Subjects -> TEXTILE INDUSTRIES AND FABRICS (Total: 41 journals)


Showing 1 - 16 of 16 Journals sorted alphabetically
AATCC Journal of Research     Full-text available via subscription   (Followers: 13)
AATCC Review     Full-text available via subscription   (Followers: 4) - Revista EletrĂ´nica de Moda     Open Access  
Asian Journal of Textile     Open Access   (Followers: 14)
Autex Research Journal     Open Access   (Followers: 4)
CerĂ¢mica     Open Access   (Followers: 6)
Composites Science and Technology     Hybrid Journal   (Followers: 245)
Fashion and Textiles     Open Access   (Followers: 20)
Fashion Practice : The Journal of Design, Creative Process & the Fashion     Hybrid Journal   (Followers: 15)
Fibers     Open Access   (Followers: 8)
Fibre Chemistry     Hybrid Journal   (Followers: 4)
Focus on Pigments     Full-text available via subscription   (Followers: 4)
Geosynthetics International     Hybrid Journal   (Followers: 5)
Geotextiles and Geomembranes     Hybrid Journal   (Followers: 6)
Indian Journal of Fibre & Textile Research (IJFTR)     Open Access   (Followers: 15)
International Journal of Fashion Design, Technology and Education     Hybrid Journal   (Followers: 17)
International Journal of Textile Science     Open Access   (Followers: 15)
Journal of Engineered Fibers and Fabrics     Open Access   (Followers: 3)
Journal of Fashion Technology & Textile Engineering     Hybrid Journal   (Followers: 10)
Journal of Industrial Textiles     Hybrid Journal   (Followers: 6)
Journal of Leather Science and Engineering     Open Access   (Followers: 1)
Journal of Natural Fibers     Hybrid Journal   (Followers: 7)
Journal of Textile Design Research and Practice     Full-text available via subscription   (Followers: 7)
Journal of Textile Science & Engineering     Open Access   (Followers: 6)
Journal of The Institution of Engineers (India) : Series E     Hybrid Journal   (Followers: 2)
Journal of the Textile Institute     Hybrid Journal   (Followers: 12)
Research Journal of Textile and Apparel     Full-text available via subscription   (Followers: 1)
Text and Performance Quarterly     Hybrid Journal   (Followers: 5)
Textile History     Hybrid Journal   (Followers: 21)
Textile Progress     Hybrid Journal   (Followers: 6)
Textile Research Journal     Hybrid Journal   (Followers: 14)
Textiles and Clothing Sustainability     Open Access   (Followers: 4)
Textiles and Light Industrial Science and Technology     Open Access   (Followers: 5)
Third Text     Hybrid Journal   (Followers: 11)
Wearables     Open Access   (Followers: 2)
Similar Journals
Journal Cover
Autex Research Journal
Journal Prestige (SJR): 0.448
Citation Impact (citeScore): 1
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1470-9589 - ISSN (Online) 2300-0929
Published by Sciendo Homepage  [476 journals]
  • Prediction of Standard Time of the Sewing Process using a Support Vector
           Machine with Particle Swarm Optimization

    • Abstract: Standard time is a key indicator to measure the production efficiency of the sewing department, and it plays a vital role in the production forecast for the apparel industry. In this article, the grey correlation analysis was adopted to identify seven sources as the main influencing factors for determination of the standard time in the sewing process, which are sewing length, stitch density, bending stiffness, fabric weight, production quantity, drape coefficient, and length of service. A novel forecasting model based on support-vector machine (SVM) with particle swarm optimization (PSO) is then proposed to predict the standard time of the sewing process. On the ground of real data from a clothing company, the proposed forecasting model is verified by evaluating the performance with the squared correlation coefficient (R2) and mean square error (MSE). Using the PSO-SVM method, the R2 and MSE are found to be 0.917 and 0.0211, respectively. In conclusion, the high accuracy of the PSO-SVM method presented in this experiment states that the proposed model is a reliable forecasting tool for determination of standard time and can achieve good predicted results in the sewing process.
      PubDate: Sat, 17 Jul 2021 00:00:00 GMT
  • Effect of Lycra Weight Percent and Loop Length on Thermo-physiological
           Properties of Elastic Single Jersey Knitted Fabric

