Subjects -> MINES AND MINING INDUSTRY (Total: 82 journals)
Showing 1 - 42 of 42 Journals sorted alphabetically
American Mineralogist     Hybrid Journal   (Followers: 16)
Applied Earth Science : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 4)
Archives of Mining Sciences     Open Access   (Followers: 3)
AusiMM Bulletin     Full-text available via subscription   (Followers: 1)
BHM Berg- und Hüttenmännische Monatshefte     Hybrid Journal   (Followers: 2)
Canadian Mineralogist     Full-text available via subscription   (Followers: 7)
CIM Journal     Hybrid Journal  
Clay Minerals     Hybrid Journal   (Followers: 9)
Clays and Clay Minerals     Hybrid Journal   (Followers: 5)
Coal Science and Technology     Full-text available via subscription   (Followers: 4)
Contributions to Mineralogy and Petrology     Hybrid Journal   (Followers: 14)
Environmental Geochemistry and Health     Hybrid Journal   (Followers: 3)
European Journal of Mineralogy     Hybrid Journal   (Followers: 14)
Exploration and Mining Geology     Full-text available via subscription   (Followers: 3)
Extractive Industries and Society     Hybrid Journal   (Followers: 2)
Gems & Gemology     Full-text available via subscription   (Followers: 2)
Geology of Ore Deposits     Hybrid Journal   (Followers: 5)
Geomaterials     Open Access   (Followers: 3)
Geotechnical and Geological Engineering     Hybrid Journal   (Followers: 9)
Ghana Mining Journal     Full-text available via subscription   (Followers: 3)
Gold Bulletin     Hybrid Journal   (Followers: 2)
Inside Mining     Full-text available via subscription  
International Journal of Coal Geology     Hybrid Journal   (Followers: 4)
International Journal of Coal Preparation and Utilization     Hybrid Journal   (Followers: 2)
International Journal of Coal Science & Technology     Open Access   (Followers: 1)
International Journal of Hospitality & Tourism Administration     Hybrid Journal   (Followers: 16)
International Journal of Minerals, Metallurgy, and Materials     Hybrid Journal   (Followers: 12)
International Journal of Mining and Geo-Engineering     Open Access   (Followers: 4)
International Journal of Mining and Mineral Engineering     Hybrid Journal   (Followers: 8)
International Journal of Mining Engineering and Mineral Processing     Open Access   (Followers: 6)
International Journal of Mining Science and Technology     Open Access   (Followers: 4)
International Journal of Mining, Reclamation and Environment     Hybrid Journal   (Followers: 6)
International Journal of Rock Mechanics and Mining Sciences     Hybrid Journal   (Followers: 9)
Journal of Analytical and Numerical Methods in Mining Engineering     Open Access  
Journal of Applied Geophysics     Hybrid Journal   (Followers: 18)
Journal of Central South University     Hybrid Journal   (Followers: 1)
Journal of China Coal Society     Open Access  
Journal of China University of Mining and Technology     Full-text available via subscription   (Followers: 1)
Journal of Convention & Event Tourism     Hybrid Journal   (Followers: 6)
Journal of Geology and Mining Research     Open Access   (Followers: 10)
Journal of Human Resources in Hospitality & Tourism     Hybrid Journal   (Followers: 9)
Journal of Materials Research and Technology     Open Access   (Followers: 2)
Journal of Metamorphic Geology     Hybrid Journal   (Followers: 17)
Journal of Mining Institute     Open Access  
Journal of Mining Science     Hybrid Journal   (Followers: 5)
Journal of Quality Assurance in Hospitality & Tourism     Hybrid Journal   (Followers: 6)
Journal of Sustainable Mining     Open Access   (Followers: 3)
Journal of the Southern African Institute of Mining and Metallurgy     Open Access   (Followers: 6)
Lithology and Mineral Resources     Hybrid Journal   (Followers: 4)
Lithos     Hybrid Journal   (Followers: 11)
Mine Water and the Environment     Hybrid Journal   (Followers: 6)
Mineral Economics     Hybrid Journal   (Followers: 2)
