Subjects -> MINES AND MINING INDUSTRY (Total: 82 journals)
Showing 1 - 42 of 42 Journals sorted alphabetically
Applied Earth Science : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 4)
Archives of Mining Sciences     Open Access   (Followers: 1)
BHM Berg- und Hüttenmännische Monatshefte     Hybrid Journal   (Followers: 1)
Canadian Mineralogist     Full-text available via subscription   (Followers: 5)
CIM Journal     Hybrid Journal  
Clay Minerals     Hybrid Journal   (Followers: 8)
Contributions to Mineralogy and Petrology     Hybrid Journal   (Followers: 11)
Environmental Geochemistry and Health     Hybrid Journal   (Followers: 2)
European Journal of Mineralogy     Hybrid Journal   (Followers: 12)
Extractive Industries and Society     Hybrid Journal   (Followers: 2)
Gems & Gemology     Full-text available via subscription   (Followers: 1)
Geology of Ore Deposits     Hybrid Journal   (Followers: 3)
Geomaterials     Open Access   (Followers: 2)
Geotechnical and Geological Engineering     Hybrid Journal   (Followers: 8)
Ghana Mining Journal     Full-text available via subscription   (Followers: 3)
Gold Bulletin     Hybrid Journal  
International Journal of Coal Geology     Hybrid Journal   (Followers: 2)
International Journal of Coal Preparation and Utilization     Hybrid Journal   (Followers: 1)
International Journal of Coal Science & Technology     Open Access   (Followers: 1)
International Journal of Hospitality & Tourism Administration     Hybrid Journal   (Followers: 14)
International Journal of Minerals, Metallurgy, and Materials     Hybrid Journal   (Followers: 8)
International Journal of Mining and Geo-Engineering     Open Access  
International Journal of Mining and Mineral Engineering     Hybrid Journal   (Followers: 5)
International Journal of Mining Engineering and Mineral Processing     Open Access   (Followers: 5)
International Journal of Mining Science and Technology     Open Access   (Followers: 4)
International Journal of Mining, Reclamation and Environment     Hybrid Journal   (Followers: 4)
International Journal of Rock Mechanics and Mining Sciences     Hybrid Journal   (Followers: 6)
Journal of Analytical and Numerical Methods in Mining Engineering     Open Access  
Journal of Applied Geophysics     Hybrid Journal   (Followers: 15)
Journal of Central South University     Hybrid Journal   (Followers: 1)
Journal of China Coal Society     Open Access  
Journal of Convention & Event Tourism     Hybrid Journal   (Followers: 4)
Journal of Geology and Mining Research     Open Access   (Followers: 11)
Journal of Human Resources in Hospitality & Tourism     Hybrid Journal   (Followers: 8)
Journal of Materials Research and Technology     Open Access   (Followers: 2)
Journal of Metamorphic Geology     Hybrid Journal   (Followers: 15)
Journal of Mining Institute     Open Access  
Journal of Mining Science     Hybrid Journal   (Followers: 2)
Journal of Quality Assurance in Hospitality & Tourism     Hybrid Journal   (Followers: 5)
Journal of Sustainable Mining     Open Access   (Followers: 2)
Journal of the Southern African Institute of Mining and Metallurgy     Open Access   (Followers: 5)
Lithology and Mineral Resources     Hybrid Journal   (Followers: 3)
Lithos     Hybrid Journal   (Followers: 9)
Mine Water and the Environment     Hybrid Journal   (Followers: 4)
Mineral Economics     Hybrid Journal  
Mineral Processing and Extractive Metallurgy : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 11)
Mineral Processing and Extractive Metallurgy Review     Hybrid Journal   (Followers: 4)
Mineralium Deposita     Hybrid Journal   (Followers: 4)
Mineralogia     Open Access   (Followers: 2)
Mineralogical Magazine     Hybrid Journal   (Followers: 1)
Mineralogy and Petrology     Hybrid Journal   (Followers: 2)
Minerals     Open Access  
Minerals & Energy - Raw Materials Report     Hybrid Journal  
Minerals Engineering     Hybrid Journal   (Followers: 9)
Mining Engineering     Full-text available via subscription   (Followers: 5)
Mining Journal     Full-text available via subscription   (Followers: 3)
Mining Report     Hybrid Journal   (Followers: 2)
Mining Technology : Transactions of the Institutions of Mining and Metallurgy     Hybrid Journal   (Followers: 2)
Mining, Metallurgy & Exploration     Hybrid Journal  
Natural Resources & Engineering     Hybrid Journal  
Natural Resources Research     Hybrid Journal   (Followers: 8)
Neues Jahrbuch für Mineralogie - Abhandlungen     Full-text available via subscription   (Followers: 1)
Physics and Chemistry of Minerals     Hybrid Journal   (Followers: 4)
Podzemni Radovi     Open Access  
Rangeland Journal     Hybrid Journal   (Followers: 1)
Réalités industrielles     Full-text available via subscription  
Resources Policy     Hybrid Journal   (Followers: 4)
Reviews in Mineralogy and Geochemistry     Hybrid Journal   (Followers: 4)
Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica     Open Access  
Rock Mechanics and Rock Engineering     Hybrid Journal   (Followers: 6)
Rocks & Minerals     Hybrid Journal   (Followers: 2)
Rudarsko-geološko-naftni Zbornik     Open Access  
Stainless Steel World     Full-text available via subscription   (Followers: 17)
Transactions of Nonferrous Metals Society of China     Hybrid Journal   (Followers: 9)
Similar Journals
Journal Cover
Environmental Geochemistry and Health
Journal Prestige (SJR): 0.884
Citation Impact (citeScore): 3
Number of Followers: 2  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1573-2983 - ISSN (Online) 0269-4042
Published by Springer-Verlag Homepage  [2469 journals]
  • Uptake of Cu, Hg, and As in wild vegetation, associated to surface water
           in the Copiapó valley, before the 2015 alluvium

