Subjects -> MINES AND MINING INDUSTRY (Total: 82 journals)
Showing 1 - 42 of 42 Journals sorted alphabetically
American Mineralogist     Hybrid Journal   (Followers: 16)
Applied Earth Science : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 4)
Archives of Mining Sciences     Open Access   (Followers: 3)
AusiMM Bulletin     Full-text available via subscription   (Followers: 1)
BHM Berg- und Hüttenmännische Monatshefte     Hybrid Journal   (Followers: 2)
Canadian Mineralogist     Full-text available via subscription   (Followers: 7)
CIM Journal     Hybrid Journal  
Clay Minerals     Hybrid Journal   (Followers: 9)
Clays and Clay Minerals     Hybrid Journal   (Followers: 5)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Contributions to Mineralogy and Petrology     Hybrid Journal   (Followers: 14)
Environmental Geochemistry and Health     Hybrid Journal   (Followers: 3)
European Journal of Mineralogy     Hybrid Journal   (Followers: 14)
Exploration and Mining Geology     Full-text available via subscription   (Followers: 3)
Extractive Industries and Society     Hybrid Journal   (Followers: 2)
Gems & Gemology     Full-text available via subscription   (Followers: 2)
Geology of Ore Deposits     Hybrid Journal   (Followers: 5)
Geomaterials     Open Access   (Followers: 3)
Geotechnical and Geological Engineering     Hybrid Journal   (Followers: 9)
Ghana Mining Journal     Full-text available via subscription   (Followers: 3)
Gold Bulletin     Hybrid Journal   (Followers: 2)
Inside Mining     Full-text available via subscription  
International Journal of Coal Geology     Hybrid Journal   (Followers: 4)
International Journal of Coal Preparation and Utilization     Hybrid Journal   (Followers: 2)
International Journal of Coal Science & Technology     Open Access   (Followers: 1)
International Journal of Hospitality & Tourism Administration     Hybrid Journal   (Followers: 16)
International Journal of Minerals, Metallurgy, and Materials     Hybrid Journal   (Followers: 12)
International Journal of Mining and Geo-Engineering     Open Access   (Followers: 4)
International Journal of Mining and Mineral Engineering     Hybrid Journal   (Followers: 8)
International Journal of Mining Engineering and Mineral Processing     Open Access   (Followers: 6)
International Journal of Mining Science and Technology     Open Access   (Followers: 4)
International Journal of Mining, Reclamation and Environment     Hybrid Journal   (Followers: 6)
International Journal of Rock Mechanics and Mining Sciences     Hybrid Journal   (Followers: 9)
Journal of Analytical and Numerical Methods in Mining Engineering     Open Access  
Journal of Applied Geophysics     Hybrid Journal   (Followers: 18)
Journal of Central South University     Hybrid Journal   (Followers: 1)
Journal of China Coal Society     Open Access  
Journal of China University of Mining and Technology     Full-text available via subscription   (Followers: 1)
Journal of Convention & Event Tourism     Hybrid Journal   (Followers: 6)
Journal of Geology and Mining Research     Open Access   (Followers: 10)
Journal of Human Resources in Hospitality & Tourism     Hybrid Journal   (Followers: 9)
Journal of Materials Research and Technology     Open Access   (Followers: 2)
Journal of Metamorphic Geology     Hybrid Journal   (Followers: 17)
Journal of Mining Institute     Open Access  
Journal of Mining Science     Hybrid Journal   (Followers: 5)
Journal of Quality Assurance in Hospitality & Tourism     Hybrid Journal   (Followers: 6)
Journal of Sustainable Mining     Open Access   (Followers: 3)
Journal of the Southern African Institute of Mining and Metallurgy     Open Access   (Followers: 6)
Lithology and Mineral Resources     Hybrid Journal   (Followers: 4)
Lithos     Hybrid Journal   (Followers: 11)
Mine Water and the Environment     Hybrid Journal   (Followers: 6)
Mineral Economics     Hybrid Journal   (Followers: 2)
Mineral Processing and Extractive Metallurgy : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 14)
Mineral Processing and Extractive Metallurgy Review     Hybrid Journal   (Followers: 5)
Mineralium Deposita     Hybrid Journal   (Followers: 4)
Mineralogia     Open Access   (Followers: 2)
Mineralogical Magazine     Hybrid Journal   (Followers: 1)
Mineralogy and Petrology     Hybrid Journal   (Followers: 5)
Minerals     Open Access   (Followers: 2)
Minerals & Energy - Raw Materials Report     Hybrid Journal   (Followers: 1)
Minerals Engineering     Hybrid Journal   (Followers: 14)
Mining Engineering     Full-text available via subscription   (Followers: 7)
Mining Journal     Full-text available via subscription   (Followers: 4)
Mining Report     Hybrid Journal   (Followers: 3)
Mining Technology : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 4)
Mining, Metallurgy & Exploration     Hybrid Journal  
Natural Resources & Engineering     Hybrid Journal  
Natural Resources Research     Hybrid Journal   (Followers: 5)
Neues Jahrbuch für Mineralogie - Abhandlungen     Full-text available via subscription   (Followers: 1)
Physics and Chemistry of Minerals     Hybrid Journal   (Followers: 4)
Podzemni Radovi     Open Access  
Rangeland Journal     Hybrid Journal   (Followers: 4)
Réalités industrielles     Full-text available via subscription  
Rem : Revista Escola de Minas     Open Access  
Resources Policy     Hybrid Journal   (Followers: 4)
Reviews in Mineralogy and Geochemistry     Hybrid Journal   (Followers: 5)
Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica     Open Access  
Rock Mechanics and Rock Engineering     Hybrid Journal   (Followers: 9)
Rocks & Minerals     Hybrid Journal   (Followers: 5)
Rudarsko-geološko-naftni Zbornik     Open Access  
Transactions of Nonferrous Metals Society of China     Hybrid Journal   (Followers: 9)
Similar Journals
Journal Cover
Mineralogical Magazine
Journal Prestige (SJR): 0.751
Citation Impact (citeScore): 1
Number of Followers: 1  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0026-461X - ISSN (Online) 1471-8022
Published by Mineralogical Society, The Homepage  [1 journal]
  • MGM volume 84 issue 6 Cover and Front matter
    • Pages: 1 - 2
      PubDate: 2021-01-14
      DOI: 10.1180/mgm.2020.103
       
