenge task in data processing, especially in high-dimensional data processing area. Non-negative matrix factorization (NMF), as a classical dimension reduction method, has a contribution to the parts-based representation for the characteristics of non-negative constraints in the NMF algorithm. In this paper, the NMF algorithm is introduced to extract local features for dimension reduction. Considering the problem of which NMF is required to define the number of the decomposition rank manually, we proposed a rank-adaptive NMF algorithm, in which the affinity propagation (AP) clustering algorithm is introduced to determine adaptively the number of the decomposition rank of NMF. Then, the rank-adaptive NMF algorithm is used to extract features for the original image. After that, a low-dimensional representation of the original image is obtained through the projection from the original images to the feature space. Finally, we used extreme learning machine (ELM) and k-nearest neighbor (KNN) as the classifier to classify those low-dimensional feature representations. The experimental results demonstrate that the decomposition rank determined by the AP clustering algorithm can reflect the characteristics of the original data. When it is combined with the classification algorithm ELM or KNN and applied to handwritten character recognition, the proposed method not only reduces the dimension of original images but also performs well in terms of classification accuracy and time consumption. A new rank-adaptive NMF algorithm is proposed based on the AP clustering algorithm and the original NMF algorithm. According to this algorithm, the low-dimensional representation of the original data can be obtained without any prior knowledge. In addition, the proposed rank-adaptive NMF algorithm combined with the ELM and KNN classification algorithms performs well.
      PubDate: 2018-02-07
      DOI: 10.1007/s12559-018-9546-0
       
  • D-Intuitionistic Hesitant Fuzzy Sets and their Application in Multiple
           Attribute Decision Making
    • Authors: Xihua Li; Xiaohong Chen
      Abstract: Hesitant fuzzy sets (HFSs) and generalized hesitant fuzzy sets (GHFSs) provide useful tools for uncertain information processing in situations in which decision makers have doubts among several possible membership degrees. In practice, however, decision makers may have a degree of belief for hesitant memberships based on their knowledge and experience. The aim of our study is to propose a new manifestation of uncertain information, called D-intuitionistic hesitant fuzzy sets (D-IHFSs), by combining D numbers and GHFSs. First, arithmetic operations, score functions, and comparison laws related to D-IHFSs are introduced. Next, an extension principle is proposed for the application of aggregation operators of GHFSs to the D-intuitionistic hesitant fuzzy environment. Finally, a decision-making approach based on D-IHFSs is developed. An illustrative example shows the effectiveness and flexibility of D-IHFSs to handle uncertainties, such as fuzziness, hesitation, and incompleteness. D-IHFSs, combining D numbers and GHFSs, improve decision makers’ ability to handle uncertain information.
      PubDate: 2018-02-04
      DOI: 10.1007/s12559-018-9544-2
       
  • A Novel Spatiotemporal Longitudinal Methodology for Predicting Obesity
           Using Near Infra r ed Spectroscopy (NIRS) Cerebral Functional Activity
           Data
    • Authors: Ahsan Abdullah; Amir Hussain; Imtiaz Hussain Khan
      Abstract: Globally, there has been a dramatic increase in obesity, with prevalence in males and females expected to increase to 18 and 21%, respectively (NCD Risk Factor Collaboration, Lancet 387(10026):1377–96, 2016). However, there are hardly any data-analytic calorie-based cognitive studies, especially using non-invasive near infrared spectroscopy (NIRS) data that predict obesity using predictive data mining. Obesity is linked with neurodegenerative diseases, diabetes, and cardiovascular diseases. Thus, understanding, predicting, preventing, and managing obesity have the potential to save the lives of millions. Behavioral studies suggest that overeating in obese individuals is triggered by exaggerated brain reward center (BRC) activity to high-calorie food stimuli (Shefer et al., Neurosci Biobehav Rev 37(10):2489–503, 2013). In this paper, details of a novel research methodology are presented for a 24-month longitudinal study using a 44-channel NIRS device with the subjects in a natural environment. The proposed methodology consists of using visual stimuli of low/high calorie food items under fasting and satiated conditions for three types of subjects. The experiments consist of block design, longitudinal plan, data smoothing, BRC activation mapping, stereotactic normalization, generating paired t-test maps under fasting and non-fasting conditions and subsequently using Naïve Bayes modeling to generate obesity prediction maps for the control subjects. The simulated results consist of generation of Bayesian prediction maps using layers of paired t-test cerebral activity maps for the four BRC functional regions considered for three types of subjects, i.e., obese, control, and control subjects fed high calorie diet. We have demonstrated how cerebral functional activity data in response to visual food stimuli can be used to predict obesity in the non-obese, thus offering a non-invasive preventive measure.
      PubDate: 2018-01-30
      DOI: 10.1007/s12559-017-9541-x
       