    • Free pre-print version: Loading...

      Abstract: Abstract In an annual monitoring in the Copiapó valley, the concentration of Cu, Hg, and As in sediments was related to environmental transfer processes, these elements also being present in surface water. The goal was to evaluate the uptake of the mentioned elements in wild plants of the Copiapó Valley, to determine if these species could be indicator plants to prevent environmental risks in local agriculture. From the same monitoring, the uptake of the elements was determined in wild plants growing near the irrigation channels; canopy of Tessaria absinthioides, Equisetum giganteum, Arundo donax, Melilotus indicus, Cortaderia rudiscula, and Sarcocornia neei was analyzed for the same elements. These plants were able to uptake Cu, Hg and As in concentration between 19 and 4674.5 times the environmental limits allowed for edible plants. This result shows that crop plants can also capture contaminants elements due to the frequency of irrigation. These plants can be used as indicators for the diagnosis of capture of the pollutants elements by plants and to prevent environmental hazards to human health in agricultural products from the Copiapó valley.
      PubDate: 2022-05-20
       
  • Benzo[a]pyrene in Moscow road dust: pollution levels and health risks

    • Free pre-print version: Loading...

      Abstract: Abstract Benzo[a]pyrene (BaP) is one of the priority pollutants in the urban environment. For the first time, the accumulation of BaP in road dust on different types of Moscow roads has been determined. The average BaP content in road dust is 0.26 mg/kg, which is 53 times higher than the BaP content in the background topsoils (Umbric Albeluvisols) of the Moscow Meshchera lowland, 50 km east of the city. The most polluted territories are large roads (0.29 mg/kg, excess of the maximum permissible concentration (MPC) in soils by 14 times) and parking lots in the courtyards (0.37 mg/kg, MPC excess by 19 times). In the city center, the BaP content in the dust of courtyards reaches 1.02 mg/kg (MPC excess by 51 times). The accumulation of BaP depends on the parameters of street canyons formed by buildings along the roads: in short canyons (< 500 m), the content of BaP reaches maximum. Relatively wide canyons accumulate BaP 1.6 times more actively than narrow canyons. The BaP accumulation in road dust significantly increases on the Third Ring Road (TRR), highways, medium and small roads with an average height of the canyon > 20 m. Public health risks from exposure to BaP-contaminated road dust particles were assessed using the US EPA methodology. The main BaP exposure pathway is oral via ingestion (> 90% of the total BaP intake). The carcinogenic risk for adults is the highest in courtyard areas in the south, southwest, northwest, and center of Moscow. The minimum carcinogenic risk is characteristic of the highways and TRR with predominance of nonstop traffic.
      PubDate: 2022-05-18
       
  • Fluorine in 20 vegetable species and 25 lettuce cultivars grown on a
           contaminated field adjacent to a brick kiln

    • Free pre-print version: Loading...

