Abstract: Cutting tools management is one of the major issues in metal cutting operations. Most of the problems in cutting tools management were mostly addressed using optimization, heuristic, and simulation techniques. This important problem was not studied using decision-based approaches. This study proposed a decision support system (DSS) that can perform part-cutting tools assignment and control decisions by integrating a neutrosophic case-based reasoning and the best-worst method (BWM) in metal cutting processes. Specifically, this study utilized the integration of case-based reasoning (CBR) and single-valued neutrosophic set (SVNS) theories in artificial intelligence (AI). Furthermore, the proposed DSS applies the BWM to determine optimal weights for case attributes from multicriteria decision-making (MCDM). The system retrieves the most similar historical cases using a neutrosophic CBR and the BWM to adapt their cutting tool requirements to the current product orders. In addition, it revises retrieved cases (tool sets) depending on attribute differences between new and retrieved cases using rule-based reasoning (RBR) from experts. This study provided new insights regarding the application of a neutrosophic CBR and its integration with the BWM. Specifically, the integration of SVNS, CBR, and BWM was not articulated in cutting tools management problems. A numerical example was illustrated in a computer-simulated environment to show the applicability of the proposed DSS using lathe machine operations. PubDate: Sat, 29 Oct 2022 07:50:00 +000

Abstract: In the present study, the group acceptance plan is examined when the lifetime of an item follows the odd Perks exponential distribution, and a large number of items regarded as a group are evaluated simultaneously. The crucial parameters are derived from the consumer risk and the test termination period. The operating characteristics function values are generated for various quality levels. An optimized group acceptance plan and comparison of group acceptance sampling plan with the ordinary sampling plan are also presented. Additionally, a graphical illustration of operating characteristics for diverse groups and parametric values is provided. The minimum ratios of the actual average life to the stipulated average life are likewise computed at the prescribed producer’s risk. Examples are used to illustrate the outcomes via our algorithm under the odd Perks exponential distribution setting. It is explained using a quality control dataset to establish its practical versatility. PubDate: Wed, 28 Sep 2022 02:50:00 +000

Abstract: Uncertain data and undesirable outputs are two challenging issues in traditional data envelopment analysis (DEA) models while dealing with the environmental efficiency estimation of decision-making units (DMUs). This study considers Stackelberg and the centralized game theory approach in a two-stage DEA model for evaluating DMUs in the presence of uncertainty and undesirable outputs simultaneously. To tackle the uncertainty, we apply the p-robust technique and assume that undesirable outputs are weakly disposable. The proposed fractional models are linearized using the Charnes and Cooper transformation. We utilize the new models for a real dataset drawn from 11 oil generation ports in the Persian Gulf region consisting of two stages: an oil production stage and a wastewater treatment stage. The results revealed that the managers should take different strategies in environmental efficiency evaluation including undesirable impacts and also efficiency improvement in increasing oil generation. Further, the empirical results showed that the stochastic p-robust approach for controlling the conservatism level leads to a more conservative solution, and policymakers could recognize the significant steps that should be followed to improve each oil generation unit’s environmental performance. Also, to show the reliability and accuracy of the results and the effect of the decision-maker’s preference, a detailed sensitivity analysis is performed. PubDate: Mon, 19 Sep 2022 05:05:01 +000

Abstract: The ceiling on private lending interest rates is a powerful financial tool to maintain financial stability and reduce usury. Especially now that peer-to-peer lending has encountered some challenges, the ceiling is an essential way to regulate this market. The purpose of this paper is to analyze the necessity and the impact of such a powerful tool and also to find the optimal solution to determine it. The paper proves the ceiling on private lending interest rates is an inevitable choice by using an evolutionary game. However, it is shown that the lowering of the ceiling on private lending interest rates will increase both the difficulty of financing for SMEs and the default rate. Two optimal solutions to the ceiling are obtained in this study, which also prevent an increase in borrowing costs. PubDate: Tue, 23 Aug 2022 02:35:00 +000

Abstract: The two-stage data envelopment analysis models are among the widely used mathematical programming approaches to evaluate the performance of two-stage structures. In this paper, a two-stage structure with shared inputs and feedback is studied. To reduce undesirable outputs, an additive slack-based measure model is proposed to evaluate the stages and overall efficiencies, while undesirable outputs are weakly disposable. As it does not require determining the weights for combining stages’ efficiencies, all Pareto optimal stages’ efficiencies can be gained. In addition, the proposed approach can identify desirable outputs from undesirable outputs, thereby avoiding the need for weighting. This advantage from the aspect of multiobjective programming helps internal evaluation of the network model to match priorities of managers. The proposed nonlinear model is reformulated as a second-order cone program, which is a convex optimization problem that can be solved to global optimality. This is a computational improvement over the parametric models in the literature. Furthermore, the proposed model is applied for country-wise and area-wise performance evaluations of a real industrial application dataset in mainland China. Results show that the efficiency of the overall system relies between the efficiencies of the two stages and for all DMUs, the first stage’s efficiency scores are always higher than the second stage ones in both evaluations. Also, the Pearson correlation coefficient test results show that the overall efficiency is more correlated with the waste disposal stage. Finally, to show the effect of the decision maker’s preference, a detailed sensitivity analysis is performed. PubDate: Mon, 11 Jul 2022 08:50:00 +000