  • Special Issue Editorial: Cognitively-Inspired Computing for Knowledge
           Discovery
    • Authors: Kaizhu Huang; Rui Zhang; Xiaobo Jin; Amir Hussain
      PubDate: 2018-01-23
      DOI: 10.1007/s12559-017-9532-y
       
  • The Fundamental Code Unit of the Brain: Towards a New Model for Cognitive
           Geometry
    • Authors: Newton Howard; Amir Hussain
      Abstract: This paper discusses the problems arising from the multidisciplinary nature of cognitive research and the need to conceptually unify insights from multiple fields into the phenomena that drive cognition. Specifically, the Fundamental Code Unit (FCU) is proposed as a means to better quantify the intelligent thought process at multiple levels of analysis. From the linguistic and behavioral output, FCU produces to the chemical and physical processes within the brain that drive it. The proposed method efficiently model the most complex decision-making process performed by the brain.
      PubDate: 2018-01-20
      DOI: 10.1007/s12559-017-9538-5
       
  • Simultaneous Feature Selection and Support Vector Machine Optimization
           Using the Grasshopper Optimization Algorithm
    • Authors: Ibrahim Aljarah; Ala’ M. Al-Zoubi; Hossam Faris; Mohammad A. Hassonah; Seyedali Mirjalili; Heba Saadeh
      Abstract: Support vector machine (SVM) is considered to be one of the most powerful learning algorithms and is used for a wide range of real-world applications. The efficiency of SVM algorithm and its performance mainly depends on the kernel type and its parameters. Furthermore, the feature subset selection that is used to train the SVM model is another important factor that has a major influence on it classification accuracy. The feature subset selection is a very important step in machine learning, specially when dealing with high-dimensional data sets. Most of the previous researches handled these important factors separately. In this paper, we propose a hybrid approach based on the Grasshopper optimisation algorithm (GOA), which is a recent algorithm inspired by the biological behavior shown in swarms of grasshoppers. The goal of the proposed approach is to optimize the parameters of the SVM model, and locate the best features subset simultaneously. Eighteen low- and high-dimensional benchmark data sets are used to evaluate the accuracy of the proposed approach. For verification, the proposed approach is compared with seven well-regarded algorithms. Furthermore, the proposed approach is compared with grid search, which is the most popular technique for tuning SVM parameters. The experimental results show that the proposed approach outperforms all of the other techniques in most of the data sets in terms of classification accuracy, while minimizing the number of selected features.
      PubDate: 2018-01-19
      DOI: 10.1007/s12559-017-9542-9
       
  • Mood Impact on Automaticity of Performance: Handwriting as Exemplar
    • Authors: Clara Rispler; Gil Luria; Allon Kahana; Sara Rosenblum
      Abstract: The goal of this study was to assess how existing handwriting research can contribute to understanding how moods impact the automatic processing of handwriting performance. We based our hypotheses on extensive research connecting mood with cognitive functions, because handwriting production was shown to be an automated cognitive task impacted by cognitive load. As far as we know, no previous research has examined the direct relationship between affect and handwriting (transcription and text generation when writing by hand). Specifically, evidence exists only for a general relationship between affect and writing (using written words to express ideas or opinions). In this experiment, 62 participants were divided into three mood groups (positive, negative, and neutral). Mood manipulation was conducted according to accepted methods of memory recall and film induction and was evaluated using the PANAS scale. Online measurements of the participants’ handwriting were captured with a tablet and electronic pen. Results showed that the strokes in the negative mood manipulation were shorter in duration and shorter in width and height. The findings presented in this article make a twofold contribution to the cognitive and biologically inspired computational studies: by integrating the study of affect with the study of cognition and by exploring additional objective performance-based evaluation of functional capabilities with the aid of a computerized device. Practical implications are discussed, as are ideas for further research.
      PubDate: 2018-01-10
      DOI: 10.1007/s12559-017-9540-y
       