      Abstract: Abstract Crops grown in areas contaminated by industrial and agricultural fluorine (F) have gained increasing attention, however F levels in different vegetables and lettuce cultivars are rarely reported. In situ-field experiment was designed to investigate the concentration, translocation, and health risks of F in 20 vegetable species and 25 lettuce cultivars. After the growth of 150 d for vegetables and 60 d for lettuce, F concentration (12.83–138.07 mg kg−1), translocation factor (0.16–6.32), and bio-concentration factor (1.90–13.73) varied significantly between vegetable species and lettuce cultivars. According to the hazard quotient values (based on the reference dose of F), all the vegetable species appears to pose no risk to human health, while 60% of the lettuce cultivars present potential health risks to children. Therefore, the limit value of F in vegetables for adults and children should be enacted in the future. Moreover, cabbage, green radish, spinach, leaf mustard, and Frisee lettuce (Huayu) were considered as a safe dietary product. These findings contributed to the safe cultivation of vegetables and the control of fluorosis in the areas contaminated by industrial and agricultural activities.
      PubDate: 2022-05-18
       
  • Spatial distribution, sources identification, and health risk assessment
           polycyclic aromatic hydrocarbon compounds and polychlorinated biphenyl
           compounds in total suspended particulates (TSP) in the air of South Pars
           Industrial region-Iran

    • Free pre-print version: Loading...

      Abstract: Abstract South Pars Industrial Energy Zone, located in the southwest of Iran along the Persian Gulf coast, encompasses many industrial units in the vicinity of urban areas. This research study investigated the effects of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on human health and the environment. Suspended particulate matters (SPM) in the air sampled, in summer and winter 2019, from ten stations next to industrial units and residential areas. The samples were analyzed by gas chromatography-mass spectrometry (GC–MS). Spatial distribution maps of pollutants in the region were prepared using GIS software. The highest carcinogenic risk due to PAHs and PCBs measured as ( \(6.07\times {10}^{-6}\pm 1.85822\times {10}^{-6}\) ) and ( \(8.80\times {10}^{-8}\pm 2.76786\times {10}^{-8})\) , respectively. According to the US Environmental Protection Agency limit ( \(1\times {10}^{-6}\) ), the cancer risks from PAH compounds were significant and need further investigation. The PCB cancer risks were within acceptable ranges. The highest adsorption ratios for PAHs were obtained through skin and PCBs by ingestion. The maximum measured non-carcinogenic hazard indexes (HI) turned out to be 0.037 and 0.023 for PAH and PCB, respectively, and were reported as acceptable risks. The predominant source of PAH in industrial areas was liquid fossil combustion, and in urban areas replaced by coal-wood-sugarcane combustion. Petrochemical complexes, flares, power plants (69%), electric waste disposal sites, and commercial pigments (31%) were reported as PCB sources. Industries activities were the most effective factors in producing the highest level of carcinogenic compounds in the region, and it is necessary to include essential measures in the reform programs.
      PubDate: 2022-05-14
       
  • Health risk assessment associated with heavy metals through fractioned
           dust from coal and chromite mines in Pakistan

    • Free pre-print version: Loading...

      Abstract: Abstract Heavy metals exposure through dust emissions pose a health risk to workers in coal and chromite mines. The processes involved in mining are noteworthy for the generation of heavy metal-contaminated dust which causes human health implications, especially to the workers that are mainly exposed to such toxins. This study determined pollution levels in coal and chromite mines and calculated the health risk of workers being exposed to heavy metal-contaminated dust. We used fractioned dust with particle sizes < 75, 75–106, and 107–150 µm to assess the pollution levels, anthropogenic impacts, geo-accumulation index, and enrichment factor for selected coal and chromite mines. Through a probabilistic approach, Monte Carlo simulations were used to determine health risks. The findings revealed that the smallest size dust fraction (< 75 μm) contained the highest metal concentrations. Ingestion was considered a prominent exposure route contributing to health risk. In the dust fraction (< 75 μm), chromite mines exhibited the highest Cr (340.6 mg/kg) and lowest Cd (8.4 mg/kg) concentrations. In coal mines, Mn (284.9 mg/kg) and Cd (2.1 mg/kg) were measured highest and lowest, respectively. Pollution assessment revealed dust to be moderately polluted. Health risk assessment showed that Cr in chromite mines exhibited a mean HI value of 1.16E + 00 that was higher than the safe level (HI > 1) having the potential to cause significant health risk to workers. In coal mines, the estimated total HI was 6E-1. Sensitivity analysis revealed concentration and exposure time to be the most influential parameters contributing to risk. Therefore, governmental and nongovernmental organizations must develop dust pollution control guidelines and mitigation measures to safeguard the health of mineworkers by limiting heavy metal exposure.
      PubDate: 2022-05-13
       
  • Degradation of four pesticides in five urban landscape soils: human and
           environmental health risk assessment

    • Free pre-print version: Loading...