Mineral Processing and Extractive Metallurgy : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 14)
Mineral Processing and Extractive Metallurgy Review     Hybrid Journal   (Followers: 5)
Mineralium Deposita     Hybrid Journal   (Followers: 4)
Mineralogia     Open Access   (Followers: 2)
Mineralogical Magazine     Hybrid Journal   (Followers: 1)
Mineralogy and Petrology     Hybrid Journal   (Followers: 5)
Minerals     Open Access   (Followers: 2)
Minerals & Energy - Raw Materials Report     Hybrid Journal   (Followers: 1)
Minerals Engineering     Hybrid Journal   (Followers: 14)
Mining Engineering     Full-text available via subscription   (Followers: 7)
Mining Journal     Full-text available via subscription   (Followers: 4)
Mining Report     Hybrid Journal   (Followers: 3)
Mining Technology : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 4)
Mining, Metallurgy & Exploration     Hybrid Journal  
Natural Resources & Engineering     Hybrid Journal  
Natural Resources Research     Hybrid Journal   (Followers: 5)
Neues Jahrbuch für Mineralogie - Abhandlungen     Full-text available via subscription   (Followers: 1)
Physics and Chemistry of Minerals     Hybrid Journal   (Followers: 4)
Podzemni Radovi     Open Access  
Rangeland Journal     Hybrid Journal   (Followers: 4)
Réalités industrielles     Full-text available via subscription  
Rem : Revista Escola de Minas     Open Access  
Resources Policy     Hybrid Journal   (Followers: 4)
Reviews in Mineralogy and Geochemistry     Hybrid Journal   (Followers: 5)
Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica     Open Access  
Rock Mechanics and Rock Engineering     Hybrid Journal   (Followers: 9)
Rocks & Minerals     Hybrid Journal   (Followers: 5)
Rudarsko-geološko-naftni Zbornik     Open Access  
Transactions of Nonferrous Metals Society of China     Hybrid Journal   (Followers: 9)
Similar Journals
Journal Cover
Environmental Geochemistry and Health
Journal Prestige (SJR): 0.884
Citation Impact (citeScore): 3
Number of Followers: 3  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1573-2983 - ISSN (Online) 0269-4042
Published by Springer-Verlag Homepage  [2656 journals]
  • Game-theoretical model for the sustainable use of thermal water resources:
           the case of Ischia volcanic Island (Italy)
    • Abstract: The Island of Ischia, one of the Italian active volcanoes, is a famous tourist resort for spa treatments. Spas are supplied by withdrawals from groundwaters which are characterized by a wide range of chemical compositions, salinity and temperature. In natural conditions, the hydrogeological system is recharged by rainfall and by deep fluids; the discharge is towards the sea and the springs. During the peak of the tourist season, when approximately 240 wells are operating simultaneously, a significant additional recharge of the aquifers derives from seawater and from upwelling increase in deep fluids. Although this does not compromise the availability of groundwater, the pumping often determines variation in composition and temperature of groundwater over time. Conversely, the maintenance of a stable quality of thermal waters represents one of the requirements for their therapeutic use in the spas. The study aims to establish game-theoretical modeling of the optimal sustainable exploitation of the groundwater resources of the island by competing users (spas) falling in the same flow tube of the aquifer. In the game the spas are the players, the strategy of a player consists of a fixed pumping rate and daily time durations of pumping, and the player’s utility or payoff is proportional to the total quantity of withdrawn thermal water in a given time period. A special constrained Pareto optimal strategy choice is obtained, considered as a cooperative solution of the game. Pareto optimality means that there is no other strategy choice that makes one player better off without making some other player worse off.
      PubDate: 2021-04-12
       