  • Discriminative Deep Belief Network for Indoor Environment Classification
           Using Global Visual Features
    • Authors: Nabila Zrira; Haris Ahmad Khan; El Houssine Bouyakhf
      Abstract: Indoor environment classification, also known as indoor environment recognition, is a highly appreciated perceptual ability in mobile robots. In this paper, we present a novel approach which is centered on biologically inspired methods for recognition and representation of indoor environments. First, global visual features are extracted by using the GIST descriptor, and then we use the subsequent features for training the discriminative deep belief network (DDBN) classifier. DDBN employs a new deep architecture which is based on restricted Boltzmann machines (RBMs) and the joint density model. The back-propagation technique is used over the entire classifier to fine-tune the weights for an optimum classification. The acquired experimental results validate our approach as it performs well both in the real-world and in synthetic datasets and outperforms the Convolution Neural Networks (ConvNets) in terms of computational efficiency.
      PubDate: 2018-01-01
      DOI: 10.1007/s12559-017-9534-9
       
  • Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme
           Learning Machine
    • Authors: Lijuan Duan; Menghu Bao; Song Cui; Yuanhua Qiao; Jun Miao
      Pages: 758 - 765
      Abstract: As connections from the brain to an external device, Brain-Computer Interface (BCI) systems are a crucial aspect of assisted communication and control. When equipped with well-designed feature extraction and classification approaches, information can be accurately acquired from the brain using such systems. The Hierarchical Extreme Learning Machine (HELM) has been developed as an effective and accurate classification approach due to its deep structure and extreme learning mechanism. A classification system for motor imagery EEG signals is proposed based on the HELM combined with a kernel, herein called the Kernel Hierarchical Extreme Learning Machine (KHELM). Principle Component Analysis (PCA) is used to reduce the dimensionality of the data, and Linear Discriminant Analysis (LDA) is introduced to push the features away from different classes. To demonstrate the performance, the proposed system is applied to the BCI competition 2003 Dataset Ia, and the results are compared with those from state-of-the-art methods; we find that the accuracy is up to 94.54%.
      PubDate: 2017-12-01
      DOI: 10.1007/s12559-017-9494-0
      Issue No: Vol. 9, No. 6 (2017)
       
  • Optimization of Non-rigid Demons Registration Using Cuckoo Search
           Algorithm
    • Authors: Sayan Chakraborty; Nilanjan Dey; Sourav Samanta; Amira S. Ashour; C. Barna; M. M. Balas
      Pages: 817 - 826
      Abstract: Video processing including registration has a significant role in surveillance and real-time applications. Image registration is considered a compulsory step in video registration for numerous aspects. One of the major challenges in image registration is to determine the optimal parameters during the registration process. Bio-inspired computational including natural and artificial cognitive systems can be employed to define the optimal solutions. The present work proposed a comprehensive automatic non-rigid video set registration algorithm using Demons algorithm. For optimal velocity smoothing kernels, the demons registration is optimized using cuckoo search (CS) algorithm, where there are no previous studies that have optimized demons algorithm using CS algorithm. A comparison between the CS algorithm and the particle swarm optimization (PSO)-based demons registration is conducted to evaluate the proposed system performance. Thus, the correlation coefficient is taken as a fitness function. The obtained results using CS show a minor increment of the optimized fitness value compared to PSO-based framework value. The proposed CS-based approach reports faster convergence rate than the PSO-based approach.
      PubDate: 2017-12-01
      DOI: 10.1007/s12559-017-9508-y
      Issue No: Vol. 9, No. 6 (2017)
       