  • MGM volume 84 issue 6 Cover and Back matter
    • Pages: 1 - 2
      PubDate: 2021-01-14
      DOI: 10.1180/mgm.2020.102
       
  • 2020 list of referees for Mineralogical Magazine
    • Pages: 976 - 977
      PubDate: 2021-01-14
      DOI: 10.1180/mgm.2020.99
       
  • Chromium-rich vanadio-oxy-dravite from the Tzarevskoye uranium–vanadium
           deposit, Karelia, Russia: a second world-occurrence of
           Al–Cr–V–oxy-tourmaline
    • Authors: Bosi; Ferdinando, Altieri, Alessandra, Cámara, Fernando, Ciriotti, Marco E.
      Pages: 797 - 804
      Abstract: A green tourmaline sample from the Tzarevskoye uranium–vanadium deposit, close to the Srednyaya Padma deposit, Lake Onega, Karelia Republic, Russia, has been found to be the second world-occurrence of Cr-rich vanadio-oxy-dravite in addition to the Pereval marble quarry, Sludyanka crystalline complex, Lake Baikal, Russia, type-locality. From the crystal-structure refinement and chemical analysis, the following empirical formula is proposed: X(Na0.96K0.02□0.02)Σ1.00 Y(V1.34Al0.68Mg0.93Cu2+0.02Zn0.01Ti0.01)Σ3.00 Z(Al3.19Cr1.36V0.03Mg1.42)Σ6.00(TSi6O18)(BBO3)3V(OH)3W[O0.60(OH)0.23F0.17]Σ1.00. Together with the data from the literature, a compositional overview of Al–V–Cr–Fe3+-tourmalines is provided by using [6]Al–V–Cr–Fe3+ diagrams for tourmaline classification. These diagrams further simplify the tourmaline nomenclature as they merge the chemical information over the octahedrally-coordinated sites (Y and Z) by removing the issues of uncertainty associated with cation order–disorder across Y and Z. Results show the direct identification of tourmalines by using the chemical data alone.
      PubDate: 2020-10-23
      DOI: 10.1180/mgm.2020.77
       
  • Thunderbayite, TlAg3Au3Sb7S6, a new gold-bearing mineral from the Hemlo
           gold deposit, Marathon, Ontario, Canada
    • Authors: Bindi; Luca, Roberts, Andrew C.
      Pages: 805 - 812
      Abstract: Thunderbayite (IMA2020–042), ideally TlAg3Au3Sb7S6, is a new mineral from the Hemlo gold deposit, Marathon, Ontario, Canada. It occurs as very rare anhedral rims up to 70 μm across in contact with aurostibite and associated spatially with stibarsen, biagioniite and native gold in a calcite matrix. Thunderbayite is opaque with a metallic lustre and shows a black streak. In reflected light, thunderbayite is weakly bireflectant and faintly pleochroic from grey–blue to slightly greenish grey–blue. Under crossed polars, it is weakly anisotropic with bluish to light-blue rotation tints. Internal reflections are absent. Reflectance percentages for the four Commission on Ore Mineralogy wavelengths (Rmin, Rmax) are: 37.9, 38.4 (471.1 nm); 35.3, 36.0 (548.3 nm); 33.9, 34.4 (586.6 nm); and 32.0, 32.5 (652.3 nm), respectively. A mean of five electron-microprobe analyses gave Ag 14.91(16), Au 27.40(22), Tl 9.37(9), Sb 39.80(34) and S 8.61(7), for a total of 100.09 wt.%, corresponding, on the basis of a total of 20 atoms, to Tl1.00Ag3.01Au3.03Sb7.12S5.84. Thunderbayite is triclinic, space group P1, with a = 8.0882(5), b = 7.8492(5), c = 20.078(1) Å, α = 92.518(5), β = 93.739(5), γ = 90.028(6)°, V = 1270.73(9) Å3 and Z = 2. The five strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are: 4.04 (100) (200); 3.92 (80) (020); 2.815 (50) (220/20); 2.566 (45) (17); and 2.727 (40) (07). The crystal structure [R1 = 0.0220 for 5521 reflections with I> 2σ(I)] can be considered as a strongly deformed pyrite-type structure with several metal–metal bonds. Thunderbayite shows close similarities with criddleite, TlAg2Au3Sb10S10, from an optical, chemical and structural point of view. The new mineral is named for the Thunder Bay district, Ontario, in which the Hemlo gold deposit is located.
      PubDate: 2020-10-20
      DOI: 10.1180/mgm.2020.80
       