  • EGAH editorial- to mark the 50th anniversary of SEGH
    • PubDate: 2021-04-12
       
  • Correction to: Health risk assessment of hexachlorocyclohexane in soil,
           water and plants in the agricultural area of Potohar region, Punjab,
           Pakistan
    • Abstract: A correction to this paper has been published: https://doi.org/10.1007/s10653-021-00910-5
      PubDate: 2021-04-11
       
  • The impact of artisanal gold mining, ore processing and mineralization on
           water quality in Marmato, Colombia
    • Abstract: Marmato, Colombia, has been an important centre of gold mining since before the first Spanish colonizers arrived in 1536. The Marmato deposit is hosted in a dacite and andesite porphyry stock as sheeted sulphide-rich veinlet systems. The district is currently experiencing a surge in both major mining projects and artisanal mining, driven by sustained high gold prices. Ore from small-scale and artisanal gold mining is processed in numerous small mills (entables) around Marmato, which impact surface water quality through the discharge of milled waste rock slurry, highly alkaline cyanide-treated effluent, and high dissolved metal loads. To investigate the impact of artisanal mining and ore processing, water samples were collected in January 2012 from streams around Marmato. The average dissolved metal concentrations in impacted streams were Zn, 78 mg L−1; Pb, 0.43 mg L−1; Cu, 403 µg L−1 Cd, 255 µg L−1; As, 235 µg L−1; Ni, 67 µg L−1; Co, 55 µg L−1; Sb, 7 µg L−1; and Hg, 42 ng L−1, exceeding World Health Organization drinking water guidelines. In addition, arsenic speciation was conducted in-situ and indicated that 91–95% of inorganic arsenic species is in the form of As(V). Spatial analysis of the data suggests that entables processing ore for artisanal miners are the main contributor to water pollution, with high sediment loads, alkalinity and elevated concentrations of dissolved arsenic, cadmium, mercury and lead, caused by the processing of gold-bearing sulphides in the entables. Geochemical data from surface water were compared to a comprehensive data set of whole rock analyses from drill core and channel samples from the deposit, indicating that the deposit is significantly enriched in gold, silver, lead, zinc, arsenic, antimony, and cadmium compared to crustal averages, which is reflected in the surface water geochemistry. However, elevated mercury levels in surface water cannot be explained by enrichment of mercury in the deposit and strongly suggest that mercury is being added to concentrates during ore processing to amalgamate fine gold.
      PubDate: 2021-04-11
       
  • Potentially toxic elements concentrations in schoolyard soils in the city
           of Coronel, Chile
    • Abstract: Urban areas are constantly growing. By 2050, the urban world population, it is predicted to reach 6 billion. Being component of cities environment, urban soils have elevated levels of potentially toxic elements from anthropogenic action. The aims of this study are (1) to establish background levels of potentially toxic element in soils in the city of Coronel and (2) to assess the pollution and identify its origin. Samples (129 in total) were collected in Coronel, from 43 sites in schoolyards. Three samples were taken at each site: 0–10 cm, 10–20 cm and 150 cm depth. Principal component analysis (PCA), cluster analysis (CA) and depth ratios were applied to distinguish the origin of the contamination. The geoaccumulation index, contamination factor and the integrated pollution index were used to estimate the pollution. The median concentration of the chemical elements in 0–10 cm depth was Ba 38 mg kg−1; Co 15 mg kg−1; Cr 18 mg kg−1; Cu 22 mg kg−1; Mn 536 mg kg−1; Ni 35.5 mg kg−1; Pb 6 mg kg−1; V 94 mg kg−1; Zn 65 mg kg−1. Principal component analysis and CA suggested that Co, Ni and Mn were mainly derived from geogenic origin, while Ba, Cr, Cu, Pb, V and Zn from anthropic origin. Contamination factor indicated that some soil samples were classified as considerable contaminated to very highly contaminated by Ba, Pb, Zn and V.
      PubDate: 2021-04-10
       
  • Predicting the relative oral bioavailability of naturally occurring As, Cd
           and Pb from in vitro bioaccessibility measurement: implications for human
           soil ingestion exposure assessment
    • Abstract: Chestnut soils developed over mineralized areas of southwestern Spain are characterized by high baseline concentrations of geogenic trace elements, notably Pb (up to 14,562 mg kg−1), As (up to 346 mg kg−1) and Cd (up to 319 mg kg−1), which could pose an unacceptable risk to the health of the hand-harvest workers who are being exposed to surface soil by incidental ingestion and dermal contact. Oral bioaccessibility, as determined by simulating the human digestion process in a test-tube environment (Unified BARGE Method), followed the increasing order of As (3.1%) < Pb (21.5%) < Cd (35.6%) in the gastric phase, and As (3.4%) < Pb (4.5%) < Cd (13.2%) in the gastrointestinal extract. Relative bioavailability (RBA) of As (3.1–2.1%), Pb (17.8–17.5%) and Cd (34.4–23.3%), predicted from in vitro bioaccessibility measurement through linear regression models, seems to be influenced not only by the pH and composition of digestive solutions but also by geochemical partitioning of trace elements among the soil constituents. The integration of RBA data in the risk calculations had a considerable effect on the site-specific risk estimations. After RBA adjustment, the level of carcinogenic risk associated with As exposure (< 1.5E−06) and the hazard index for non-carcinogens (< 0.4) was within the regulatory limits, indicating that occupational risks are not of concern. Hence, it can be concluded that the use of a default value of 100% for bioavailability may dramatically overestimate the chronic exposure to geologically sourced trace elements.
      PubDate: 2021-04-10
       
