Subjects -> CONSERVATION (Total: 128 journals)
| A B C D E F G H I J K L M N O P Q R S T U V W X Y Z | The end of the list has been reached or no journals were found for your choice. |
|
|
- Divergent responses of growth rate and antioxidative system of ten
Bacillus strains to acid stresses-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Response of growth rate and antioxidative system of ten Bacillus strains to acid stresses was assayed. Strong acid treatment significantly decreased the growth rate of the strains. Acid stresses increased the GPX activity and GSSG content of the tested strains. Divergent changes occurred in ROS and antioxidative system (SOD, CAT, GR, MDA and GSH). Environmental changes including soil acidification exert obvious stresses on soil ecosystems and influence soil microorganisms. In this study, ten microbial strains were incubated under different acid treatments to investigate responses of microbial growth and antioxidative system to acid stress. All the strains belong to Bacillus genus, but exhibit distinct ecological functions. We observed that these microbial strains had obviously different pH tolerance threshold, in spite of the close phylogenetic classification among strains. Acid stresses exerted significant effects on microbial antioxidative system, including superoxide dismutase (SOD), catalase (CAT) and glutathione transferring enzymes (GPX and GR) and reactants (GSH and GSSH), but the effects were strain specific. Furthermore, we found acid stress effects on total variances of the investigated microbial antioxidative system along the first two principal components (PCs). Activities of CAT and SOD contributed substantially to PC1 that reflected obvious acid effects on NC7 and ZC4, and closely related to intracellular malondialdehyde content. The GSSG activities and GSH/GSSG contributed greatly to PC2 that unveiled acid stress effects on most of the microbial strains. Our results highlight substantially heterogeneous responses of microbial strains to acid stress and support that phylogenetic closeness does not imply functional similarity of soil microorganisms under environmental changes.  PubDate: 2023-11-28
- Soy, soil and beyond
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Summary Soy and its quest for future food production. PubDate: 2023-07-31 DOI: 10.1007/s42832-023-0190-6
- Constraints on enzyme production at low O2 and limitations of
stoichiometric vector analyses: A commentary on Chen et al. (2022)-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2023-07-01 DOI: 10.1007/s42832-023-0183-5
- Fine root litter quality regulates soil carbon storage efficiency in
subtropical forest soils-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract High-quality and low-quality root litter had contrasting patterns of mass loss. Greater litter-derived C was incorporated into soils under high-quality root litter. Root litter decay rate or litter-derived C were related to soil microbial diversity. Root litter quality had little effect on soil physicochemical properties. High root litter quality was the main driver of enhanced soil C storage efficiency. Decomposing root litter is a major contributor to soil carbon (C) storage in forest soils. During decomposition, the quality of root litter could play a critical role in soil C storage. However, it is unclear whether root litter quality influences soil C storage efficiency. We conducted a two-year greenhouse decomposition experiment using 13C-labeled fine root litter of two tree species to investigate how root litter quality, represented by C to nitrogen (C/N) ratios, regulates decomposition and C storage efficiency in subtropical forest soils in China. ‘High-quality’ root litter (C/N ratio = 26) decayed faster during the first year (0–410 days), whereas ‘low-quality’ root litter (C/N ratio = 46) decomposed faster toward the end of the two-year period (598–767 days). However, over the two years of the study, mass loss from high-quality root litter (29.14 ± 1.42%) was lower than ‘low-quality’ root litter (33.01 ± 0.54%). Nonetheless, root litter C storage efficiency (i.e., the ratio of new root litter-derived soil C to total mineralized root litter C) was significantly greater for high-quality root litter, with twice as much litter-derived C stored in soils compared to low-quality root litter at the end of the experiment. Root litter quality likely influenced soil C storage via changes in microbial diversity, as the decomposition of high-quality litter declined with increasing bacterial diversity, whereas the amount of litter-derived soil C from low-quality litter increased with fungal diversity. Our results thus reveal that root litter quality mediates decomposition and C storage in subtropical forest soils in China and future work should consider the links between root litter quality and soil microbial diversity.  PubDate: 2023-06-22 DOI: 10.1007/s42832-023-0182-6