      Abstract: Pesticides are the most cost-effective means of pest control; however, the serious concern is about the non-target effects due to their extensive and intensive use in both agricultural and non-agricultural settings. The degradation rate constant (k) and half-life (DT50) of four commonly used pesticides, glyphosate, 2,4-D, chlorothalonil and dimethoate were determined in five Australian urban landscape soils, with varying physicochemical characteristics, to assess their environmental and human health risks. The k values (day−1) for the selected pesticides were inversely proportional to those of organic carbon (OC), silt, clay and Fe and Al oxides, and directly proportional to pH and sand content in soils. In contrast, the calculated values of DT50 (days) of all the four pesticides in five soils positively correlated with OC, clay, silt and oxides of Fe and Al, whereas soil pH and sand content exhibited a negative correlation. The calculated values of environmental indices, GUS and LIX, for the selected pesticides indicate their potential portability into water bodies, affecting non-target organisms as well as food safety. The evaluation for human non-cancer risk of these pesticides, based on the calculated values of hazard quotient (HQ) and hazard index (HI), suggested that exposure of adults and children to soils, contaminated with 50% of initially applied concentrations, through ingestion, dermal and inhalation pathways might cause negligible to zero non-carcinogenic risks. The present data might help the stakeholders in applying recommended doses of pesticides in urban landscapes and regulatory bodies concerned in monitoring the overall environmental quality and implementing safeguard policies. Our study also clearly demonstrates the need for developing improved formulations and spraying technologies for pesticides to minimize human and environmental health risks. Graphic abstract
      PubDate: 2022-05-11
       
  • Features of the polycyclic aromatic hydrocarbon’s spatial distribution
           in the soils of the Don River delta

    • Free pre-print version: Loading...

      Abstract: Abstract PAHs are one of the most toxic organic compounds classes which is obligatory controlled all over the world. There is a luck of studies devoted to the PAHs levels and sources identification in the south of Russia. The features of the PAHs accumulation and spatial distribution in hydromorphic soils (Fluvisol) were studied on the example of the soils of the Don River delta floodplain landscapes. It has been shown that changes in the PAHs content in soils depended on the type and intensity of the emission source. A factor analysis and multivariate linear regression analysis were carried out to determine the features of the spatial distribution for individual PAH compounds, considering the properties of soils and typical differences in the emission source. The most polluted areas in the studied area located along the transit line of the long-distance tankers, where the content of the most toxic high molecular PAHs compounds reached 8862 ng g−1. As a result of regression analysis, a relationship was established between the PAHs accumulation rate with the content of silt (particles less than 0.001 mm in size) and Ca2+ and Mg2+ exchangeable cations in the soil (at p-level < 0.0001). Differences in individual PAH content for medium and heavy loamy Fluvisol and depend on the influence of different types of pollution sources.
      PubDate: 2022-05-11
       
  • Level, distribution, ecological, and human health risk assessment of heavy
           metals in soils and stream sediments around a used-automobile spare part
           market in Nigeria

    • Free pre-print version: Loading...

      Abstract: Abstract The aim of this research was to assess the distribution, sources, contamination status, ecological risk, and human health risk of heavy metals (HMs) in soil and sediments of a used-automobile spare part market in Nigeria. Forty-three (43) soil samples were collected within a spare part market section (SPMS-17 samples), market-residential section (MRES-10 samples), traffic section (TRAS-10 samples), and non-market residential section (NMRS- 6 samples). Fifteen (15) stream sediments were collected within and around SPMS. Based on average concentrations, HMs (As, Cd, Cr, Cu, Fe, Mo, Pb, and Zn) had their highest values in SPMS, and their minimum values were observed in NMRS. The high concentration was as a result of contributions from anthropogenic activities such as the direct discharge of used-lubricant oil, scrap metals, tire wear, and traffic emission in the environment. However, Al, Co, and Mn were derived from the geology of the area. The same trend was observed in the stream sediment section (STSS), except that in addition to Al, Co and Mn in soils, Cr was also sourced from geogenic activity. There were moderate to high enrichment/contamination factors of the anthropogenically sourced HMs, especially in the soil of SPMS, MRES, TRAS and stream sediments (STSS). Similarly, high potential ecological risk (Eri) and ecological risks (RI) were observed for As, Pb, and Cd in SPMS and STSS, while these were moderate in MRES and TRAS. Assessment of health risks was within acceptable limit for most of the HMs in the different sections for both adults and children, except As, Cd, and Pb in SPMS and STSS, which were beyond the acceptable limit for children. The carcinogenic risk was within the acceptable limit.
      PubDate: 2022-05-10
       
  • Sedimentation of metals in Sundarban mangrove ecosystem: Dominant drivers
           and environmental risks

    • Free pre-print version: Loading...