    • Abstract: The aim of this work is to estimate the effect of loop length and Lycra weight percent (Lwp) on the geometrical and thermo-physiological comfort of elastic plain knitted fabric. Fifty single jersey knitted fabric samples were produced at five levels of Lycra weight percent (Lwp) (4%, 5%, 6%, 7%, and 8%) and loop length (2.7 mm, 2.9 mm, 3.1 mm, 3.3 mm, and 3.4 mm) with full plaited (fp) and half plaited (hp) of bare Lycra. The thermo-physiological comfort properties (thermal conductivity, absorptivity, and water vapor permeability), air permeability, and geometrical properties were measured at standard of each one. The results showed that the elastic single jersey knitted fabric thickness ranged between 3.12 times and 4.2 times of the yarn diameter (d). The fabric thickness increased when loop length is increased and decreased when Lwp is increased. The thermal conductivity, absorptivity, and water vapor resistance (WVR) decreased with Lwp increasing.
      PubDate: Sat, 17 Jul 2021 00:00:00 GMT
  • Approach to Performance Rating of Retroreflective Textile Material
           Considering Production Technology and Reflector Size

    • Abstract: The study investigates retroreflective fabrics’ efficiency from the point of view of the interaction of their visibility, thermo-physiological comfort properties, and durability (represented by physical-mechanical performance). The effect of the combination of two production technologies (reflective transfer films and screen printing method) and two reflector covering sizes (25% and 85%) was examined. Technique for order of preference by similarity to ideal solution (TOPSIS) method was used to determine the best solution considering the abovementioned tested categories of properties. Retroreflective performance was in congruence with the used design coverage factor of the tested pattern. It was found that retroreflection of the tested pattern produced using screen printing technology was significantly lower than retroreflection of an identical pattern made by a transfer film. On the contrary, in terms of thermo-physiological comfort and physical-mechanical performance of the tested samples, screen printing technology shows significantly better results in almost all tested properties, especially in water vapor permeability, moisture management, and physical-mechanical performance. The solution for the abovementioned contradictory results can be achieved by using a combination of the advantages associated with each of these technology methods. Screen printing can be applied to specific regions of clothing that are exposed to extreme loading or sweating, and the transfer of film elements ensures high visibility with respect to the standards and biomotion principles that are deployed as prevalent benchmarks in the industry.
      PubDate: Sat, 17 Jul 2021 00:00:00 GMT
  • Numerical Simulation of Fiber Motion in the Condensing Zone of Lateral
           Compact Spinning with Pneumatic Groove

    • Abstract: Lateral compact spinning with pneumatic groove is a spinning process to gather fibers by common actions of airflow and mechanical forces. Compared with ring spinning, it can more effectively reduce yarn hairiness and enhance yarn strength. However, fiber motion in the agglomeration area is complex. And, it is important to establish a new fiber model to accurately describing the fiber motion. The objectives of this research were to create a new fiber model to simulate the agglomeration process, to analyze yarn properties of the lateral compact spinning with pneumatic groove, and to compare with other spinning yarns through a series of tests. The new fiber model was based on the finite element method implemented in MATLAB and was to show the fiber motion during the agglomeration area. The simulation generated results were close to the real motion of fibers in spinning. In the lateral compact spinning with pneumatic groove, fiber bundle through the agglomeration area can be gathered, and the output of the fiber bundle was nearly to cylinder before yarn twisted. The experiments demonstrated that the lateral compact spinning with pneumatic groove can improve the yarn properties: increase the yarn twist, enhance the yarn strength, and reduce the yarn hairiness.
      PubDate: Sat, 17 Jul 2021 00:00:00 GMT
  • An Integrated Lean Six Sigma Approach to Modeling and Simulation: A Case
           Study from Clothing SME

    • Abstract: To improve quality, production, and service delivery, clothing industries look toward continuous improvement approaches such as lean manufacturing, Six Sigma, and Lean Six Sigma (LSS). Simulation is one of the effective methods which aim to examine different solution scenarios. This study explores how LSS and simulation can be integrated based on the Sim-Lean approach, using a process improvement effort in clothing small–medium enterprises (SMEs). A structured framework integrating these research methodologies is developed, which might benefit a variety of future clothing process improvement efforts, and could inform quality improvement efforts in other industries. The aim is to allow a successful implementation of the approach in the clothing industry to improve the lead time, the daily output, the average staying times (min) of jobs waiting in queues, and the resource utilization.
      PubDate: Sat, 17 Jul 2021 00:00:00 GMT
  • Development of Mask Design Knowledge Base Based on Sensory Evaluation and
           Fuzzy Logic