- Characterization of dissolved organic matter distribution in forestland
and farmland of mollisol based on untargeted metabolomics-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Characterization of mollisol soil DOM by untargeted metabolomics is possible. The polarity of the extractants determines the polarity of the extracted DOM. Land use patterns affect the biological functions and co-network interaction of DOM. Mollisol soil is a major contributor to food production. Clarification of the molecular characteristics of dissolved organic matter (DOM) will contribute to the overall understanding and management of mollisol soil. However, the complexity of DOM poses a challenge to understanding its molecular characteristics. In this study, we investigated the molecular characteristics of DOM (< 1 000 Da) in mollisol soils with different soil use patterns (forestland and dryland) based on untargeted metabolomics. Here, we confirmed the feasibility of untargeted metabolomics for the molecular characterization of DOM in mollisol soils. DOM in forestland is mainly derived from plant metabolites, and DOM can perform more biological functions. However, DOM in dryland has complex composition and has powerful co-occurrence network interactions due to human activities. Water has better extraction efficiency for polar DOM, while organic reagents can efficiently extract lipid-like DOM, but the polarity of the extractant has less influence on the DOM than the soil physicochemical properties. Meanwhile, 14-dihydroxyzeatin screened based on metabolomics can be used as a potential indicator for corn land. Therefore, untargeted metabolomics can be an effective method to characterize the DOM molecules of mollisol soil, which provides new insights for management of mollisol soil and sustainable agricultural development.  PubDate: 2023-06-22 DOI: 10.1007/s42832-023-0179-1
- Bacterial biogeography in China and its association to land use and soil
organic carbon-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • 6102 high-quality sequencing results of soil bacterial samples were re-analyzed. • The type of land use was the principal driver of bacterial richness and diversity. • SOC content is positively correlated with key bacteria and total nitrogen content. Soil organic carbon (SOC) is the largest pool of carbon in terrestrial ecosystems and plays a crucial role in regulating atmospheric CO2 concentrations. Identifying the essential relationship between soil bacterial communities and SOC concentration is complicated because of many factors, one of which is geography. We systematically reanalyzed 6 102 high-quality bacterial samples in China to delineate the bacterial biogeographic distribution of bacterial communities and identify key species associated with SOC concentration at the continental scale. The type of land use was the principal driver of bacterial richness and diversity, and we used machine learning to calculate its influence on microbial composition and their co-occurrence relationship with SOC concentration. Cultivated land was much more complex than forest, grassland, wetland and wasteland, with high SOC concentrations tending to enrich bacteria such as Rubrobacter, Terrimonas and Sphingomona. SOC concentration was positively correlated with the amounts of soil total nitrogen and key bacteria Xanthobacteraceae, Streptomyces and Acidobacteria but was negatively correlated with soil pH, total phosphorus and Micrococcaceae. Our study combined the SOC pool with bacteria and indicated that specific bacteria may be key factors affecting SOC concentration, forcing us to think about microbial communities associated with climate change in a new way.  PubDate: 2023-06-10 DOI: 10.1007/s42832-023-0172-8
- Diverse organic carbon activates soil microbiome functioning via niche
modulation-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2023-06-10 DOI: 10.1007/s42832-023-0180-8
- Soil microbial communities as potential regulators of N2O sources in
highly acidic soils-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • Soil pH was a key driver of N2O emission and sources in acidic soils. • N2O emission was significantly positively associated with the ratio of ITS to 16S. • N2O was significantly correlated with bacterial and fungal community composition. • Fungi contributed to N2O in highly acidic tea plantations and vegetable fields. Acidic soil is a main source of global nitrous oxide (N2O) emissions. However, the mechanism behind the high N2O emissions from acidic soils remains a knowledge gap. The objective of this microcosm incubation study was to pin-point the microbial mechanisms involved in N2O production processes in acidic soils. For that purpose, the isotopic signatures and microbial community structure and composition of four soil samples were examined. The results showed that highly acid soils (pH = 3.51) emitted 89 times more N2O than alkaline soils (pH = 7.95) under the same nitrogen (N) inputs. Fungal denitrification caused high N2O emissions in acidic soils. ITS to 16S abundance ratio was positively correlated with cumulative N2O emissions from the tested soils. The highly acid soils (pH < 4.5) showed greater fungal nirK gene abundance and lower abundance of AOA-amoA, AOB-amoA, nirK, nosZ I and nosZ II genes. The unclassified Aspergillaceae fungi (63.65%) dominated the highly acidic soils and was the most strongly correlated genus with N2O emissions. These findings highlight that soil microbial community structures, denitrifying fungi in particular, shaped by low pH (pH < 4.5) lead to high N2O emissions from acidic soils.  