      Abstract: Abstract Metal contamination from upstream river water is a threat to coastal and estuarine ecosystem. The present study was undertaken to unveil sedimentation processes and patterns of heavy metal deposition along the salinity gradient of a tropical estuary and its mangrove ecosystem. Sediment columns from three representative sites of differential salinity, anthropogenic interference, and sediment deposition pattern were sampled and analyzed for grain size distribution and metal concentrations as a function of depth. Sediments were dominantly of silty-medium sand texture. A suite of fluvial and alluvial processes, and marine depositional forcing control the sediment deposition and associated heavy metal loading in this estuary. The depth profile revealed a gradual increase in heavy metal accumulation in recent top layer sediments and smaller fractions (silt + clay), irrespective of tidal regimes. Alluvial processes and long tidal retention favor accumulation of heavy metals. Enrichment factor (0.52–15), geo-accumulation index (1.4–5.8), and average pollution load index (PLI = 2.0) indicated moderate to higher heavy metal contamination status of this estuary. This study showed that alluvial processes acted as dominant drivers for the accumulation of metals in sediments, which prevailed over the influence of marine processes. Longer tidal retention of the water column favored more accumulation of heavy metals. Metal accumulation in the sediments entails a potential risk of bioaccumulation and biomagnification through the food web, and may increasingly impact estuarine ecology, economy, and ultimately human health.
      PubDate: 2022-05-09
       
  • Chemical composition, oxidative potential and identifying the sources of
           outdoor PM2.5 after the improvement of air quality in Beijing

    • Free pre-print version: Loading...

      Abstract: Abstract Air pollution poses a serious threat to human health. The implementation of air pollution prevention and control policies has gradually reduced the level of atmospheric fine particles in Beijing. Exploring the latest characteristics of PM2.5 has become the key to further improving pollution reduction measures. In the current study, outdoor PM2.5 samples were collected in the spring and summer of Beijing, and the chemical species, oxidative potential (OP), and sources of PM2.5 were characterized. The mean PM2.5 concentration during the entire study period was 41.6 ± 30.9 μg m−3. Although the PM2.5 level in summer was lower, its OP level was significantly higher than that in spring. SO42–, NH4+, EC, NO3–, and OC correlated well with volume-normalized OP (OPv). Strong positive correlations were found between OPv and the following elements: Cu, Pb, Zn, Ni, As, Cr, Sn, Cd, Al, and Mn. Seven sources of PM2.5 were identified, including traffic, soil dust, secondary sulfate, coal and biomass burning, oil combustion, secondary nitrate, and industry. Multiple regression analysis indicated that coal and biomass combustion, industry, and traffic were the main contributors to the OPv in spring, while secondary sulfate, oil combustion, and industry played a leading role in summer. The source region analysis revealed that different pollution sources were related to specific geographic distributions. In addition to local emission reduction policies, multi-provincial cooperation is necessary to further improve Beijing's air quality and reduce the adverse health effects of PM2.5.
      PubDate: 2022-05-08
       
  • Unraveling the source(s) and fate of Pb in urban soils and sediments of
           Ibadan metropolis using lead isotopes

    • Free pre-print version: Loading...

      Abstract: Abstract In this study an attempt was made to determine the source(s) and nature of Pb in environmental media of Ibadan, one of the largest cities in west Nigeria. Seventy-three samples comprising forty stream sediments, twenty-five soils and eight rocks samples were used for the study. Mineralogical compositions of the samples were determined by X-ray diffraction. The elemental constituents were determined using ICP-MS; while the Pb isotopes were determined using Sector-field ICP-MS. Sequential analysis of selected samples was carried out using a modified Tessier’s five-step method. The dominant minerals identified were quartz, kaolinite, k-feldspar, and plagioclase. The concentrations (mg/kg) of Pb in soils, sediments, and rocks ranged from 13.00–470.00; 89.00–3288.00 and 2.90–20.30, respectively. The 204Pb, 206Pb, 207Pb, 208Pb ranged from 1.72–47.41; 30.69–779.68; 27.00–664.46 and 65.67–1642.27 in the soils and sediments, respectively, while they ranged from 0.02–0.07; 0.56–2.33; 0.38–1.56 and 1.19–4.13 in the rocks. Further evaluation of Pb concentration in the soils and sediments revealed high to extreme Pb pollution status, while the calculated Pb isotopic ratios (IRs) in the soil and sediments varied from that of the underlying bedrocks. The IRS in soils and sediments were characterized by low (1.161–1.172 and 1.127–1.200, and 2.281–2.444 and 2.276–2.474) 206/207 Pb and 208/207 Pb, while those of the rocks were high (1.456–1.753 and 2.647–3.149), indicating additional anthropogenic sourcing of Pb in the soils and sediments. The analyzed Pb revealed fractions more partitioned in the reactive geochemical phases with the Pb partitioned in the exchangeable (0.11–0.23%), carbonate (9.00–43.58%), reducible (8.32–13.53%) and organic/sulfides (42.78–82.45%) phases. This implies that there may be enhanced mobility of Pb in the environmental samples and ultimately bio-adsorption into living tissues in the environment.
      PubDate: 2022-05-05
       