Abstract: The shift from mass tourism to more personalized travel denotes great importance in the construction of tourist itineraries. Given the negative impacts of transport and tourism on the environment, sustainability criteria play an important role. The Tourist Trip Design Problem is related to the design of itineraries for tourists. Planning is complex in tourist regions of developing countries where the information associated with tourist activities is difficult to access, vague, and incomplete. With this information, tourists must plan their trip, and the conditions and limitations they establish for it are flexible and imprecise. Fuzzy optimization can address problems with this type of information and constraints. Therefore, in this paper, an analysis of the tourism supply chain is carried out, taking as a case study the Department of Sucre on Colombia's Caribbean coast. A Multiconstraint Multimodal Team Orienteering Problem with Time Windows and fuzzy constraints is developed to model the tourism trip design problem that maximizes profit and minimizes CO2 emissions. The model is tested using datasets from the literature and the real world. The results demonstrate consistency with the fuzzy approach and generate a set of low-emission solutions. PubDate: Fri, 24 Jun 2022 08:50:00 +000

Abstract: This work is devoted to a consumption and investment problem, in which there is an investor with certain initial wealth with the possibility of deciding how much of such wealth will be consumed and how much will be invested in each of a series of successive times. The key issue is to find a wealth assignation rule in order to maximize the performance criteria; such dilemma will be achieved by the dynamic programming technique for the Markov decision processes with random horizon. PubDate: Tue, 07 Jun 2022 05:35:01 +000

Abstract: To reduce the logistic cost and carbon emission and improve customer satisfaction, this study proposes a multiobjective green time-dependent location routing problem (MOGTDLRP) model in which the objectives are to minimize the distribution total cost, delivery time, and fuel consumption. This model will be solved by several hyperheuristic algorithms which include the high-level heuristics and the low-level heuristics. There are three acceptance criterions for the solution: improving and equal, all moves and accept all solutions, and dynamic acceptance criteria. Through the case, the performance of the algorithm and the influence of various factors on the solution are analyzed in this study. The experimental results show that the proposed model can effectively reduce logistic costs, carbon emissions, and vehicle travel time. PubDate: Sat, 21 May 2022 08:20:00 +000

Abstract: Data Envelopment Analysis is a powerful tool for evaluating the efficiency of decision-making units for the purpose of ranking, comparing, and differentiating efficient and inefficient units. Classical Data Envelopment Analysis methods operate by measuring the efficiency of each DMU compared to similar units without considering their internal workings and structures, which make them unsuitable for cases where DMUs are multistaged processes with intermediate products or when inputs and outputs are ambiguous or nonconfigurable. In problems that involve uncertainty, intuitionistic fuzzy sets can offer a better representation and interpretation of information than classic sets. In this paper, the noncooperative network data envelopment analysis model of Liang et al. (2008), which is based on Stackelberg game theory and efficiency decomposition, is expanded using the concepts of best and worst relative returns Data Envelopment Analysis model of Azizi et al. (2013) into an interval efficiency estimation model with α-β cuts for two-stage DMUs with trapezoidal intuitionistic fuzzy data. Furthermore, the method of Yue (2011) is used to rank these DMUs in terms of their intuitionistic fuzzy interval efficiency. A numerical example is also provided to illustrate the application of the proposed bounded two-stage intuitionistic Data Envelopment Analysis model. PubDate: Tue, 17 May 2022 02:35:00 +000

Abstract: This paper studies the impact of Value at Risk (VaR) constraints on investors with hyperbolic absolute risk aversion (HARA) risk preferences. We derive closed-form representations for the “triplet”: optimal investment, terminal wealth, and value function, via extending the Bellman-based methodology from constant relative risk aversion (CRRA) utilities to HARA utilities. In the numerical part, we compare our solution (HARA-VaR) to three critical embedded cases, namely, CRRA, CRRA-VaR, and HARA, assessing the influence of key parameters like the VaR probability and floor on the optimal wealth distribution and allocations. The comparison highlights a stronger impact of VaR on a CRRA-VaR investor compared to a HARA-VaR (HV). This is in terms of not only lower Sharpe ratios but also higher tail risk and lower returns on wealth. The HV analysis demonstrates that combining both, capital guarantee and VaR, may lead to a correction of the partially adverse effects of the VaR constraint on the risk appetite. Moreover, the HV portfolio strategy also does not show the high kurtosis observed for the PV strategy. A wealth-equivalent loss (WEL) analysis is also implemented demonstrating that, for a HV investor, losses would be more serious if adopting a CRRA-VaR strategy as compared to a HARA strategy. PubDate: Mon, 09 May 2022 11:20:01 +000

Abstract: The aim of this article is to analyze the scientific developments in public sector decision making during the period 2010–2020, to identify which decision-making methods are preferred in different sectors of the public sector, and to determine which integrated methods are applied in this sector. In total, 468 scholarly articles were selected covering a near comprehensive review of the literature, as described below in the search process. We found that 271studies utilized a single method, whereas 180 studies utilized integrated methods. Data envelopment analysis (DEA) was the most common, used by 97 studies. However, an analytic hierarchy process (AHP) was utilized by 178 studies when counting both simple and integrated methods. It was shown that single methods were more commonly used in education, environment, health, and public services, and integrated methods were relatively favored in economics/finance, energy, site selection, and waste management. We conclude that multiple decision-making methods are used in the public sector, and during2010–2020, there has been a tendency to use unified methods in decision-making processes. PubDate: Mon, 11 Apr 2022 06:35:00 +000