  • Nepheline solid solution compositions: stoichiometry revisited, reviewed,
           clarified and rationalised
    • Authors: Henderson; C. Michael B.
      Pages: 813 - 838
      Abstract: Molecular formulae used to recalculate nepheline analyses generally have different numbers of oxygens (e.g. NaAlSiO4 (Ne), KAlSiO4, (Ks), CaAl2Si2O8 (An) and SiO2 (Q)). A 32 oxygen cell has 16 T cations and 8 cavity sites, but ideal nepheline stoichiometry is not necessarily followed. Ca end-member □CaCaAl2Si2O4 (CaNe) and excess silica end-member □SiSi2O4 (Q’) calculation requires inclusion of both vacancy species as cavity cation values. Q’ parameter calculations can involve different assumptions and four parameters are described: Qxs; QSi; Q(Si–Al); and Qcavity; these should have closely similar values for high-quality, stoichiometric analyses.Representative published compositions are recalculated to assess whether authors followed ideal nepheline stoichiometry. Phenocrysts from peralkaline rocks and nephelinites typically exhibit Al deficiencies reflected in negative Δ(Al – cavity cation) parameters (ΔAlcc), negative ‘normative’ corundum (Al2O3, Cn), and anomalously low or negative Qxs parameters; for such rock types Q(Si–Al) provides a better estimate of excess silica contents. A ΔT-site (cation charge) parameter (ΔTcharge), is closely coupled to ΔAlcc and end-member NaAlSiO4 has a ΔAlcc/ΔTcharge ratio of 1.4296; the derivation of this value is controlled by strict stuffed-tridymite, unit-cell constraints. Natural nephelines all contain excess silica with a mean ΔAlcc/ΔTcharge of ~1.134 reflecting their Si/Al ratio being> 1.Nepheline analyses with relatively low Al and Si and high Na (also Ca) contents are common; this might reflect the presence of small amounts (up to ~5%) of cancrinite as an alteration phase or perhaps even in solid solution. The compositions of alteration lamellae of Ca-rich cancrinite in altered nepheline phenocrysts in phonolites from the Marangudzi alkaline complex, Zimbabwe, are used to define diagnostic parameters for recognising such non-stoichiometry. These alteration lamellae formed hydrothermally from Ca-rich and K-poor fluids.An EXCEL file is provided to help researchers to standardise calculation of nepheline end-member molecular proportions.
      PubDate: 2020-11-09
      DOI: 10.1180/mgm.2020.78
       
  • The mineralogy of the historical Mochalin Log REE deposit, South Urals,
           Russia. Part II. Radekškodaite-(La), (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3
           and radekškodaite-(Ce), (CaCe5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3, two new
           minerals with a novel structure-type belonging to the
           epidote–törnebohmite polysomatic series
    • Authors: Kasatkin; Anatoly V., Zubkova, Natalia V., Pekov, Igor V., Chukanov, Nikita V., Ksenofontov, Dmitriy A., Agakhanov, Atali A., Belakovskiy, Dmitriy I., Polekhovsky, Yury S., Kuznetsov, Aleksey M., Britvin, Sergey N., Pushcharovsky, Dmitry Yu., Nestola, Fabrizio
      Pages: 839 - 853
      Abstract: Two new isostructural minerals radekškodaite-(La) (CaLa5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3 and radekškodaite-(Ce) (CaCe5)(Al4Fe2+)[Si2O7][SiO4]5O(OH)3 were discovered in polymineralic nodules from the Mochalin Log REE deposit, South Urals, Russia. Radekškodaite-(La) is associated with allanite-(Ce), allanite-(La), bastnäsite-(Ce), bastnäsite-(La), ferriallanite-(Ce), ferriallanite-(La), ferriperbøeite-(La), fluorbritholite-(Ce), törnebohmite-(Ce) and törnebohmite-(La). Radekškodaite-(Ce) is associated with ancylite-(Ce), bastnäsite-(Ce), bastnäsite-(La), lanthanite-(La), perbøeite-(Ce) and törnebohmite-(Ce). The new minerals form isolated anhedral grains up to 0.35 × 0.75 mm [radekškodaite-(La)] and 1 mm × 2 mm [radekškodaite-(Ce)]. Both minerals are greenish-brown with vitreous lustre. Dcalc = 4.644 [radekškodaite-(La)] and 4.651 [radekškodaite-(Ce)] g cm–3. Both minerals are optically biaxial (+); radekškodaite-(La): α = 1.790(7), β = 1.798(5), γ = 1.825(8) and 2Vmeas = 60(10)°; radekškodaite-(Ce): α = 1.798(6), β = 1.806(6), γ = 1.833(8) and 2Vmeas = 65(10)°. Chemical data [wt.%, electron-microprobe; FeO:Fe2O3 by charge balance; H2O by stochiometry; radekškodaite-(La)/radekškodaite-(Ce)] are: CaO 3.40/2.74, La2O3 27.68/22.23, Ce2O3 20.39/24.30, Pr2O3 0.94/1.48, Nd2O3 1.71/3.18, ThO2 0.23/0.24, MgO 0.85/1.04, Al2O3 10.35/10.84, MnO 0.64/0.69, FeO 2.55/2.76, Fe2O3 3.12/2.57, TiO2 0.13/0.04, SiO2 26.03/26.10, F 0.10/0.09, H2O 1.62/1.63, –O=F –0.04/–0.04, total 99.70/99.89. The empirical formulae based on O28(OH,F)3 are: radekškodaite-(La): (Ca0.98Th0.01La2.75Ce2.01Nd0.16Pr0.09)Σ6.00(Al3.28Fe3+0.63Fe2+0.57Mg0.34Mn0.15Ti0.03)Σ5.00Si7.00O28[(OH)2.91F0.09]; radekškodaite-(Ce): (Ca0.79Mn0.16Th0.01Ce2.39La2.20Nd0.30Pr0.14)Σ5.99(Al3.43Fe2+0.62Fe3+0.52Mg0.42Ti0.01)Σ5.00Si7.00O28[(OH)2.92F0.08]. Both minerals are monoclinic, P21/m; the unit-cell parameters [radekškodaite-(La)/radekškodaite-(Ce)] are: a = 8.9604(3)/8.9702(4), b = 5.7268(2)/5.7044(2), c = 25.1128(10)/25.1642(13) Å, β = 116.627(5)/116.766(6)°, V = 1151.98(7)/1149.68(11) Å3 and Z = 2/2. The crystal structures are solved based on single-crystal X-ray diffraction data; R = 0.0554 [radekškodaite-(La)] and 0.0769 [radekškodaite-(Ce)]. Both minerals belong to the epidote–törnebohmite polysomatic series and represent first members of ET2-type: their structure consists of regular alternating modules, one slab of the epidote (E) structure and two slabs of törnebohmite (T). The rootname radekškodaite is given in honor of the Czech mineralogist Radek Škoda (born 1979), Associate Professor at Masaryk University, Brno, Czech Republic. The suffix-modifier -(La) or -(Ce) indicates the predominance of La or Ce among REE in the mineral.
      PubDate: 2020-08-24
      DOI: 10.1180/mgm.2020.64
       
