Abstract: In the process of denoising color images, it is very important to enhance the edge and texture information of the images. Image quality can usually be improved by eliminating noise and enhancing contrast. Based on the adaptive wavelet threshold shrinkage algorithm and considering structural characteristics on the basis of color image denoising, this paper describes a method that further enhances the edge and texture details of the image using guided filtering. The use of guided filtering allows edge details that cannot be discriminated in grayscale images to be preserved. The noisy image is decomposed into low-frequency and high-frequency subbands using discrete wavelets, and the contraction function of threshold shrinkage is selected according to the energy in the vicinity of the wavelet coefficients. Finally, the edge and texture information of the denoised color image are enhanced by guided filtering. When the guiding image is the original noiseless image itself, the guided filter can be used as a smoothing operator for preserving edges, resulting in a better effect than bilateral filtering. The proposed method is compared with the adaptive wavelet threshold shrinkage denoising algorithm and the bilateral filtering algorithm. Experimental results show that the proposed method achieves superior color image denoising compared to these conventional techniques. PubDate: Mon, 06 Nov 2017 07:26:30 +000

Abstract: Context-aware recommendation systems attempt to address the challenge of identifying products or items that have the greatest chance of meeting user requirements by adapting to current contextual information. Many such systems have been developed in domains such as movies, books, and music, and emotion is a contextual parameter that has already been used in those fields. This paper focuses on the use of emotion as a contextual parameter in a tourist destination recommendation system. We developed a new corpus that incorporates the emotion parameter by employing semantic analysis techniques for destination recommendation. We review the effectiveness of incorporating emotion in a recommendation process using prefiltering techniques and show that the use of emotion as a contextual parameter for location recommendation in conjunction with collaborative filtering increases user satisfaction. PubDate: Sun, 22 Oct 2017 00:00:00 +000

Abstract: The dense trajectories and low-level local features are widely used in action recognition recently. However, most of these methods ignore the motion part of action which is the key factor to distinguish the different human action. This paper proposes a new two-layer model of representation for action recognition by describing the video with low-level features and mid-level motion part model. Firstly, we encode the compensated flow (-flow) trajectory-based local features with Fisher Vector (FV) to retain the low-level characteristic of motion. Then, the motion parts are extracted by clustering the similar trajectories with spatiotemporal distance between trajectories. Finally the representation for action video is the concatenation of low-level descriptors encoding vector and motion part encoding vector. It is used as input to the LibSVM for action recognition. The experiment results demonstrate the improvements on J-HMDB and YouTube datasets, which obtain 67.4% and 87.6%, respectively. PubDate: Thu, 19 Oct 2017 00:00:00 +000

Abstract: Coupled Piled Raft Foundations (CPRFs) are broadly applied to share heavy loads of superstructures between piles and rafts and reduce total and differential settlements. Settlements induced by static/coupled static-dynamic loads are one of the main concerns of engineers in designing CPRFs. Evaluation of induced settlements of CPRFs has been commonly carried out using three-dimensional finite element/finite difference modeling or through expensive real-scale/prototype model tests. Since the analyses, especially in the case of coupled static-dynamic loads, are not simply conducted, this paper presents two practical methods to gain the values of settlement. First, different nonlinear finite difference models under different static and coupled static-dynamic loads are developed to calculate exerted settlements. Analyses are performed with respect to different axial loads and pile’s configurations, numbers, lengths, diameters, and spacing for both loading cases. Based on the results of well-validated three-dimensional finite difference modeling, artificial neural networks and evolutionary polynomial regressions are then applied and introduced as capable methods to accurately present both static and coupled static-dynamic settlements. Also, using a sensitivity analysis based on Cosine Amplitude Method, axial load is introduced as the most influential parameter, while the ratio l/d is reported as the least effective parameter on the settlements of CPRFs. PubDate: Wed, 19 Jul 2017 00:00:00 +000