  • Multi-Criteria Decision-Making Method Based on Distance Measure and
           Choquet Integral for Linguistic Z-Numbers
    • Authors: Jian-qiang Wang; Yong-xi Cao; Hong-yu Zhang
      Pages: 827 - 842
      Abstract: Z-numbers are a new concept considering both the description of cognitive information and the reliability of information. Linguistic terms are useful tools to adequately and effectively model real-life cognitive information, as well as to characterize the randomness of events. However, a form of Z-numbers, in which their two components are in the form of linguistic terms, is rarely studied, although it is common in decision-making problems. In terms of Z-numbers and linguistic term sets, we provided the definition of linguistic Z-numbers as a form of Z-numbers or a subclass of Z-numbers. Then, we defined some operations of linguistic Z-numbers and proposed a comparison method based on the score and accuracy functions of linguistic Z-numbers. We also presented the distance measure of linguistic Z-numbers. Next, we developed an extended TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method based on the Choquet integral for multi-criteria decision-making (MCDM) problems with linguistic Z-numbers. Finally, we provided an example concerning the selection of medical inquiry applications to demonstrate the feasibility of our proposed approach. We then verified the applicability and superiority of our approach through comparative analyses with other existing methods. Illustrative and comparative analyses indicated that the proposed approach was valid and feasible for different decision-makers and cognitive environments. Furthermore, the final ranking results of the proposed approach were closer to real decision-making processes. Linguistic Z-numbers can flexibly characterize real cognitive information as well as describe the reliability of information. This method not only is a more comprehensive reflection of the decision-makers’ cognition but also is more in line with expression habits. The proposed method inherited the merits of the classical TODIM method and considers the interactivity of criteria; therefore, the proposed method was effective for dealing with real-life MCDM problems. Consideration about bounded rational and the interactivity of criteria made final outcomes convincing and consistent with real decision-making.
      PubDate: 2017-12-01
      DOI: 10.1007/s12559-017-9493-1
      Issue No: Vol. 9, No. 6 (2017)
       
  • Evaluating Integration Strategies for Visuo-Haptic Object Recognition
    • Authors: Sibel Toprak; Nicolás Navarro-Guerrero; Stefan Wermter
      Abstract: In computational systems for visuo-haptic object recognition, vision and haptics are often modeled as separate processes. But this is far from what really happens in the human brain, where cross- as well as multimodal interactions take place between the two sensory modalities. Generally, three main principles can be identified as underlying the processing of the visual and haptic object-related stimuli in the brain: (1) hierarchical processing, (2) the divergence of the processing onto substreams for object shape and material perception, and (3) the experience-driven self-organization of the integratory neural circuits. The question arises whether an object recognition system can benefit in terms of performance from adopting these brain-inspired processing principles for the integration of the visual and haptic inputs. To address this, we compare the integration strategy that incorporates all three principles to the two commonly used integration strategies in the literature. We collected data with a NAO robot enhanced with inexpensive contact microphones as tactile sensors. The results of our experiments involving every-day objects indicate that (1) the contact microphones are a good alternative to capturing tactile information and that (2) organizing the processing of the visual and haptic inputs hierarchically and in two pre-processing streams is helpful performance-wise. Nevertheless, further research is needed to effectively quantify the role of each identified principle by itself as well as in combination with others.
      PubDate: 2017-12-28
      DOI: 10.1007/s12559-017-9536-7
       
  • Multiple Attribute Decision-Making Methods Based on the Expected Value and
           the Similarity Measure of Hesitant Neutrosophic Linguistic Numbers
    • Authors: Jun Ye
      Abstract: The existing neutrosophic linguistic decision-making approach uses only one neutrosophic linguistic number (NLN) to express its evaluation value of an attribute in decision making. Sometimes, it may not reflect exactly what decision makers mean due to the ambiguity and indeterminacy of their cognitions to complex decision-making problems. In this situation, decision makers might hesitate among several NLNs to express their opinions. To deal with the issue, this paper defines hesitant neutrosophic linguistic numbers (HNLNs), the expected value of HNLN and proposes the generalized distance and similarity measure between two HNLN sets based on the least common multiple cardinality for HNLNs. Then, multiple attribute decision-making (MADM) methods are established based on the expected value and the similarity measure under a HNLN environment. In the proposed decision-making methods, the evaluation values of alternatives over attributes provided by decision makers are HNLNs, and then all the alternatives are ranked by the expected values of HNLNs and the similarity measure values between each alternative and the ideal alternative (ideal solution) to select the best one. An actual example on the selection problem of manufacturing alternatives is provided to demonstrate the applicability of the developed decision-making approaches. The decision results of manufacturing alternatives and the comparative analysis indicate that the proposed methods are effective and superior to existing ones. The MADM methods based on the expected value and the similarity measure can effectively deal with MADM problems with HNLN information and are more objective and more useful than the existing ones.
      PubDate: 2017-12-27
      DOI: 10.1007/s12559-017-9535-8
       