  • Oxycalciomicrolite, (Ca,Na)2(Ta,Nb,Ti)2O6(O,F), a new member of the
           microlite group (pyrochlore supergroup) from the Paleoproterozoic São
           João del Rei Pegmatite Province, Minas Gerais state, Brazil
    • Authors: Menezes da Silva; Victor H.R., Ávila, Ciro A., Neumann, Reiner, Faulstich, Fabiano R.L., Alves, Felipe E.A., de Almeida, Filipe B., Cidade, Tais Proença, Sousa, Sarah Siqueira da Cruz Guimarães
      Pages: 854 - 858
      Abstract: Oxycalciomicrolite (IMA2019-110), (Ca,Na)2(Ta,Nb,Ti)2O6(O,F), is a new member of microlite-group mineral found in the saprolite of the weathered Fumal pegmatite, located close to the city of Nazareno, Minas Gerais state, Brazil. It occurs as an accessory mineral associated with quartz, albite, microcline, muscovite, columbite-subgroup minerals, cassiterite, hematite, ilmenite, monazite-(Ce), xenotime-(Y), zircon, beryl, spinel, epidote and garnet-group minerals. Oxycalciomicrolite is found as octahedral crystals, occasionally modified to rhombododecahedra, ranging from 0.2 to 0.5 mm in size. The crystals are brownish-yellow to brownish-red and translucent, with white streak and vitreous to resinous lustre. The tenacity is brittle, with a Mohs hardness of 5–5½. Cleavage and parting are not observed; the fracture is conchoidal. Electron microprobe analysis, Raman and infrared spectroscopies and X-ray powder diffraction were applied to characterise this mineral. Oxycalciomicrolite is isotropic, ncalc. = 2.037, and the calculated density is 6.333 g/cm3. The composition is (Ca1.57□0.26Na0.06Sn0.03Sr0.03U0.02Mn0.02Fe0.01Ce0.01)∑2.00(Ta1.79Nb0.18Ti0.03)∑2.00O6.00[O0.64F0.19□0.17]∑1.00 analysed by electron microprobe using wavelength dispersive spectrometry. The unit-cell parameters obtained by Pawley fitting from powder X-ray diffraction data are a = 10.4325(4) Å and V = 1135.46(14) Å3 with Z = 8.
      PubDate: 2020-09-25
      DOI: 10.1180/mgm.2020.74
       
  • Sulfide partial melting and galena–tetrahedrite intergrowth texture:
           An experimental study
    • Authors: Govindarao; Boddepalli, Pruseth, Kamal Lochan, Mishra, Biswajit
      Pages: 859 - 868
      Abstract: Galena–tetrahedrite intergrowth textures have been observed in some quenched run products of melting experiments conducted at 500 and 600°C in the systems ZnS–PbS–FeS–Cu2S–Sb2S3 and ZnS–PbS–FeS–Cu2S–Sb2S3–As2S3, using the evacuated silica-tube method. At 600°C the intergrowth formed an interface between sulfide melt and galena, whereas at 500°C it existed as inclusions partially embedded or completely embedded within tetrahedrite. At 600°C tetrahedrite was absent in PbS-bearing experiments, instead galena and melt were a part of the equilibrium phase assemblage. From the disposition of the galena–tetrahedrite intergrowths at 500°C it is evident that droplets of galena–tetrahedrite melt coexisted with tetrahedrite or tetrahedrite + galena and gave rise to these intergrowths upon quenching. The intergrowths coexisting with galena probably represent compositions on the galena-rich liquidus in the galena–tetrahedrite binary and those coexisting with tetrahedrite represent points on the tetrahedrite-rich liquidus. A eutectic at galena:tetrahedrite = ~30:70, very close to 500°C is apparent. It is clearly indicated that galena–tetrahedrite intergrowths can be formed by sulfide partial melting, and could be used as a potential indicator of partial melting in metamorphosed sulfide ore deposits.
      PubDate: 2020-10-20
      DOI: 10.1180/mgm.2020.79
       