  • Intervention factors associated with environmental stressors resulting
           from cross-provincial transfers by coal resource-based enterprises
    • Abstract: The environmental stressors associated with the cross-provincial transfer of coal resource-based enterprises (CREs) have become a critical concern for the green, sustainable, and high-quality development of resource-rich areas in central and western regions. This study referred to socioeconomic statistics and carried out an interview survey, literature review, and systematic analysis to clarify the mechanism underlying environmental stressors arising from the cross-provincial transfer of CREs. The intervention factors associated with such environmental stressors were identified, and the study conducted an empirical analysis of relevant data related to the coal-resources industry in three central and western provinces in China for the period 1997–2016. Research findings: (1) The intensity ranking of the influencing factors associated with environmental stressors caused by cross-provincial transfers of CREs has certain rules. The ‘level of the enterprise’s investment in environmental protection’ is the weakest, the ‘enterprise’s development mode level’ is slightly stronger, the ‘enterprise scale’ is stronger, and ‘environmental regulation’ is the strongest. (2) Stricter endogenous and exogenous policy regulations for environmental governance in rich coal resource-based regions are associated with weaker negative externalities in respect of resource development and the intensity of stressors. (3) Larger CREs are associated with a better green mining capacity, environmental repair cost advantages, social constraints, self-discipline, and thus, a weaker stress effect. (4) CREs that adopt more superior modes of development that focus on the utilization of the ‘three wastes’ are associated with a weaker stress effect. (5) The higher the level of investment by CREs in environmental protection technology, facilities, and equipment, the weaker the stress effect. The conclusions of the study can provide a theoretical basis to assist the Chinese government to develop relevant regulations to control inter-provincial transfers by CREs and to thereby diminish environmental stressor effects.
      PubDate: 2021-04-09
       
  • Fe and As geochemical self-removal dynamics in mineral waters: evidence
           from the Ferrarelle groundwater system (Riardo Plain, Southern Italy)
    • Abstract: A theoretical pattern for Fe and As co-precipitation was tested directly in a groundwater natural system. Several monitoring wells were sampled to identify the different endmembers that govern the hydrodynamics of the Ferrarelle Groundwater System in the Riardo Plain (Southern Italy). In agreement with recent investigations, we found a mix of a deep and a shallow component in different proportions, resulting in a specific chemical composition of groundwater in each well depending on the percentages of each component. The shallow component was characterized by EC ~ 430 µS/cm, Eh ~ 300 mV, Fe ~ 0.06 µmol/L and As ~ 0.01–0.12 µmol/L, while the deep component was characterized by EC ~ 3400 µS/cm, Eh ~ 170 mV, Fe ~ 140 µmol/L and As ~ 0.59 µmol/L. A general attenuation of As and Fe concentration that was not due to a simple dilution effect was observed in the mixing process. The oxidation of Fe(II) to Fe(III) produces solid precipitates which adsorb As from solution and then co-precipitate. The reactions pattern of Fe(II) oxidation and As adsorption gave a linear function between [As] and [Fe], where the angular coefficient depends on the [O2]/[H+] ratio. Chemical data obtained from our samples showed a very good agreement with this theoretical relationship. The investigated geochemical dynamics represented a natural process of attenuation of Fe and As, two undesirable elements that usually affect groundwater quality in volcanic aquifers in central-southern Italy, which are exploited to supply drinking water. Graphic abstract
      PubDate: 2021-04-09
       
  • Investigation of metals accumulation in soil dumpsites using
           proton-induced X-ray emission
    • Abstract: This work was designed to examine the elemental constituents and physiochemical parameters of dumpsites in four local government areas in Ondo State. Elemental composition and physiochemical parameters such as pH, electrical conductivity, temperature, chloride and nitrate were analyzed in soil samples. The data were analyzed using the windows version 24.0 of the IBM Statistical Package for Social Sciences. Odigbo reported the highest mean concentrations in Al, Zn and Co. The highest mean concentrations of metals were Si, K, Cr, S and Y in Okitipupa. Although at Irele P, Fe, Rb, Sr, Bi and Au had the maximum mean concentration, in Control Site, Cl and Mn had an exponential increase in value. The highest value was observed in Ilaje for V, Cu, As, Zr, Sn, Pb. There was significant spatial variation (p < 0.05) in all metals except Sr, Bi and Y, which did not reveal any significant difference in mean concentration. The soil sample values at other sites were greater than the values collected at the control site. This study found that some of the obtained elemental concentrations were higher than the regulatory limits of the Soil-7 International Atomic Energy Agency and the World Health Organization. The study also revealed that continuous deposition of the elements in these dumpsites could lead to a threat to human health and to the environment.
      PubDate: 2021-04-09
       