PubDate: 2023-06-02 DOI: 10.1007/s42832-023-0178-2
- Erosion effects on soil microbial carbon use efficiency in the mollisol
cropland in northeast China-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • Soil erosion decreased soil microbial CUE and increased microbial uptake of carbon. • Soil erosion decreased microbial CUE by decreasing substrate C, N and MBC and increasing soil pH. • Soil microbes had to increase their uptake rate to cope with the loss of substrates with increasing erosion rate. • Soil microbial respiration increased with increasing degree of erosion. • Soil microbial growth rate remained relative stable under different degrees of soil erosion. • Microbial CUE in soil surface was less responsive to erosion than that in deeper soil. Soil microbial carbon use efficiency (CUE) is an important synthetic parameter of microbial community metabolism and is commonly used to quantify the partitioning of carbon (C) between microbial growth and respiration. However, it remains unclear how microbial CUE responds to different degrees of soil erosion in mollisol cropland. Therefore, we investigated the responses of soil erosion on microbial CUE, growth and respiration to different soil erosion rates in a mollisol cropland in northeast China based on a substrate independent method (18O−H2O labeling). Soils were sampled at four positions along a down-slope transect: summit, shoulder, back and foot. We found microbial CUE decreased significantly with increasing soil erosion rate in 5–20 cm soil, but did not change in 0–5 cm. The decrease of microbial CUE in subsoil was because microbes increased C uptake and allocated higher uptake C to microbial basal respiration with increasing soil erosion rate. Microbial respiration increased significantly with soil erosion rate, probably due to the more disturbance and unbalanced stoichiometry. Furthermore, soil microbes in surface soil were able to maintain their growth rates with increasing degree of erosion. Altogether, our results indicated that soil erosion could decrease microbial CUE by affecting soil physical and chemical properties, resulting in more decomposition of soil organic matter and more soil respiration, which had negative feedbacks to soil C sequestration and climate changes in cropland soil.  PubDate: 2023-04-15 DOI: 10.1007/s42832-023-0176-4
- Soil salinization increases the stability of fungal not bacterial
communities in the Taklamakan desert-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • Bacterial richness declined but fungal richness increased under salinization. • Bacteria did not become interactively compact or facilitative under salinization. • Fungi exhibited more compartmentalized and competitive patterns under salinization. • Fungal stability showed steeper increases under salinization than bacterial stability. Soil salinization is a typical environmental challenge in arid regions worldwide. Salinity stress increases plant convergent adaptations and facilitative interactions and thus destabilizes communities. Soil bacteria and fungi have smaller body mass than plants and are often efficient against soil salinization, but how the stability of bacterial and fungal communities change with a wide range of soil salinity gradient remains unclear. Here, we assessed the interactions within both bacterial and fungal communities along a soil salinity gradient in the Taklamakan desert to examine (i) whether the stability of bacterial and fungal communities decreased with soil salinity, and (ii) the stability of which community decreased more with soil salinity, bacteria or fungi. Our results showed that the species richness of soil fungi increased but that of soil bacteria decreased with increasing salinity in topsoils. Fungal communities became more stable under soil salinization, with increasing compartmentalization (i.e., modularity) and proportion of competitions (i.e., negative:positive cohesion) as salinity increased. Bacterial communities exhibited no changes in modularity with increasing salinity and smaller increases in negative:positive cohesion under soil salinization compared to fungal communities. Our results suggest that, by altering interspecific interactions, soil salinization increases the stability of fungal not bacterial communities in extreme environments.  PubDate: 2023-04-03 DOI: 10.1007/s42832-023-0175-5