  • Vittinkiite, MnMn4[Si5O15], a member of the rhodonite group with a long
           history: definition as a mineral species
    • Authors: Shchipalkina; Nadezhda V., Pekov, Igor V., Chukanov, Nikita V., Zubkova, Natalia V., Belakovskiy, Dmitry I., Britvin, Sergey N., Koshlyakova, Natalia N.
      Pages: 869 - 880
      Abstract: The rhodonite-group mineral with the idealised, end-member formula MnMn4[Si5O15] and the crystal chemical formula VIIM(5)MnVIM(1–3)Mn3VIIM(4)Mn[Si5O15] (Roman numerals indicate coordination numbers) is defined as a valid mineral species named vittinkiite after the type locality Vittinki (Vittinge) mines, Isokyrö, Western and Inner Finland Region, Finland. Vittinkiite is an isostructural analogue of rhodonite, ideally CaMn4[Si5O15], with Mn2+> Ca at the M(5) site. Besides Vittinki, vitiinkiite was found in more than a dozen rhodonite deposits worldwide, however, it is significantly less common in comparison with rhodonite. The mineral typically forms pink to light pink massive, granular aggregates and is associated with quartz, rhodonite, tephroite, pyroxmangite and Mn oxides. Vittinkiite is optically biaxial (+), with α = 1.725(4), β = 1.733(4), γ = 1.745(5) and 2Vmeas = 75(10)° (589 nm). The chemical composition of the holotype (wt.%, electron microprobe) is: MgO 0.52, CaO, 0.93, MnO 51.82, FeO 1.26, ZnO 0.11, SiO2 46.48, total 101.12. The empirical formula calculated based on 15 O apfu is Mn4.71Ca0.11Fe0.11Mg0.08Zn0.01Si4.99O15. Vittinkiite is triclinic, space group P, with a = 6.6980(3), b = 7.6203(3), c = 11.8473(5) Å, α = 105.663(3), β = 92.400(3), γ = 94.309(3)°, V = 579.38(7) Å3 and Z = 2. The crystal structure is solved on a single crystal to R1 = 3.85%. Polymorphism of MnSiO3 (rhodonite-, pyroxmangite-, garnet- and clinopyroxene-type manganese metasilicates) is discussed, as well as the relationship between vittinkiite and pyroxmangite, ideally Mn7[Si7O21], and the application of infrared spectroscopy for the identification of manganese pyroxenoids.
      PubDate: 2020-09-25
      DOI: 10.1180/mgm.2020.75
       
  • Monteneroite, Cu2+Mn2+2(AsO4)2⋅8H2O, a new vivianite-structure mineral
           with ordered cations from the Monte Nero mine, Liguria, Italy
    • Authors: Kampf; Anthony R., Plášil, Jakub, Nash, Barbara P., Ciriotti, Marco E., Castellaro, Fabrizio, Chiappino, Luigi
      Pages: 881 - 887
      Abstract: Monteneroite (IMA2020-028), Cu2+Mn2+2(AsO4)2⋅8H2O, is a new vivianite-structure mineral from the Monte Nero mine, Rocchetta di Vara, La Spezia, Liguria, Italy. It is a secondary mineral that crystallised from As-, Cu- and Mn-rich fluids and it is associated with braunite, copper, cuprite, rhodochrosite and strashimirite. Monteneroite occurs as light green, thick blades up to ~2.5 mm long. The streak is white. Crystals are transparent with vitreous lustre. The mineral has Mohs hardness of 2, is somewhat sectile, exhibits two cleavages ({010} perfect and {001} fair) and has irregular stepped fracture. The measured density is 2.97(2) g cm–3. Monteneroite is optically biaxial (+), with α = 1.604(2), β = 1.637(2) and γ = 1.688(2), determined in white light; 2V = 80(1)°; slight dispersion is r < v, orientation: X = b; Z ^ c = 52° in obtuse β. Electron microprobe analyses provided the empirical formula (Cu2+0.88Mn2+0.11)Σ0.99Mn2+2.00(As1.00O4)2⋅8H2O. Monteneroite is monoclinic, C2/m, a = 10.3673(14), b = 13.713(2), c = 4.8420(8) Å, β = 105.992(8)°, V = 661.72(18) Å3 and Z = 2. Monteneroite has a vivianite-type structure (R1 = 0.0535 for 534 I> 2σI reflections). It is the first mineral with this structure type to be defined with ordered octahedral cation sites.
      PubDate: 2020-09-28
      DOI: 10.1180/mgm.2020.76
       
  • Towards a detailed comprehension of the inertisation processes of
           amphibole asbestos: in situ high-temperature behaviour of fibrous
           tremolite
    • Authors: Ballirano; Paolo, Pacella, Alessandro
      Pages: 888 - 899
      Abstract: Thermal behaviour of fibrous tremolite from Maryland, USA has been investigated in situ up to breakdown temperature. Tremolite can be found both as primary constituent and as contaminant in Asbestos Containing Materials (ACMs). The products of breakdown are subcalcic diopside and calcium-rich clinoenstatite in a 2:1 ratio, traces of hematite plus minor silica-rich amorphous material. Thermal expansion follows a regular trend up to 723 K before the onset of Fe2+ oxidation/OH– deprotonation which is completed at 1023 K. At 923 K the Fe3+ migration starts towards M(1) and the corresponding counter-migration of Mg to M(2) and M(3). At T close to structure breakdown, M(2) shows a significant site-scattering reduction possibly consistent with the occurrence of minor vacancies. In fully oxidised tremolite, Fe3+ is allocated prevalently at M(1) and subordinately at M(3). As it is well-known that M(1), along with M(2), is the most exposed octahedral site at the surface of amphiboles, most of the Fe3+ is available for participating in the Fenton-like reactivity of oxidised tremolite, potentially making it dangerous for human health. This point should be properly taken into account in the evaluation of the safety of thermally decomposed tremolite-containing ACMs, in particular in the case of accidentally incomplete treatments.
      PubDate: 2020-11-16
      DOI: 10.1180/mgm.2020.89
       