  • Monitoring of polycyclic aromatic hydrocarbons emitted from kerosene fuel
           burning and assessment of health risks among women in selected rural and
           urban households of South India

    • Free pre-print version: Loading...

      Abstract: Abstract Polycyclic aromatic hydrocarbons (PAHs) are well-known hazardous substances; nevertheless, research on their exposure and health concerns associated with kerosene fuel emissions is limited. In this study, PAH (combined gaseous and particle phase) monitoring was carried out in the kitchen and living room in selected households. Personal exposure and cooking time monitoring were also carried out, simultaneously. The study's findings revealed that BaP, BA, BbF, and Nap were the most prevalent PAHs in both the summer and winter seasons, regardless of urban or rural households. The estimated values of average incremental lifetime cancer risks were found to be greater than the USEPA level, i.e., 1 × 10–6, in both urban and rural households, regardless of seasonal fluctuation. In both seasons, the non-carcinogenic risk for developmental and reproductive effects was higher in rural women than in urban women, and in case of developmental risk it showed greater than unity (rural: 1.11 and urban 1.03) in the winter season. On the other hand, Monte Carlo simulation model revealed that concentrations of PAHs (97.1% and 97.5%) and exposure duration (51.7% and 56.7%) were the most sensitive factors contributed for health risk estimations for urban and rural area in both seasons, respectively. Furthermore, the results clearly showed that women who were using kerosene for cooking were at a greater risk of acquiring both carcinogenic and non-carcinogenic health consequences from PAH exposure from kerosene cookstoves. It was recommended that they should utilize clean fuel, either by using LPG under the PMUY scheme or by using electricity/solar power to reduce health risks for better health.
      PubDate: 2022-05-02
       
  • Occurrence and sources of microplastics in dust of the Ebinur lake Basin,
           northwest China

    • Free pre-print version: Loading...

      Abstract: Abstract Currently, there is a lack of studies on microplastic pollution in mountain terrains and foothills areas in Northwest China and Central Asia. Here, we collected monthly dusts samples for one year and we studied the distribution, pollution levels, and sources of microplastics in atmospheric dust fall in the Ebinur Lake Basin in Northwest China. Results showed that the average content of dust microplastic on construction land was 28.61 ± 1.13 mg/kg, followed by farmland (20.25 ± 1.56 mg/kg), forest (19.52 ± 1.06 mg/kg), and deserts (8.08 ± 0.56 mg/kg). Regarding different land use types, atmospheric dust reduction dominated on farmland (58.64%), followed by urban area (26.65%), forest (9.76%), and desert (4.95%). Regarding the shape of microplastics, the order of occurrence in dust was film (46.85%) > fiber (35.15%) > foam(12.35%) > fragment (5.65%). In this study, four colors of microplastics were found in dust, and white accounted for the largest proportion (52.15%), followed by transparent (18.65%), black (19.45%), and green (9.75%). The main components of film microplastics in atmospheric dustfall in the Ebinur Lake Basin were PE and PP, and their sources were mainly plastic products in daily life, plastic industrial packaging materials from urban enterprises, broken plastic woven bags, and PET mostly from fabric fragment emissions. The abundance of microplastics in dust was correlated with atmospheric dust pH, EC, and total salt content. The contents of seven heavy metals (Cu, Ni, Cd, Pb, Cr, Mn, and Co) adsorbed by microplastics were also correlated with pH, EC, and total salt content. Our results represent a reference for microplastics pollution prevention in mountain terrains and foothills areas in northwest China and Central Asia.
      PubDate: 2022-05-02
       
  • Potentially toxic elements concentrations in schoolyard soils in the city
           of Coronel, Chile

    • Free pre-print version: Loading...