  • Assessment and abatement of the eco-risk caused by mine spoils in the dry
           subtropical climate
    • Abstract: The highly rugged mountainous land topography of the Novorossiysk industrial agglomeration (NW Caucasus, Krasnodar Krai, Russia) and arid climate limit the restoration abilities of disturbed mine lands. Abandoned waste-rock dumps of a marl quarry occupy an area of ca. 150,000 m2 next to the cement plant, residential districts, and a commercial seaport. To assess the eco-risk, topsoil horizons of urban and mine-site Technosols and background Rendzinas were sampled and analyzed; measurements of particulate matter fractions PM1, PM2.5, PM4, and PM10 were conducted throughout the agglomeration. Fugitive dust emission from the unreclaimed marl dumps raises the PM2.5 content in the air by a factor of 2.68 on average. The high sorption capacity of the fine eluvium results in the accumulation of urban emissions by the dust and contributes to the subsequent soil pollution; the Cumulative Pollution Index of pedochemical anomalies reaches the high-risk level over the areas of up to 5 km2. Environmental threats caused by the mine dumps can be assessed more reliably by means of land zoning based on accumulated environmental damage indicators and the debris flow and waterspout risk calculation. To abate the technogenic impact caused by the mine spoils, reclamation actions must be taken including soil stabilization on sensitive sites by application of geosynthetic cover, hydroseeding of the mixture of soil improvers and seeds of herbaceous plants on the slopes, and anti-erosion plantation of cades (Juniperus oxycedrus L.) and smoke trees (Cotinus coggygria Scop.) at subhorizontal surfaces.
      PubDate: 2021-04-09
       
  • Vertical distribution and contamination assessment of heavy metals in
           sediment cores of ship breaking area of Bangladesh
    • Abstract: Vertical heavy metal profiling reflects the history of the deposition of metals and helps to understand the characteristics of accumulation in various layers of the sediment. Nevertheless, no previous studies in Bangladesh had focused on the vertical distribution of heavy metals in core sediments. In this study, vertical distribution, contamination level and potential ecological risks of six heavy metals (Zn, Cu, Pb, Cr, Ni, Mn) from the core sediment of ship breaking were assessed and compared with the non-ship breaking area of Bangladesh. The concentration (µg/g) of heavy metals in the 0–10 cm (surface), 10–20 cm (middle) and 20–30 cm (bottom) of sediment cores was as follows, respectively: Zn (35.54–100.68, 37.27–258.02, 42.78–66.45); Cu (16.38–75.25, 30.64–92.02, 34.99–52.98); Pb (4.84–132.08, BDL–204.48, BDL–23.51); Cr (14.57–42.13, 25.31–42.71, 15.26–36.34); Ni (4.02–42.23, 4.94–43.70, 4.40–43.13); Mn (198.74–764.16, 257.77–980.50, 255.62–856.44). The heavy metal content of core sediment from the shipbreaking region was substantially higher than that of non-shipbreaking area. Except for Ni, heavy metal content was highest in the middle layer, followed by the upper and lower layers of the sediment core. Contamination exponents such as enrichment factor, contamination factor and geo-accumulation index (Igeo) revealed contamination by Zn, Cu and Pb while potential ecological risk factor ( \(E_{r}^{i}\) ) and risk index suggested low ecological risk by studied heavy metals except for Pb. Correlation matrix, cluster analysis and principal component analysis indicated that all studied heavy metals could have similar anthropogenic origins.
      PubDate: 2021-04-08
       