  • Platinum-group minerals from the Malaya Kamenushka River placer, Middle
           Urals, Russia
    • Authors: Palamarchuk; Roman S., Stepanov, Sergey Yu., Kozlov, Aleksandr V., Khanin, Dmitry A., Varlamov, Dmitry A., Zolotarev, Andrey A., Kiseleva, Daria V., Shilovskikh, Vladimir V.
      Pages: 900 - 912
      Abstract: This work presents a detailed study of platinum-group mineral (PGM) assemblages from the Malaya Kamenushka River placer, whose formation is associated with the weathering of the Kamenushensky Uralian–Alaskan type massif, Middle Urals, Russian Federation. The deposit is characterised by the dominance of isoferroplatinum, together with significant numbers of inclusions of Os–Ir–Ru alloys and platinum-group element (PGE) sulfides. A study of the Os–Ir–Ru alloys permitted recognition of two types of iridium with different morphology and composition. The similarity of the PGM assemblages from the Malaya Kamenushka River placer and the lode mineralisation of the Kamenushensky massif is demonstrated. A comparison of PGM assemblages from the Malaya Kamenushka River placer with other placers and massifs of the Ural platinum belt demonstrates significant differences in the number of Os–Ir–Ru inclusions. Such differences for minerals of refractory elements cannot be explained by the vertical zoning of the lode mineralisation. Most probably this is associated with the enrichment of the primary substrate with Os, Ir and Ru and/or the degree of melting, depending on the chosen model of formation of the Uralian–Alaskan type massifs.
      PubDate: 2020-11-03
      DOI: 10.1180/mgm.2020.87
       
  • The mineralogy of the historical Mochalin Log REE deposit, South Urals,
           Russia. Part III. Percleveite-(La), La2Si2O7, a new REE disilicate mineral
           
    • Authors: Kasatkin; Anatoly V., Zubkova, Natalia V., Pekov, Igor V., Chukanov, Nikita V., Škoda, Radek, Agakhanov, Atali A., Belakovskiy, Dmitriy I., Ksenofontov, Dmitriy A., Plášil, Jakub, Kuznetsov, Aleksey M., Britvin, Sergey N., Pushcharovsky, Dmitry Yu.
      Pages: 913 - 920
      Abstract: The new mineral percleveite-(La) (IMA2019–037), ideally La2Si2O7, was found in polymineralic nodules of the Mochalin Log REE deposit, Chelyabinsk Oblast, South Urals, Russia. It is associated with allanite-(Ce), allanite-(La), bastnäsite-(Ce), bastnäsite-(La), ferriallanite-(Ce), ferriallanite-(La), ferriperbøeite-(Ce), ferriperbøeite-(La), fluorbritholite-(Ce), hydroxylbastnäsite-(Ce), perbøeite-(Ce), perbøeite-(La), törnebohmite-(Ce) and törnebohmite-(La). Percleveite-(La) occurs as isolated anhedral grains commonly up to 0.2 mm × 0.4 mm and very rarely up to 1 mm × 1 mm. The new mineral is transparent with greasy lustre. The mineral is very pale yellow to colourless in thin fragments to light yellow in aggregates. It is brittle, with imperfect {001} cleavage and an uneven fracture. Mohs’ hardness is ca. 6. Dcalc = 5.094 g cm–3. Under the microscope, percleveite-(La) is non-pleochroic, optically uniaxial (+), ω = 1.825(10) and ɛ = 1.835(10). The Raman spectrum is given. Chemical data (wt.%, electron-microprobe) are: La2O3 36.80, Ce2O3 31.22, Pr2O3 1.57, Nd2O3 2.96, SiO2 26.73, total 99.28. The empirical formula based on 7 O apfu is (La1.02Ce0.86Nd0.08Pr0.04)Σ2.00Si2.00O7. Percleveite-(La) is tetragonal, P41; the unit-cell parameters are: a = 6.8482(3), c = 24.8550(13) Å, V = 1165.64(11) Å3 and Z = 8. The strongest reflections in the powder X-ray diffraction pattern [d, Å(I)(hkl)] are: 4.194(18)(113), 3.564(16)(106), 3.349(16)(201,202), 3.157(100)(203,116,008), 3.043(22)(211), 2.934(39)(122), 2.893(29)(213) and 2.864(21)(117). The crystal structure of percleveite-(La) is solved from the single-crystal X-ray diffraction data [R = 0.0617 for 2831 unique reflections with I> 2σ(I)]. The new mineral is named as an analogue of percleveite-(Ce) with La predominance over the rare-earth elements.
      PubDate: 2020-10-22
      DOI: 10.1180/mgm.2020.81
       
  • Bojarite, Cu3(N3C2H2)3(OH)Cl2⋅6H2O, a new mineral species with a
           microporous metal–organic framework from the guano deposit at Pabellón
           de Pica, Iquique Province, Chile
    • Authors: Chukanov; Nikita V., Möhn, Gerhard, Zubkova, Natalia V., Ksenofontov, Dmitry A., Pekov, Igor V., Agakhanov, Atali A., Britvin, Sergey N., Desor, Joy
      Pages: 921 - 927
      Abstract: The new triazolate mineral bojarite (IMA2020-037), Cu3(N3C2H2)3(OH)Cl2⋅6H2O, is found in a guano deposit located at the Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile. Associated minerals are salammoniac, halite, nitratine and belloite. Bojarite occurs as blue fine-grained porous aggregates up to 1 mm × 3 mm × 5 mm combined typically in interrupted earthy crusts. The mineral is brittle. The Mohs hardness is 2. Dcalc = 2.057 g cm–3. The IR and Raman spectra show the presence of the 1,2,4-triazolate anion and H2O molecules. Bojarite is optically isotropic and n = 1.635(2) (λ = 589 nm). The chemical composition (electron-microprobe data for Na, Mg, Fe, Cu and Cl; H, C and N contents measured by gas chromatography on products of ignition at 1200°C; wt.%) is: Na 0.22, Mg 0.74, Fe 0.99, Cu 29.73, Cl 13.62, N 20.4, C 11.6, H 3.3, O (calculated by stoichiometry) 19.93, total 100.53.The empirical formula is (Cu2.68Mg0.17Fe0.10Na0.05)Σ3(N3C2H2)2.755[(OH)][Cl2.19(H2O)3.77(OH)0.04]Σ6⋅2.3H2O. The idealised formula is Cu3(N3C2H2)3(OH)Cl2⋅6H2O. The crystal structure of bojarite was refined based on powder X-ray diffraction data, using the Rietveld method. The final agreement factors are: Rp = 0.0225, Rwp = 0.0310 and Robs = 0.0417. The new mineral is cubic, space group Fdc; a = 24.8047(5) Å, V = 15,261.6(5) Å3 and Z = 32. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%)(hkl)] are: 8.83 (31)(220), 7.19 (100)(222), 6.23 (35)(400), 5.077 (28)(422), 4.194 (28)(531), 3.584 (23)(444), 2.865 (28)(660, 751) and 2.723 (22)(753, 842).
      PubDate: 2020-10-30
      DOI: 10.1180/mgm.2020.85
       