Abstract: The removal of mixed Gaussian-impulse noise plays an important role in many areas, such as remote sensing. However, traditional methods may be unaware of promoting the degree of the sparsity adaptively after decomposing into low rank component and sparse component. In this paper, a new problem formulation with regular spectral -support norm and regular -support norm is proposed. A unified framework is developed to capture the intrinsic sparsity structure of all two components. To address the resulting problem, an efficient minimization scheme within the framework of accelerated proximal gradient is proposed. This scheme is achieved by alternating regular -shrinkage thresholding operator. Experimental comparison with the other state-of-the-art methods demonstrates the efficacy of the proposed method. PubDate: Wed, 12 Jul 2017 00:00:00 +000

Abstract: The absence of a general theory that describes the dynamical behavior of the particulate materials makes the numerical simulations the most current powerful tool that can grasp many mechanical problems relevant to the granular materials. In this paper, based on a two-dimensional soft particle discrete element method (DEM), a numerical approach is developed to investigate the consequence of the orthogonal impact into various granular beds of projectile rotating in both clockwise (CW) and counterclockwise (CCW) directions. Our results reveal that, depending on the rotation direction, there is a significant deviation of the -coordinate of the final stopping point of a spinning projectile from that of its original impact point. For CW rotations, a deviation to the right occurs while a left deviation has been recorded for CCW rotation case. PubDate: Tue, 06 Jun 2017 07:52:10 +000

Abstract: The most commonly encountered problem in vision systems includes its capability to suffice for different scenes containing the object of interest to be detected. Generally, the different backgrounds in which the objects of interest are contained significantly dwindle the performance of vision systems. In this work, we design a sliding windows machine learning system for the recognition and detection of left ventricles in MR cardiac images. We leverage on the capability of artificial neural networks to cope with some of the inevitable scene constraints encountered in medical objects detection tasks. We train a backpropagation neural network on samples of left and nonleft ventricles. We reformulate the left ventricles detection task as a machine learning problem and employ an intelligent system (backpropagation neural network) to achieve the detection task. We treat the left ventricle detection problem as binary classification tasks by assigning collected left ventricle samples as one class, and random (nonleft ventricles) objects are the other class. The trained backpropagation neural network is validated to possess a good generalization power by simulating it with a test set. A recognition rate of 100% and 88% is achieved on the training and test set, respectively. The trained backpropagation neural network is used to determine if the sampled region in a target image contains a left ventricle or not. Lastly, we show the effectiveness of the proposed system by comparing the manual detection of left ventricles drawn by medical experts and the automatic detection by the trained network. PubDate: Sun, 04 Jun 2017 00:00:00 +000

Abstract: Hashing has been widely deployed to perform the Approximate Nearest Neighbor (ANN) search for the large-scale image retrieval to solve the problem of storage and retrieval efficiency. Recently, deep hashing methods have been proposed to perform the simultaneous feature learning and the hash code learning with deep neural networks. Even though deep hashing has shown the better performance than traditional hashing methods with handcrafted features, the learned compact hash code from one deep hashing network may not provide the full representation of an image. In this paper, we propose a novel hashing indexing method, called the Deep Hashing based Fusing Index (DHFI), to generate a more compact hash code which has stronger expression ability and distinction capability. In our method, we train two different architecture’s deep hashing subnetworks and fuse the hash codes generated by the two subnetworks together to unify images. Experiments on two real datasets show that our method can outperform state-of-the-art image retrieval applications. PubDate: Wed, 24 May 2017 00:00:00 +000

Abstract: Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs) in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN) model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge. PubDate: Mon, 22 May 2017 09:26:42 +000

Abstract: The paper presents the use of a self-organizing feature map (SOFM) for determining damage in reinforced concrete frames with shear walls. For this purpose, a concrete frame with a shear wall was subjected to nonlinear dynamic analysis. The SOFM was optimized using the genetic algorithm (GA) in order to determine the number of layers, number of nodes in the hidden layer, transfer function type, and learning algorithm. The obtained model was compared with linear regression (LR) and nonlinear regression (NonLR) models and also the radial basis function (RBF) of a neural network. It was concluded that the SOFM, when optimized with the GA, has more strength, flexibility, and accuracy. PubDate: Mon, 15 May 2017 00:00:00 +000