  • Severity of zinc and iron malnutrition linked to low intake through a
           staple crop: a case study in east-central Pakistan
    • Abstract: Micronutrients deficiency in soil–plant and human is well-addressed; however, little is known about their spatial distribution, magnitude of deficiency and biological nexus. Zinc deficiency (ZnD) and iron-deficiency anemia (FeD) are two serious nutritional concerns which are negatively affecting human health. Herein, a survey-based case study was conducted in major wheat-based cropping system of east-central Pakistan. Soil and grain samples were collected from 125 field-grown wheat from 25 distinct sites/villages and GPS coordinates were taken for mapping. The collected samples were tags according to the names of 25 sites, i.e., UCs (union councils; an administrative unit). The quantified amount of zinc (Zn) or iron (Fe) in soil-wheat grains was compared with their recommended concentrations (RCZn, RCFe) for human nutrition. Additionally, clinical features of ZnD and FeD were diagnosed among local farmers who used to consume these grains, throughout the year, cultivated on their farm, and quantified their deficiency prevalence (ZnDP, FeDP). Results revealed, the collected 64% (0.54 to 5.25 mg kg−1) soils, and 96% (1.4 to 31 mg kg−1) grain samples are Zn-deficient (RCZn) along with ZnDP recorded among 68% of population. Meanwhile, FeD is quantified in 76% (1.86 to 15 mg kg−1) soil, 72% grain (2.1 to 134 mg kg−1) samples, and FeDP is found among 84% of studied population. A strong and positive correlation is developed in the Zn-or FeDP with their deficiencies in soil and grain by plotting multivariate analysis. In line with spatial distribution pattern, the UCs, namely, 141, 151, 159 and 132 are quantified severe deficient in Zn and Fe, and others are marginal or approaching to deficient level. Our findings rationalize the biological nexus of Zn and Fe, and accordingly, draw attention in the biofortification of staple crop as a win–win approach to combat the rising malnutrition concerns.
      PubDate: 2021-04-08
       
  • Bioaccumulation of heavy metals in fish species of Iran: a review
    • Abstract: Accumulation of heavy metals (HMs) in fish tissues is an important factor in monitoring the health and safety of aquatic ecosystems. Furthermore, fish are important parts of aquatic food chains and play a significant role in human health. Considering the significant role of fish in the diet of humans and their ability to transfer and biomagnify HMs, it is necessary to determine and study these contaminants in fish tissues, especially in the edible parts of the fish. In addition to the other ecological and economic services of aquatic ecosystems, water bodies, especially the Persian Gulf in the south and the Caspian Sea in the north of Iran, are the main sources of seafood for people in nearby areas, as well as people living farther away who have gained access to seafood due to the extensive trade of aquatic organisms. This study provides an overview of the health conditions of the aquatic ecosystems in Iran by monitoring HM bioaccumulation in fish species. For this purpose, we reviewed, summarized, and evaluated papers published on HM concentrations in fish species from different aquatic ecosystems, including the Persian Gulf, the Caspian Sea, wetlands, rivers, qanats, water reservoirs, lakes, and dams, with emphasis on species habitats, feeding habits, and target organs in accumulation of HMs. Generally, the highest concentrations of HMs were observed in fishes collected from the Persian Gulf, followed by species from the Caspian Sea. Species inhabiting the lower zone of the water column and carnivorous and/or omnivorous species showed the highest levels of HMs. Moreover, liver was the main accumulator organ for HMs.
      PubDate: 2021-04-05
       
  • Comprehensive characterization of PAHs profile in Serbian soils for
           conventional and organic production: potential sources and risk assessment
           
    • Abstract: This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg−1 in agricultural soil used for conventional production and between 90 and 523 µg kg−1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for ~ 93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR < 10–6 and THQ < 1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.
      PubDate: 2021-04-05
       
  • Influence of carbon-containing and mineral sorbents on the toxicity of
           soil contaminated with benzo[a]pyrene during phytotesting
    • Abstract: Benzo[a]pyrene (BaP) is a member of polycyclic aromatic hydrocarbons known for high persistency and toxicity. Technologies of BaP sorption through solid matrixes have received relatively more attention. The present study was devoted to the phytotesting investigations of two different groups of sorbents, such as carbonaceous, including biochar and granulated activated carbon (GAC), and mineral, including tripoli and diatomite. Evaluation of the BaP removing efficiency was carried out using the phytotesting method with spring barley in Haplic Chernozem contaminated with different levels of contamination (200 and 400 μg kg−1 BaP). The sorbents’ efficiency for BaP remediation was estimated in the sorbents doses from 0.5 to 2.5% per kg of soil. It was shown that biochar and GAC decreased the soil toxicity class to a greater extent than mineral sorbents ones. The effect intensified with an increase in applying sorbents doses. The optimal dose of carbonaceous sorbents into the soil contaminated with 200 µg kg−1 was 1%, decreasing the BaP content up 57–59% in the soil. Simultaneously, the optimal dose of the mineral sorbents was found to be 1.5%, which decreased the BaP content in the soil up 41–48%. Increasing the BaP contamination level up to 400 µg kg−1 showed the necessity of a sorbent dose increasing. In these conditions, among all applied sorbents, only 2% GAC could reduce the soil toxicity class to the normal level up to 0.91–1.10. It was shown that BaP tended to migrate from the soil to the roots and further into the vegetative part of barley.
      PubDate: 2021-04-05
       