  • Cerite: a new supergroup of minerals and cerite-(La) renamed
           ferricerite-(La)
    • Authors: Atencio; Daniel, Azzi, Andrezza de Almeida
      Pages: 928 - 931
      Abstract: The cerite supergroup is established and includes the cerite group (silicates) and merrillite group (phosphates). Cerite-group minerals are cerite-(Ce), ferricerite-(La), aluminocerite-(Ce) and taipingite-(Ce). The merrillite group is subdivided into two subgroups: merrillite (merrillite, ferromerrillite, keplerite and matyhite) and whitlockite (whitlockite, strontiowhitlockite, wopmayite and hedegaardite). Cerite-(La) has been renamed ferricerite-(La). The new nomenclature has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.
      PubDate: 2020-10-30
      DOI: 10.1180/mgm.2020.86
       
  • Manganoarrojadite-(KNa), KNa5MnFe13Al(PO4)11(PO3OH)(OH)2, a new
           arrojadite-group mineral from the Palermo No. 1 mine, New Hampshire, USA
    • Authors: Lykova; Inna, Rowe, Ralph, Poirier, Glenn, Helwig, Kate, Friis, Henrik
      Pages: 932 - 940
      Abstract: A new arrojadite-group mineral manganoarrojadite-(KNa), ideally KNa5MnFe13Al(PO4)11(PO3OH)(OH)2, was found in a phosphate-bearing granite pegmatite at the Palermo No. 1 mine, New Hampshire, USA. It forms anhedral grains up to 1 × 1.5 cm in size combined in aggregates with vivianite, goyazite, quartz and calcite. The mineral is olive green with a pale green streak and vitreous to greasy lustre. The cleavage is good in one direction. The Mohs hardness is 4½. Dcalc is 3.53 g/cm3. Manganoarrojadite-(KNa) is optically biaxial (–), α = 1.658(2), β = 1.666(2), γ = 1.670(2), 2Vmeas. = 67(1)° and 2Vcalc. = 70° (589 nm). The infrared spectrum is reported. The composition (wt.%) is Na2O 6.97, K2O 1.78, CaO 0.31, MgO 2.17, MnO 12.30, FeO 31.17, Al2O3 2.43, P2O5 40.48, F 0.30, H2O 1.32, O = F2 –0.13, total 99.10. The empirical formula calculated on the basis of 12 P and (O+OH+F) = 50 apfu is Na4.73K0.80Ca0.12Mg1.13Mn2+3.65Fe2+9.13Al1.00P12.00O46.59OH3.08F0.33. The ideal structural formula is A1KA2NaB1NaB2NaNa1,2Na2Na3□ CMnMFe13Al(PO4)11(PO3OH)W(OH)2. The mineral is monoclinic, Cc, a = 16.5345(3), b = 10.0406(2), c = 24.6261(5) Å, β = 105.891(2)°, V = 3932.09(14) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 5.902(24)(202), 5.025(24)(020), 3.208(47)(206,32), 3.048(100)(14, 24), 2.758(24)(02) and 2.704(70)(226). The crystal structure, refined from single-crystal X-ray diffraction data (R1 = 0.025), is of the arrojadite structure type. Manganoarrojadite-(KNa) is the first arrojadite-group mineral with Mn dominant on the site usually occupied by Ca and without Ca as the dominant cation at any cation site.
      PubDate: 2020-11-11
      DOI: 10.1180/mgm.2020.88
       
  • Bosoite, a new silica clathrate mineral from Chiba Prefecture, Japan
    • Authors: Momma; Koichi, Ikeda, Takuji, Nagase, Toshiro, Kuribayashi, Takahiro, Honma, Chibune, Nishikubo, Katsumi, Takahashi, Naoki, Takada, Masayuki, Matsushita, Yoshitaka, Miyawaki, Ritsuro, Matsubara, Satoshi
      Pages: 941 - 948
      Abstract: Bosoite (IMA2014-023) is a new silica clathrate mineral containing hydrocarbon molecules in its crystal structure. Bosoite can be considered structurally as a silica analogue of the structure-H gas hydrate, where guest molecules are trapped in cage-like voids constructed of the host framework. The mineral occurs in the Miocene tuffaceous sedimentary rocks at Arakawa, Minami-boso City, Chiba Prefecture, Japan. Bosoite is hexagonal, and it crystallises as an epitaxial intergrowth on chibaite crystals, with the {0001} of bosoite parallel to octahedral {111} form of chibaite. Crystals are colourless and transparent with vitreous lustre. The calculated density is 2.04 g/cm3. The empirical formula (based on 2 O apfu and guest molecules assumed as CH4) is Na0.01(Si0.98Al0.02)Σ1.00O2⋅0.50CH4; the end-member formula is SiO2⋅nCxH2x+2. Bosoite has the space group P6/mmm, with the unit-cell parameters a = 13.9020(3) Å, c = 11.2802(2) Å, V = 1887.99(6) Å3 and Z = 34. The crystal structure of bosoite was refined by single-crystal X-ray diffraction and converged to R1 = 4.26% for the average model and R1 = 2.96% for the model where all oxygen sites are split.
      PubDate: 2020-11-20
      DOI: 10.1180/mgm.2020.91
       