Abstract: ATC (air traffic control) automation system is a complex system, which helps maintain the air traffic order, guarantee the flight interval, and prevent aircraft collision. It is essential to ensure the safety of air traffic. Failure effects evaluation is an important part of ATC automation system reliability engineering. The failure effects evaluation of ATC automation system is aimed at the effects of modules or components which affect the performance and functionality of the system. By analyzing and evaluating the failure modes and their causes and effects, some reasonable improvement measures and preventive maintenance plans can be established. In this paper, the failure effects evaluation framework considering performance and functionality of the system is established on the basis of reliability theory. Some algorithms for the quantitative evaluation of failure effects on performance of ATC automation system are proposed. According to the algorithms, the quantitative evaluation of reliability, availability, maintainability, and other assessment indicators can be calculated. PubDate: Tue, 02 May 2017 10:05:35 +000

Abstract: This study investigates an adaptive-weighted instanced-based learning, for the prediction of the ultimate punching shear capacity (UPSC) of fiber-reinforced polymer- (FRP-) reinforced slabs. The concept of the new method is to employ the Differential Evolution to construct an adaptive instance-based regression model. The performance of the proposed model is compared to those of Artificial Neural Network (ANN) and traditional formula-based methods. A dataset which contains the testing results of FRP-reinforced concrete slabs has been collected to establish and verify new approach. This study shows that the investigated instance-based regression model is capable of delivering the prediction result which is far more accurate than traditional formulas and very competitive with the black-box approach of ANN. Furthermore, the proposed adaptive-weighted instanced-based learning provides a means for quantifying the relevancy of each factor used for the prediction of UPSC of FRP-reinforced slabs. PubDate: Tue, 04 Apr 2017 07:20:18 +000

Abstract: Forecasting in big datasets is a common but complicated task, which cannot be executed using the well-known parametric linear regression. However, nonparametric and semiparametric methods, which enable forecasting by building nonlinear data models, are computationally intensive and lack sufficient scalability to cope with big datasets to extract successful results in a reasonable time. We present distributed parallel versions of some nonparametric and semiparametric regression models. We used MapReduce paradigm and describe the algorithms in terms of SPARK data structures to parallelize the calculations. The forecasting accuracy of the proposed algorithms is compared with the linear regression model, which is the only forecasting model currently having parallel distributed realization within the SPARK framework to address big data problems. The advantages of the parallelization of the algorithm are also provided. We validate our models conducting various numerical experiments: evaluating the goodness of fit, analyzing how increasing dataset size influences time consumption, and analyzing time consumption by varying the degree of parallelism (number of workers) in the distributed realization. PubDate: Wed, 08 Mar 2017 00:00:00 +000

Abstract: This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems. PubDate: Wed, 08 Mar 2017 00:00:00 +000

Abstract: Based on the detailed analysis of collaborative running interface of Simulink/Fluent, a system simulation for the rated working condition as well as variable working condition of marine gas turbine has been achieved, which can improve the simulation efficiency of marine gas turbine by developing simulation model of combustor with Fluent and simulation models of other components with Simulink. The result shows that the Simulink/Fluent collaborative simulation zooming can make the inner working conditions of combustor be observed specifically, based on the overall performance matching analysis; thus an effective technical means for the structural optimization design of combustor has been provided. PubDate: Thu, 02 Mar 2017 00:00:00 +000

Abstract: Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply deep learning to specific areas such as road crack detection, fault diagnosis, and human activity detection. Besides, this study also discusses the challenges of designing and training deep neural networks. PubDate: Sun, 19 Feb 2017 00:00:00 +000

Abstract: Recently, the demand for wireless devices that support multiband frequency has increased. The integration of such technology in mobile communication system has led to a great demand in developing small size antenna with multiband operation, which is able to operate in the required system. In this paper, a novel type planar inverted F antenna (PIFA) with gridded ground plane structure and overlapping cells is presented. By controlling the overlapping size, we improve the characteristics of the proposed antenna. This antenna is developed to achieve multiband operation with small size and good performance. The particle swarm optimization (PSO) is employed to a PIFA antenna to get rid of the limitations of single band operation by searching the optimal localization and length of linear slots on the ground plane to give triband operation. This PIFA antenna can be integrated to operate for several mobile applications as Bluetooth/WLAN, WIMAX, and 4G (UMTS2100, LTE). The optimized antenna is simulated by both Ansoft HFSS and computer simulation technology microwave studio (CSTMWS) in terms of -parameters. A good agreement between simulated performances by both software types is achieved. A parametric study is made to analyze the effect of different PIFA parameters on the operating frequency and the reflection coefficient in order to enhance the antenna performances. In these frequency bands, the antenna has nearly omnidirectional radiation pattern. PubDate: Wed, 15 Feb 2017 00:00:00 +000