  • The potential of microbes and sulfate in reducing arsenic
           phytoaccumulation by maize ( Zea mays L.) plants
    • Abstract: Arsenic (As) contamination in soil–plant system is an important environmental, agricultural and health issue globally. The microbe- and sulfate-mediated As cycling in soil–plant system may depend on soil sulfate levels, and it can be used as a potential strategy to reduce plant As uptake and improve plant growth. Here, we investigated the role of soil microbes (SMs) to examine As phytoaccumulation using maize as a test plant, under varying sulfate levels (S-0, S-5, S-25 mmol kg−1) and As stress. The addition of sulfate and SMs promoted maize plant growth and reduced As concentration in shoots compared to sulfate-treated plants without SMs. Results revealed that the SMs-S-5 treatment proved to be the most promising in reducing As uptake by 27% and 48% in root and shoot of the maize plants, respectively. The SMs-S treatments, primarily with S-5, enhanced plant growth, shoot dry biomass, Chl a, b and total Chl (a + b) contents, and gas exchange attributes of maize plants. Similarly, the antioxidant defense in maize plants was increased significantly in SMs-S-treated plants, notably with SMs-S-5 treatment. Overall, the SMs-S-5-treated plants possessed improved plant growth, dry biomass, physiology and antioxidant defense system and decrease in plant shoot As concentration. The outcomes of this study suggest that sulfate supplementation in soil along with SMs could assist in reducing As accumulation by maize plants, thus providing a sustainable and eco-friendly bioremediation strategy in limiting As exposure. Graphical abstract
      PubDate: 2021-04-02
       
  • Comprehensive source identification and apportionment analysis of five
           heavy metals in soils in Wenzhou City, China
    • Abstract: The source identification and apportionment of heavy metals (HMs) is a vital issue for restoring contaminated soil. In this study, qualitative approaches [a finite mixture distribution model (FMDM) and raster-based principal components analysis (RB-PCA)] and a quantitative approach [positive matrix factorization (PMF)] were composed to identify and apportion the sources of five HMs (Cd, Hg, As, Pb, Cr) in Wenzhou City, China, using several crucial auxiliary variables. An initial ecological risk assessment suggested that the ecological risk level in the study area was generally considered low, with the greatest contamination contributions coming from Cd and Hg. The result of the FMDM showed that Cd and Pb fit a single log-normal distribution, Hg fit a double log-normal mixed distribution, and As and Cr presented a triple log-normal distribution. Each element was identified and separated from its natural or anthropogenic sources. A map of RB-PCA combined with an analysis of corresponding auxiliary variables suggested that the three main contribution sources in the entire study area were parental materials, industrial and agricultural mixed pollution, and mining exploration activities. Each element was discussed, using the PMF model, with regard to its quantitative contributions. Parental materials contributed to all elements (Cd, Hg, As, Pb, Cr) at 89.22%, 7.31%, 35.84%, 84.81% and 27.42%, respectively. Industrial emissions and agricultural inputs mixed pollution contributed 2.94%, 80.77%, 15.93%, 4.79%, and 25.63%, respectively. Mining activities contributed 7.84%,11.92%, 48.23%, 10.40% and 46.95%, respectively, to the five HMs. Such result could be used efficiently to generate scientific decisions and strategies in terms of decision-making on regulating HM pollution in soils.
      PubDate: 2021-04-02
       
  • Irrigation suitability of White River in Indiana, Midwestern USA
    • Abstract: Climate change models consistently project future precipitation reduction and temperature increase during the crop growing season in the US Midwest, which may exacerbate surface water scarcity issues confronting regional agriculture. To maintain consistent crop yields under the risk of increased droughts, farmers may shift from rain-fed agriculture to irrigation agriculture, particularly during drought periods. There is an urgent need to understand whether surface water in the Midwest is suitable for irrigation. In this study, irrigation water quality was comprehensively analyzed for commonly used parameters regarding salt content including sodium adsorption ratio (SAR), adjusted sodium adsorption ratio (SARadj), soluble sodium percentage (SSP), electrical conductivity (EC), total dissolved solids (TDS), residual sodium bicarbonate (RSBC), magnesium adsorption ratio (MAR), permeability index (PI), Kelley’s ratio (KR), synthetic harmful coefficient (SHC), and salinity. Results indicate that water in the White River at Muncie was rated mostly in excellent to good condition with regard to irrigation quality. However, the irrigation suitability level exhibited two distinct patterns between May–July and August–October. Specifically, an average of 7.8% of the samples from May to July were unsuitable for irrigation, and an average of 24.5% of samples from August to October were unsuitable for irrigation considering all parameters. Flow rate change over time and the release of pollutants from wastewater treatment plants and combine sewage outflows to the White River impacted on the irrigation water quality variations of the river. This study showed that there are higher risks during the fall season for farmers to use surface water as an irrigation source, and this risk might be greater if extended or more frequent drought events occur in the future. To our best knowledge, this is the first peer-reviewed study on irrigation water quality assessment in the Midwest and provides useful information for farmers and decision makers to consider while formulating applications for irrigation.
      PubDate: 2021-04-02
       