  • Zircon from diamondiferous kyanite gneisses of the Kokchetav massif:
           Revealing growth stages using an integrated cathodoluminescence, Raman
           spectroscopy and electron microprobe approach
    • Authors: Rezvukhina; Olga V., Korsakov, Andrey V., Rezvukhin, Dmitriy I., Mikhailenko, Denis S., Zamyatin, Dmitry A., Greshnyakov, Evgeny D., Shur, Vladimir Ya.
      Pages: 949 - 958
      Abstract: Zircon crystals from diamondiferous kyanite gneisses of the Barchi-Kol area (Kokchetav massif, Northern Kazakhstan) have been investigated by a combined application of cathodoluminescence (CL), Raman spectroscopy and electron probe microanalysis (EPMA). The zircon crystals exhibit up to four distinct domains characterised by significantly different CL signatures and parameters of the ν3(SiO4) (1008 cm–1) Raman band (i.e. full width at half maximum, position and intensity). Extremely metamict zircon cores (Domain I) host inclusions of low-pressure minerals (quartz and graphite) and the outer mantles (Domain III) are populated by ultrahigh-pressure relicts (diamond and coesite), whereas inner mantles (Domain II) and overgrowth rim zones (Domain IV) are inclusion free. Both the zircon cores and rims have very low Ti concentrations, implying formation temperatures below 760°C. The Ti content in the inner mantles (up to 40 ppm) is indicative of temperatures in the 760–880°C range. The temperature estimates for the outer mantles are 900–940°C, indicating a pronounced overlap with the peak metamorphic values yielded by the Zr-in-rutile geothermometer for the same rocks (910–950°C). The internal textures of the zircons and the occurrence of index minerals within the distinct domains allow us to unravel the stages of the complex metamorphic history recorded in the zircon. Our data show that the zircon cores are inherited seeds of pre-metamorphic (magmatic') origin, the inner mantles were formed on the prograde metamorphic stage, the outer mantles record ultrahigh-pressure metamorphism and the outermost rims mark the retrograde metamorphic stage. The observed zircon internal textures are thus clearly correlated with distinct growth events, and in some examples reflect a major part of the metamorphic history. It is concluded that the combined application of the CL, Raman spectroscopy and EPMA techniques to zircon offers significant potential for deciphering the metamorphic evolution of deeply-subducted rocks.
      PubDate: 2020-11-25
      DOI: 10.1180/mgm.2020.95
       
  • Jeankempite, Ca5(AsO4)2(AsO3OH)2(H2O)7, a new arsenate mineral from the
           Mohawk Mine, Keweenaw County, Michigan, USA
    • Authors: Olds; Travis A., Kampf, Anthony R., Dal Bo, Fabrice, Burns, Peter C., Guo, Xiaofeng, McCloy, John S.
      Pages: 959 - 969
      Abstract: Jeankempite, Ca5(AsO4)2(AsO3OH)2(H2O)7, is a new mineral species (IMA2018-090) discovered amongst coatings of arsenate minerals on oxidised copper arsenides from the Mohawk No. 2 mine, Mohawk, Keweenaw County, Michigan, USA. The new mineral occurs as lamellar bundles of colourless to white plates up to 1 mm wide and is visually indistinguishable from guérinite, with which it forms intergrowths. Jeankempite is transparent to translucent with a waxy lustre and white streak, is non-fluorescent under longwave and shortwave ultraviolet illumination, has a Mohs hardness of ~1.5 and brittle tenacity with uneven fracture. Crystals are flattened on {01} and exhibit perfect cleavage on {01}. Optically, jeankempite is biaxial (+), α = 1.601(2), β = 1.607(2), γ = 1.619(2) (white light); 2Vmeas. = 72(2)° and 2Vcalc. = 71.0°. The empirical formula is (Ca4.97Na0.013Mg0.017)(As3.99S0.01)4O23H16, based on 23 O and 16 H atoms per formula unit. Thermogravimetric analysis indicates that jeankempite undergoes four weight losses totalling 16.82%, close to the expected loss of 16.30%, corresponding to eight H2O. Jeankempite is triclinic, P, a = 6.710(6), b = 14.901(14), c = 15.940(15) Å, α = 73.583(12)°, β = 81.984(12)°, γ = 82.754(12)°, V = 1507(2) Å3 and Z = 3. The final structure was refined to R1 = 0.0591 for 2781 reflections with Iobs> 3σI. The crystal structure of jeankempite is built from a network of edge- and vertex-sharing CaO6, CaO7 and AsO4 polyhedra, and we hypothesise that the new mineral has formed due to a topotactic reaction brought on by dehydration of preexisting guérinite.
      PubDate: 2020-11-25
      DOI: 10.1180/mgm.2020.92
       
  • Type Mineralogy of Brazil: A Book in Progress D. Atencio Instituto de
           Geociências – Universidade de São Paulo, Brazil. 662 pp. ISBN:
           978-65-86403-01-5 https://doi.org/10.11606/9786586403015
    • Authors: Kampf; Anthony R.
      Pages: 970 - 970
      PubDate: 2020-12-11
      DOI: 10.1180/mgm.2020.94
       
  • Newsletter 58
    • Authors: Miyawaki; Ritsuro, Hatert, Frédéric, Pasero, Marco, Mills, Stuart J.
      Pages: 971 - 975
      PubDate: 2020-12-15
      DOI: 10.1180/mgm.2020.93
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.238.96.184
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-