  • Emotional Human-Machine Conversation Generation Based on Long Short-Term
           Memory
    • Authors: Xiao Sun; Xiaoqi Peng; Shuai Ding
      Abstract: With the rise in popularity of artificial intelligence, the technology of verbal communication between man and machine has received an increasing amount of attention, but generating a good conversation remains a difficult task. The key factor in human-machine conversation is whether the machine can give good responses that are appropriate not only at the content level (relevant and grammatical) but also at the emotion level (consistent emotional expression). In our paper, we propose a new model based on long short-term memory, which is used to achieve an encoder-decoder framework, and we address the emotional factor of conversation generation by changing the model’s input using a series of input transformations: a sequence without an emotional category, a sequence with an emotional category for the input sentence, and a sequence with an emotional category for the output responses. We perform a comparison between our work and related work and find that we can obtain slightly better results with respect to emotion consistency. Although in terms of content coherence our result is lower than those of related work, in the present stage of research, our method can generally generate emotional responses in order to control and improve the user’s emotion. Our experiment shows that through the introduction of emotional intelligence, our model can generate responses appropriate not only in content but also in emotion.
      PubDate: 2017-12-26
      DOI: 10.1007/s12559-017-9539-4
       
  • Extreme Learning Machines for VISualization+R: Mastering Visualization
           with Target Variables
    • Authors: Andrey Gritsenko; Anton Akusok; Stephen Baek; Yoan Miche; Amaury Lendasse
      Abstract: The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.
      PubDate: 2017-12-22
      DOI: 10.1007/s12559-017-9537-6
       
  • Hierarchical Convolutional Neural Networks for EEG-Based Emotion
           Recognition
    • Authors: Jinpeng Li; Zhaoxiang Zhang; Huiguang He
      Abstract: Traditional machine learning methods suffer from severe overfitting in EEG-based emotion reading. In this paper, we use hierarchical convolutional neural network (HCNN) to classify the positive, neutral, and negative emotion states. We organize differential entropy features from different channels as two-dimensional maps to train the HCNNs. This approach maintains information in the spatial topology of electrodes. We use stacked autoencoder (SAE), SVM, and KNN as competing methods. HCNN yields the highest accuracy, and SAE is slightly inferior. Both of them show absolute advantage over traditional shallow models including SVM and KNN. We confirm that the high-frequency wave bands Beta and Gamma are the most suitable bands for emotion reading. We visualize the hidden layers of HCNNs to investigate the feature transformation flow along the hierarchical structure. Benefiting from the strong representational learning capacity in the two-dimensional space, HCNN is efficient in emotion recognition especially on Beta and Gamma waves.
      PubDate: 2017-12-16
      DOI: 10.1007/s12559-017-9533-x
       
  • Implicit Heterogeneous Features Embedding in Deep Knowledge Tracing
    • Authors: Haiqin Yang; Lap Pong Cheung
      Abstract: Deep recurrent neural networks have been successfully applied to knowledge tracing, namely, deep knowledge tracing (DKT), which aims to automatically trace students’ knowledge states by mining their exercise performance data. Two main issues exist in the current DKT models: First, the complexity of the DKT models increases the tension of psychological interpretation. Second, the input of existing DKT models is only the exercise tags representing via one-hot encoding. The correlation between the hidden knowledge components and students’ responses to the exercises heavily relies on training the DKT models. The existing rich and informative features are excluded in the training, which may yield sub-optimal performance. To utilize the information embedded in these features, researchers have proposed a manual method to pre-process the features, i.e., discretizing them based on the inner characteristics of individual features. However, the proposed method requires many feature engineering efforts and is infeasible when the selected features are huge. To tackle the above issues, we design an automatic system to embed the heterogeneous features implicitly and effectively into the original DKT model. More specifically, we apply tree-based classifiers to predict whether the student can correctly answer the exercise given the heterogeneous features, an effective way to capture how the student deviates from others in the exercise. The predicted response and the true response are then encoded into a 4-bit one-hot encoding and concatenated with the original one-hot encoding features on the exercise tags to train a long short-term memory (LSTM) model, which can output the probability that a student will answer the exercise correctly on the corresponding exercise. We conduct a thorough evaluation on two educational datasets and demonstrate the merits and observations of our proposal.
      PubDate: 2017-12-15
      DOI: 10.1007/s12559-017-9522-0
       