- The static and cidal effects of veterinary antibiotics on soil
microorganisms in the presence of organic and mineral amendments-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • Gentamicin initially decreased microbial activity comparative to penicillin higher. • Recovery was comparatively high in oxytetracycline treated soils. • Organic amendments improved the resilience indices. • Unexpectedly the qCO2 decreased in the antibiotic treated soils. • The static effects of the applied antibiotics were higher than their cidal effects. This study aimed to describe the static and cidal adverse effects of antibiotics on soil microbial activity resulting from manure application. So, in the present study, the treatments included: without antibiotics; application of gentamicin, oxytetracycline, and penicillin each in different concentrations (50, 100, and 200 mg kg−1 dry soil). They were applied in soils treated with and without organic and mineral conditioners (cow manure, biochar, and nano-zeolite). Soil microbial respiration and metabolic quotient were studied at three time periods (1–7, 7–30, and 30–90 days) during a 90-day incubation of the treated soils. Antibiotics applied to the soil samples significantly decreased soil basal respiration (BR) values compared to those of the control, and the most significant decrease was observed for gentamicin. Gentamicin had a short intensive impact, alleviated by manure and biochar, on soil copiotrophs. After a significant initial reduction in substrate-induced respiration (SIR), gentamicin application then caused a substantial increase in SIR values. Unexpectedly metabolic quotient decreased in the antibiotic-treated soils. This study revealed that the static effects of the applied antibiotics in soil were greater than the cidal effects.  PubDate: 2023-04-02 DOI: 10.1007/s42832-023-0174-6
- Precipitation regulated soil nematode community and footprint in cropland
ecosystems-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract • Nematode abundance and footprint show unimodal patterns with precipitation levels. • MAP governed nematode diversity along the precipitation gradient of agroecosystem. • Soil pH determined nematode abundance and footprint in low precipitation levels. Precipitation plays a crucial role in global biodiversity change across terrestrial ecosystems. Precipitation is proven to affect soil organism diversity in natural ecosystems. However, how precipitation change affects the function of the soil nematode community remains unclear in cropland ecosystems. Here, we tested soil nematode communities from different precipitation sites (300 mm to 900 mm) of the agricultural ecosystem. The abundance of total nematodes, fungivores, and plant parasites, together with the footprint of fungivores was significantly affected by mean annual precipitation (MAP) in cropland ecosystem. Plant parasites diversity and footprint showed negative relationships with MAP. The random forest suggested plant parasite footprint was the most responsive to MAP. The structural equation model revealed that MAP affected nematode abundance and footprint indirectly via soil pH; nematode diversity was affected by MAP directly. We conclude that precipitation could act as the main selection stress for nematode diversity among the large gradient of agricultural ecosystems. However, the soil pH may act as a stress factor in determining nematode community and carbon flow in the soil food web. Our study emphasized that using nematode value by trophic group would provide a deep understanding of nematode response to precipitation in cropland ecosystems.  PubDate: 2023-04-02 DOI: 10.1007/s42832-023-0177-3
- Assembly process and source tracking of microbial communities in sediments
of Dongting Lake-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Soil erosion resulted in homogenization of bacterial communities in the watershed. Microbial community heterogeneity among erosion sites made soil tracing possible. Assembly process results showed that the tracking results can achieve high precision. Dryland was the main source of sediment deposition based on the result of FEAST. Sediment source tracing can accurately provide a theoretical basis for controlling soil erosion effectively, by identifying the most serious types of land use. Traditional sediment tracing methods are based on physical, chemical, biological, and composite fingerprinting, which have not included microbes. As high-throughput sequencing becomes more prevalent, microorganisms can provide more information than what we think. Thus, whether the microorganism can also be used as a special fingerprint factor for sediment source identification during soil erosion, we have tested it by using