  • Exogenous melatonin mitigates chromium toxicity in maize seedlings by
           modulating antioxidant system and suppresses chromium uptake and oxidative
           stress
    • Abstract: Melatonin, being an endogenous signaling molecule plays important role in plant growth and stress alleviation. The present study was conducted to evaluate the ameliorative role of melatonin against Cr toxicity in maize seedlings. The Cr toxicity (50, 100 and 200 µM) severely affected hydroponically grown seedlings growth in a dose-dependent manner; however, the melatonin (0.5 and 1.0 µM) application markedly restored toxicity-induced growth retardation. Higher dose of melatonin (1.0 µM) was more effective in case of lower Cr toxicity (50 and 100 µM). Exposure of 200 µM Cr caused 45% and 43% reduction in shoot and root lengths and more than 80% reduction in biomass. In case of 200 µM Cr toxicity, application of 1.0 µM MT effectively restored shoot and root lengths reduction (from 45 to 30%) and biomass decline (from 80 to around 60%). Biomass restoration by 1.0 µM melatonin under 50 and 100 µM Cr was even more pronounced bringing it near to control plants having no Cr exposure. Further, both melatonin levels also improved root tips, root diameter, root volume and root surface area that had been damaged by Cr exposure. The melatonin also alleviated Cr-induced chlorophyll and carotenoids inhibition, improved relative water content, and markedly lowered proline and MDA content in shoots. Lower accumulation of MDA and proline, and greater membrane stability indices indicate that the melatonin conferred better plant growth by playing the role of antioxidant and detoxifying oxidative stress creating substances. Although antioxidant enzymes viz. SOD, POD, CAT and APX activities were also elevated by MT, this increase was not significantly different in the most of cases. No significant difference in NPK contents of shoot was observed by Cr and melatonin application indicating the growth retardation being caused directly by Cr intrinsic toxicity and not by nutrients deficiency. The melatonin-based amelioration of Cr toxicity in maize seedlings seems as the result of its nature as antioxidant, and not by activation/elevation of antioxidative enzymatic system.
      PubDate: 2021-04-02
       
  • On the ordered nature of redistribution of technogenic elements in
           undisturbed elementary landscape-geochemical systems of the temperate zone
           on the example of the Chernobyl 137 Cs fallout
    • Abstract: The study is aimed at identifying patterns in distribution of pollutants in the elementary landscape-geochemical systems (ELGS) of the temperate zone. The study used 137Cs as a tracer, which allows a highly detailed analysis of the nature of the heterogeneity of secondary migration in the toposequence: summit—slope—closing depression, treated as the elementary landscape-geochemical system. The study site was located in the Bryansk region in the Chernobyl abandoned area with an initial level of 137Cs contamination exceeding 1480 kBq/m2 (40 Ci/km2). An original technique of repeated 137Cs measurements along cross-sections accompanied by topographic survey and soil cores sampling has been applied. The obtained results showed a complete absence of constant increase of 137Cs concentration downslope but revealed a steady regular variability of 137Cs activity of a cyclical type. Given uniformity of the initial 137Cs fallout within a small-sized plot, variation of 137Cs due to its secondary distribution in ELGS was 2–2.7-fold according to field gamma-spectrometry data which corresponded to the radionuclide contamination density of the top 20-cm layer of the soil containing 96–99% of the total radionuclide amount (correlation between the parameters equaled to r0.01 = 0.782, n = 20). A specifically regular structure obviously formed under the set of radionuclide water migration processes seems to be inherent in all systems of the studied type. The results obtained are believed to be of both theoretical and practical importance, since they can contribute to making decisions on the precise monitoring of zones of technogenic accumulation, as well as solving fundamental problems of soil formation and its restoration after technogenic pollution.
      PubDate: 2021-04-02
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.238.96.184
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-