  • Very Fast Semantic Image Segmentation Using Hierarchical Dilation and
           Feature Refining
    • Authors: Qingqun Ning; Jianke Zhu; Chun Chen
      Abstract: With the rapid development of deep learning techniques, semantic image segmentation has been considerably improved recently, which is viewed as the key problem of scene understanding in computer vision. These advances are built upon the capability of complex architectures for deep neural network. In this paper, we present a novel deep neural network architecture designed for semantic image segmentation. In order to improve the segmentation accuracy, we introduce a novel hierarchical dilation block to effectively enlarge the size of receptive field and enable multi-scale processing in fully convolutional neural network. Moreover, we exploit the technique of bypass and intermediate supervision to capture the context information during upsampling and refining coarse features. We have conducted extensive experiments on several popular semantic segmentation testbeds, including Cityscapes, CamVid, Kitti, and Helen facial datasets. The experimental results demonstrate that our proposed approach runs two times faster than the state-of-the-art method. Our full system is able to obtain realtime inference performance on 1080P images using a PC with single GPU. It executes a network forwarding at 200fps in our experiment while retaining high accuracy. Our proposed approach not only runs faster than the existing realtime methods but also performs on par with them.
      PubDate: 2017-12-05
      DOI: 10.1007/s12559-017-9530-0
       
  • Cognitive Fusion of Thermal and Visible Imagery for Effective Detection
           and Tracking of Pedestrians in Videos
    • Authors: Yijun Yan; Jinchang Ren; Huimin Zhao; Genyun Sun; Zheng Wang; Jiangbin Zheng; Stephen Marshall; John Soraghan
      Abstract: In this paper, we present an efficient framework to cognitively detect and track salient objects from videos. In general, colored visible image in red-green-blue (RGB) has better distinguishability in human visual perception, yet it suffers from the effect of illumination noise and shadows. On the contrary, the thermal image is less sensitive to these noise effects though its distinguishability varies according to environmental settings. To this end, cognitive fusion of these two modalities provides an effective solution to tackle this problem. First, a background model is extracted followed by a two-stage background subtraction for foreground detection in visible and thermal images. To deal with cases of occlusion or overlap, knowledge-based forward tracking and backward tracking are employed to identify separate objects even the foreground detection fails. To evaluate the proposed method, a publicly available color-thermal benchmark dataset Object Tracking and Classification in and Beyond the Visible Spectrum is employed here. For our foreground detection evaluation, objective and subjective analysis against several state-of-the-art methods have been done on our manually segmented ground truth. For our object tracking evaluation, comprehensive qualitative experiments have also been done on all video sequences. Promising results have shown that the proposed fusion-based approach can successfully detect and track multiple human objects in most scenes regardless of any light change or occlusion problem.
      PubDate: 2017-12-04
      DOI: 10.1007/s12559-017-9529-6
       
  • Learning Optimal Seeds for Ranking Saliency
    • Authors: Huiling Wang; Lixiang Xu; Xiaofeng Wang; Bin Luo
      Abstract: A variety of methods have been developed for visual saliency analysis, and it is a challenge to detect the most important scene from the input image. In this paper, to improve the shortage that the spatial connectivity of every node in model only via the k-regular graph and the idealistic boundary prior assumption is used in graph-based manifold ranking, we present a new optimal seed method to get saliency map. First, we evaluate the salience value of each region by global contrast-based spatial and color feature. Second, the salience values of the first stage are used to optimize the background and foreground queries (seeds); meanwhile, we tackle boundary cues from hierarchical graph to optimize background seeds. Then, we derive each stage saliency measure by the classical manifold ranking after obtaining optimal seeds. Finally, the final saliency map is obtained by combining the saliency results of two stages. Our algorithm is tested on the five public datasets and compared with nine state-of-the-art methods; the quantitative evaluation indicates that our method is effective and efficient. Our method can handle complex images with different details and can produce more accurate saliency maps than other state-of-the-art approaches.
      PubDate: 2017-12-01
      DOI: 10.1007/s12559-017-9528-7
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 50.19.34.255
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-