Abstract: In the present paper we first conduct simulations of the parallel evolutionary peer-to-peer (P2P) networking technique (referred to as P-EP2P) that we previously proposed using models of realistic environments to examine if P-EP2P is practical. Environments are here represented by what users have and want in the network, and P-EP2P adapts the P2P network topologies to the present environment in an evolutionary manner. The simulation results show that P-EP2P is hard to adapt the network topologies to some realistic environments. Then, based on the discussions of the results, we propose a strategy for better adaptability of P-EP2P to the realistic environments. The strategy first judges if evolutionary adaptation of the network topologies is likely to occur in the present environment, and if it judges so, it actually tries to achieve evolutionary adaptation of the network topologies. Otherwise, it brings random change to the network topologies. The simulation results indicate that P-EP2P with the proposed strategy can better adapt the network topologies to the realistic environments. The main contribution of the study is to present such a promising way to realize an evolvable network in which the evolution direction is given by users. PubDate: Thu, 26 Jan 2017 06:33:08 +000

Abstract: Human action recognition based on 3D skeleton has become an active research field in recent years with the recently developed commodity depth sensors. Most published methods analyze an entire 3D depth data, construct mid-level part representations, or use trajectory descriptor of spatial-temporal interest point for recognizing human activities. Unlike previous work, a novel and simple action representation is proposed in this paper which models the action as a sequence of inconsecutive and discriminative skeleton poses, named as key skeleton poses. The pairwise relative positions of skeleton joints are used as feature of the skeleton poses which are mined with the aid of the latent support vector machine (latent SVM). The advantage of our method is resisting against intraclass variation such as noise and large nonlinear temporal deformation of human action. We evaluate the proposed approach on three benchmark action datasets captured by Kinect devices: MSR Action 3D dataset, UTKinect Action dataset, and Florence 3D Action dataset. The detailed experimental results demonstrate that the proposed approach achieves superior performance to the state-of-the-art skeleton-based action recognition methods. PubDate: Mon, 23 Jan 2017 00:00:00 +000

Abstract: We developed a fully automated multiobjective optimisation framework using genetic algorithms to generate a range of optimal barrel vault scissor structures. Compared to other optimisation methods, genetic algorithms are more robust and efficient when dealing with multiobjective optimisation problems and provide a better view of the search space while reducing the chance to be stuck in a local minimum. The novelty of this work is the application and validation (using metrics) of genetic algorithms for the shape and size optimisation of scissor structures, which has not been done so far for two objectives. We tested the feasibility and capacity of the methodology by optimising a 6 m span barrel vault to weight and compactness and by obtaining optimal solutions in an efficient way using NSGA-II. This paper presents the framework and the results of the case study. The in-depth analysis of the influence of the optimisation variables on the results yields new insights which can help in making choices with regard to the design variables, the constraints, and the number of individuals and generations in order to obtain efficiently a trade-off of optimal solutions. PubDate: Wed, 18 Jan 2017 12:52:10 +000

Abstract: Person reidentification, which aims to track people across nonoverlapping cameras, is a fundamental task in automated video processing. Moving people often appear differently when viewed from different nonoverlapping cameras because of differences in illumination, pose, and camera properties. The color histogram is a global feature of an object that can be used for identification. This histogram describes the distribution of all colors on the object. However, the use of color histograms has two disadvantages. First, colors change differently under different lighting and at different angles. Second, traditional color histograms lack spatial information. We used a perception-based color space to solve the illumination problem of traditional histograms. We also used the spatial pyramid matching (SPM) model to improve the image spatial information in color histograms. Finally, we used the Gaussian mixture model (GMM) to show features for person reidentification, because the main color feature of GMM is more adaptable for scene changes, and improve the stability of the retrieved results for different color spaces in various scenes. Through a series of experiments, we found the relationships of different features that impact person reidentification. PubDate: Wed, 11 Jan 2017 00:00:00 +000