      Abstract: Abstract Urban areas are constantly growing. By 2050, the urban world population, it is predicted to reach 6 billion. Being component of cities environment, urban soils have elevated levels of potentially toxic elements from anthropogenic action. The aims of this study are (1) to establish background levels of potentially toxic element in soils in the city of Coronel and (2) to assess the pollution and identify its origin. Samples (129 in total) were collected in Coronel, from 43 sites in schoolyards. Three samples were taken at each site: 0–10 cm, 10–20 cm and 150 cm depth. Principal component analysis (PCA), cluster analysis (CA) and depth ratios were applied to distinguish the origin of the contamination. The geoaccumulation index, contamination factor and the integrated pollution index were used to estimate the pollution. The median concentration of the chemical elements in 0–10 cm depth was Ba 38 mg kg−1; Co 15 mg kg−1; Cr 18 mg kg−1; Cu 22 mg kg−1; Mn 536 mg kg−1; Ni 35.5 mg kg−1; Pb 6 mg kg−1; V 94 mg kg−1; Zn 65 mg kg−1. Principal component analysis and CA suggested that Co, Ni and Mn were mainly derived from geogenic origin, while Ba, Cr, Cu, Pb, V and Zn from anthropic origin. Contamination factor indicated that some soil samples were classified as considerable contaminated to very highly contaminated by Ba, Pb, Zn and V.
      PubDate: 2022-05-01
       
  • Source apportionment and health risk assessment of potentially toxic
           elements in soil from mining areas in northwestern China

    • Free pre-print version: Loading...

      Abstract: Abstract Soil contaminated with toxic elements from mining activities is a public health concern. In order to obtain a comprehensive understanding of the status and potential risks of inorganic toxic elements in soil resulting from mining activities, Cu, Pb, Cr, Zn, Ni, As, and Cd were selected to evaluate a total of 42 soil samples collected from Gannan mining areas in northwestern China. The concentrations of As and Cd were much higher than their respective background values, while the concentrations of the other elements fluctuated around their background values. Results of combined multivariate statistical analyses and the distribution patterns of the individual pollutants imply that the toxic elements were originated from different sources even for one element in different sampling locations. The pollution index values indicated that As and Cd have a moderate to high pollution levels. The geo-accumulation indexes (Igeo) indicated that Cu, Pb, Cr, Zn, and Ni are likely of geologic origin, while As and Cd have been significantly affected by anthropogenic activities. Potential ecological risk indexes further showed that soils from mining areas within the study area pose a high potential ecological risk, and As and Cd were major risk contributors. Based on the calculated Hazard Index, the ingestion of soil particles appeared to be the main exposure route resulting in a higher risk, followed by dermal contact. The potential health risks of children and adults for As were greater than the safe level. The carcinogenic risk associated with As for local residents was also higher than the accepted levels, indicating a serious health risk to local residents. These results suggest that proper management strategies and various remediation practices should be implemented in the Gannan mining area in northwestern China.
      PubDate: 2022-05-01
       
  • Uptake of potentially toxic elements by edible plants in experimental
           mining Technosols: preliminary assessment

    • Free pre-print version: Loading...

      Abstract: Abstract A study was carried out to evaluate the absorption of potentially toxic elements from mining Technosols by three types of vegetable plants (broccoli (Brassica oleracea var. italica), lettuce (Lactuca sativa) and onion (Allium cepa)), the different parts of which are intended for human and farm animal consumption (leaves, roots, edible parts). The preliminary results obtained highlight the importance of the design of the mining Technosols used for agricultural purposes, obtained from soils and sediments of mining origin and amended with residues of high calcium carbonate concentrations (limestone filler and construction and demolition wastes). The experiment was carried out in a greenhouse, and the total metal(loid)s concentration (As, Pb, Cd, Cu, Fe, Mn and Zn) of the soil, rhizosphere, aqueous leachates and plant samples was monitored, the translocation and bioconcentration factors (TF and BCF, respectively) being calculated. The characterization of the soils included a mobilization study in media simulating different environmental conditions that can affect these soils and predicting the differences in behavior of each Technosol. The results obtained showed that the levels of potentially toxic elements present in the cultivated species are within the range of values mentioned in the literature when they were cultivated in soils with calcareous amendments. However, when the plants were grown in contaminated soils, the potentially toxic elements levels varied greatly according to the species, being higher in onions than in lettuce. Experiments with the use of lime filler or construction and demolition wastes for soil remediation result in crops that, in principle, do not present health risks and are similar in development to those grown on non-contaminated soil.
      PubDate: 2022-05-01
       
  • Inhibition of in situ coating of sediment ceramsite on sediment nutrient
           release of eutrophic lakes

    • Free pre-print version: Loading...