microbial source tracking tool FEAST to quantify the microbe contribution from five types of eroded land (including dryland, urban, paddy field, forest and grassland) to the depositional areas (Niubitan) in the Yuanjiang basin. The source microbial community in the erosive area was heterogeneous, and assembly process analysis further demonstrated that the source tracking results could reach higher accuracy. The results of FEAST showed that dryland (35.50%), urban (17.21%), paddy field (8.14%), and forest (1.07%) were the major contributors to Niubitan. Our results follow the general soil erosion rules and prove its validity. Taken together, a new perspective is provided by these results for tracing sediment sources in erosion-sedimentary systems.  PubDate: 2023-03-06 DOI: 10.1007/s42832-023-0173-7
- Distribution of microplastics in soil aggregates after film mulching
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Film mulching decreased soil organic C content in soil aggregates with 0.053–0.25 mm diameter. Fiber-shaped microplastics readily combined with the soil aggregates of 0.053–0.25 mm in diameter. Film- and granule-shaped microplastics were dominant in 0.25–2 mm soil aggregates. Natural and human activities changed the shape and size distribution of particle in soil. Microplastic distribution is non-homogeneous in agricultural soil following plastic film degradation. However, the distribution of microplastics by shape and particle size in different soil aggregates remains unknown. To elucidate the distribution of microplastic shapes and particle sizes in soil aggregates with increasing years of film mulching, four paired fields with film mulching (FM) and no mulching (NM) were examined at 1, 5, 10, and 20 years after continuous mulching. An increase in soil aggregates of 0.053–0.25 mm diameter was observed; however, soil organic carbon content decreased after long-term FM. Microplastics primarily combined with 0.053–2 mm soil aggregates. Specifically, long-term FM was associated with dominance of film- and fiber-shaped microplastics in soil aggregates of 0.25–2 mm and 0.053–0.25 mm diameter, respectively. Fiber- and granule-shaped microplastics of 0.25–1 mm diameter primarily combined with 0.053–0.25 and 0.25–2 mm soil aggregates, respectively. Film-shaped microplastics of diameter > 1 mm and diameter 0.05–0.25 mm primarily combined with 0.25–2 mm soil aggregates. Therefore, distribution of microplastics in soil aggregates can be used to monitor soil health and quality, greatly enhancing our understanding of the risk posed by microplastics to the environment.  PubDate: 2023-03-06 DOI: 10.1007/s42832-023-0171-9
- Umamification of food facilitates the green transition
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
PubDate: 2023-03-01 DOI: 10.1007/s42832-022-0155-1
- Coming of age for the rhizosphere microbiome transplantation
-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Microbiome transplants have the potential to disrupt agriculture and medicine by transferring the microbial genetic pool (and hence capabilities) from one host to another. Yet, for this technology to become reality, we need to understand the drivers shaping the success of microbiome transplant. We highlight here recent findings by Dr. Gaofei Jiang and colleagues. Using disease suppression as a model function, they highlight the microbiome characteristics making a successful transplant possible. We see this study is a seminal work making microbiome transplant an informed process that will replace the current error-prone trial procedures. We anticipate that the insights may catalyse a paradigm shift in microbiome management in agriculture and medicine. PubDate: 2023-03-01 DOI: 10.1007/s42832-022-0151-5
- No tillage outperforms conventional tillage under arid conditions and
following fertilization-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Reduced tillage practices present a tool that could sustainably intensify agriculture. The existing literature, however, lacks a consensus on how and when reduced tillage practices should get implemented. We reanalyzed here an extensive dataset comparing how regular tillage practices (i.e., conventional tillage) impacted yield of eight crops compared to stopping tillage altogether (i.e., no-tillage practice). We observed that aridity and fertilization favored no tillage over conventional tillage whereas conventional tillage performed better under high fertility settings. We further show that the responses are consistent across the crops. Our reanalysis complements the original and fills a gap in the literature questioning the conditions under which reducing tillage presents a viable alternative to common tillage practices.  PubDate: 2023-03-01 DOI: 10.1007/s42832-022-0145-3
- Influence of cadmium and copper mixtures to rhizosphere bacterial