      Abstract: Abstract Based on the main components in the residual soil to meet the characteristics of ceramic grain production raw materials, and combining with the principle of anti-filter layer technology for seepage control of hydraulic buildings, a lead wire cage filled with silt grains made from lake dehydration silt can be obtained. Moreover, the same-position treatment method of bed surface is desilted by this kind of ceramic lead wire cage in a reasonable structural form to improve water environment. In order to investigate the inhibition effect of this method on sediment resuspension, the effect law on water quality and the growth of indigenous microorganisms, 25 experimental groups were constructed to simulate 5 flow patterns of eutrophic lakes in this paper. We can analyze the inhibition effect of ceramic lead wire cage on sediment resuspension by monitoring the change of suspended matter content, monitoring the concentration change of ammonia nitrogen and soluble phosphorus can show the effect of ceramic lead cage on water quality, and monitoring the dissolved oxygen content can indirectly reflect the effect of the growth of indigenous microorganisms to some extent. The results show that in a certain flow mode, the ceramic lead wire cage can effectively inhibit the resuspension of the sediments, prevent the release of nitrogen and phosphorus nutrients in the sediments, and promote the growth of microbial attachment. The research results will maximize the benefits of the utilization of silt resources, and will optimize the in situ repair methods, and have broad application prospects.
      PubDate: 2022-05-01
       
  • Stabilization of metals in sludge-amended soil using red mud and its
           effects on yield and oil quality of Brassica juncea cultivar Kranti

    • Free pre-print version: Loading...

      Abstract: Abstract Prolonged application of sewage-sludge may cause excessive accumulation of metal(oid)s in soil, leading to phytotoxic effects. Spread of contaminants in soil can probably be hindered by using an effective metal(oid) stabilizer. Pot experiment in open field conditions was conducted for five months to evaluate the metal(oid) (Al, Cu, Zn, Cd and Cr) stabilization potential of red mud (RM) in sludge-amended soil and its effects on growth, yield, oil quality parameters and metal(oid) accumulations in Brassica juncea cultivar Kranti. The test plant was grown at different RM concentrations (0, 5, 10 and 15% w/w) in sludge-amended soil (soil/sludge: 2:1 w/w). As the total and phytoavailable metal(oid) concentrations in sludge were high, its application increased their concentrations in soil compared to the control (no RM and sludge). Increasing RM concentrations in sludge-amended soil effectively stabilized Cd followed by Cr, Cu, Zn and Al, leading to their reduced contents in plants coupled with enhanced growth performance and yield. Maximum plant (root and shoot) biomass (14.9%) and seed yield (40.4%) were found in 10% RM treatment, whereas oil content showed substantial increase with increasing RM treatments in sludge-amended soil. Mustard oil showed low rancidification, high long-chain fatty acids, saturated and polyunsaturated (ω-3 and ω-6) fatty acids within FAO ranges for edible oils under varying RM treatments compared to sludge-amended soil. Furthermore, high oleic and low erucic acid contents in mustard oil indicated a better oil quality under different RM treatments. Metal(oid) contents in seeds under different red mud treatments were within FAO/WHO limits for consumption. Thus, RM applications preferably 5 and 10% (w/w) in sludge-amended soil might be effective in stabilization of metal(oid)s using B. juncea cultivar Kranti coupled with better yield, improved oil quality and metal(oid)s within limits for human consumption.
      PubDate: 2022-05-01
       
  • Environmental geochemistry and health (EGAH) Special Issue “reclamation
           of polluted soils for food production and human health: part 2”

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Industrial processing of phosphogypsum into organomineral fertilizer

    • Free pre-print version: Loading...

      Abstract: Abstract The purpose of this study is to solve the problem of industrial waste storage. Waste from the production of mineral fertilizers is considered in this study (as an example—phosphogypsum LLC «Industrial group «Phosphorit»). Waste storages on a landfill have a significant negative impact on the environment. This fact has been confirmed by studies of wastewater from the dump (drainage water). Phosphogypsum utilization as a mineral component of an organic-mineral mixture without preliminary purification is the most promising approach. In this case, the joint utilization of lignin sludge as an organic component is required. The absence of excess content of toxic elements and the presence of plant nutrients in the required quantities was established as a result of laboratory studies of soil additive. In addition, the authors noted an increased content of stable strontium in phosphogypsum. Localization of strontium in the soil mixture is ensured by fractional application. Strontium is replaced by covalent calcium when the components are absorbed by the plants. The developed soil mixture should be considered as a single-use organomineral additive with prolonged action. Forestry activities, reclamation of disturbed lands, slopes of highways and landfills of solid municipal waste are promising areas of implementation.
      PubDate: 2022-05-01
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.172.111.71
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-