communities-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract To study the effects of combined Cd and Cu pollution on rhizosphere bacterial community. High-throughput sequencing was used to examine the response of rhizosphere bacterial communities to heavy-metal stress under single and mixed pollution of cadmium (Cd) and copper (Cu). With additions of Cd and Cu, the mean diversity index of rhizosphere bacterial community was in the order Cu alone > Cd-Cu mixtures > Cd alone. In all Cd and Cu treatments, the dominant phyla were Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria. In the additions with different concentrations of Cd-Cu mixtures, LEfSe indicated that there were differences in the predominant species of rhizosphere bacterial communities. Some genera such as Streptomyces and Microbacterium belonging to Actinobacteria as biomarkers were significantly enriched in both control and treatments, while some genera such as Pseudoxanthomonas and Rhodopseudomonas belonging to Proteobacteria as biomarkers were observed to be enriched in the additions with single and mixture of Cd and Cu. According to the Nonmetric multidimensional scaling (NMDS) analysis, the structure of rhizosphere bacterial community was different between treatments and the CK. Principal Component Analysis (PCA) and permutational multivariate analysis of variance (PERMANOVA) showed that there were significant differences among treatments (p < 0.01), and that the addition of Cu might be the primary factor affecting the composition of rhizosphere bacterial communities.  PubDate: 2023-03-01 DOI: 10.1007/s42832-021-0128-9
- Microfluidic hotspots in bacteria research: A review of soil and related
advances-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract Soil science is an inherently diverse and multidisciplinary subject that cannot develop further without the continuous introduction and promotion of emerging technologies. One such technology that is widely used in biomedicine and similar research fields, microfluidics, poses significant benefits for soil research; however, this technology is still underutilized in the field. Microfluidics offers unparalleled opportunities in soil bacterial cultivation, observation, and manipulation when compared to conventional approaches to these tasks. This review focuses on the use of microfluidics for bacteria research and, where possible, pulls from examples in the literature where the technologies were used for soil related research. The review also provides commentary on the use of microfluidics for soil bacteria research and discusses the key challenges researchers face when implementing this technology. We believe that microfluidic chips and their associated auxiliary technologies provide a prime inroad into the future of soil science research.  PubDate: 2023-03-01 DOI: 10.1007/s42832-022-0129-3
- Soil microbes-mediated enzymes promoted the secondary succession in
post-mining plantations on the Loess Plateau, China-
Free pre-print version: Loading...
Rate this result:
What is this?
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Abstract The diversity of vegetation configuration is the key to ecological restoration in open-pit coal mine dump. However, the recovery outcomes of different areas with the same vegetation assemblage pattern are completely different after long-term evolution. Therefore, understanding the causes of differential vegetation recovery and the mechanism of plant succession is of great significance to the ecological restoration of mines. Three Pinus tabulaeformis plantations with similar initial site conditions and restoration measures but with different secondary succession processes were selected from the open-pit coal mine dump that has been restored for 30 years. Soil physicochemical properties, enzyme activities, vegetation and microbial features were investigated, while the structural equation models were established to explore the interactions between plants, soil and microbes. The results showed that original vegetation configuration and soil nutrient conditions were altered due to secondary succession. With the advancement of the secondary succession process, the coverage of plants increased from 34.8% to 95.5% (P < 0.05), soil organic matter increased from 9.30 g kg−1 to 21.13 g kg−1 (P < 0.05), and total nitrogen increased from 0.38 g kg−1 to 1.01 g kg−1 (P < 0.05). The activities of soil urease and β-glucosidase were increased by 1.7-fold and 53.26%, respectively. Besides, the secondary succession also changed the soil microbial community structure and function. The relative abundance of Nitrospira genus which dominates the nitrification increased 5.2-fold. The results showed that urease and β-glucosidase promoted the increase of vegetation diversity and biomass by promoting the accumulation of soil organic matter and nitrate nitrogen, which promoted the ecological restoration of mine dumps.  PubDate: 2023-03-01 DOI: 10.1007/s42832-022-0148-0
|