    • Abstract: This article focuses on the development of the mask design knowledge base, which is expected to be applied in a personalized mask design system. To realize the proposed knowledge base, a perceptual descriptive space of the mask is first developed for the description of both functional and aesthetic perceptions of a mask. The mask ontology is also developed to form the mask element matrix. Mask design knowledge is expressed as the relationship between the perceptual descriptive space and the mask ontology, which is extracted by a group of experienced designers through a sensory evaluation procedure. This relationship is then simulated by fuzzy logic tools. The proposed knowledge base has been validated that it is reliable. The personalized mask design system can be further developed with the propose mask design knowledge base.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Analyzing Thermophysiological Comfort and Moisture Management Behavior of
           Cotton Denim Fabrics

    • Abstract: Comfort properties of garments are influenced by fiber properties, fabric properties, and applied finishes. Denim garments are widely used apparels, and they are processed with different industrial finishing treatments. Finishing treatments and fabric weight have a great influence on the thermal comfort of denim fabrics. The aim of this paper was to evaluate the effects of finishing treatments (rigid, bleaching, resin, softener) on the thermophysiological comfort and moisture management properties of denim fabrics considering three weight categories (light, medium, heavy). The thermophysiological comfort (thermal resistance, thermal absorptivity, air permeability, water vapor permeability tests) and liquid moisture transport capabilities (transfer wicking and drying behavior of fabrics) were measured and analyzed statistically. As a result of the study, fabric weight and finishing had been found to be important parameters for the comfort properties of denim fabrics. As a conclusion, it could be stated in the light of the results that the fabric weight type (light, medium, heavy) had a significant impact on the fabric thermophysiological comfort properties.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • An Approach to Estimate Dye Concentration of Domestic Washing Machine

    • Abstract: This article focuses on developing a methodology which can be used to estimate the concentration of dyestuff released from textiles during domestic laundering, so that further studies involving decolorization of the wastewater from domestic washing machine can be conducted in an attempt to develop eco-friendly domestic washing processes. Due to the complexity of the problem, an approach was adopted so that, as an initial step, synthetic red and blue reactive dye solutions were prepared as representative wastewater solutions using Reactive Red 195 and Reactive Blue 19 dyestuffs for the estimation of dye concentration. This was followed by an experimental work consisting of washing tests involving the calculation of dye concentration in the wastewater obtained from domestic washing machine as well as tergotometer as a machine simulator. For this part of the work, dyed cotton plain jersey fabric samples were used to obtain wastewater solutions. All the dye solutions and the wastewater samples were measured with VIS spectrophotometer, and the maximum absorbance values were obtained at relevant wavelengths. Although the characteristics of absorbance spectra of synthetic and wastewater solutions were very different, the maximum absorbance values of both solutions overlapped at relevant wavelengths. The concentration of the dyestuff was calculated from the absorbance values measured at 540 and 592 nm for the red and blue, respectively. The statistical analysis of the data suggested that tergotometer can be used as a domestic washing machine simulator. Moreover, the regression analysis done for the dyestuff concentration under discussion revealed that the most significant factor was the washing step (main wash or rinsing) (89.5%) followed by color (red or blue) (3.4%) and washing device (washing machine or tergotometer) (1.5%).
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • A New Approach for Thermal Resistance Prediction of Different Composition
           Plain Socks in Wet State (Part 2)

    • Abstract: Socks’ comfort has vast implications in our everyday living. This importance increased when we have undergone an effort of low or high activity. It causes the perspiration of our bodies at different rates. In this study, plain socks with different fiber composition were wetted to a saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in wet state at different moisture levels. Theoretical thermal resistance is predicted using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fiber) in different models. By this modification, these mathematical models can predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance has reason able correlation with experimental results in both dry (laboratory conditions moisture) and wet states.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Analysis of Mechanical Properties of Unidirectional Flax Roving and Sateen
           Weave Woven Fabric-Reinforced Composites

    • Abstract: Natural fiber-reinforced composites are getting more attention from researchers and manufacturing companies to replace metals and synthetic materials that have dominated the manufacturing industries. In this study, the mechanical properties of unidirectional (UD) flax roving-reinforced composites and woven fabric-reinforced composites were investigated. Three different composites were prepared from flax rovings, which have the same linear density and epoxy resin matrix, with different reinforcement and composite preparation methods. The samples were subjected to experimental tests of flexural rigidity and tensile strength in a parallel and perpendicular direction to fiber orientation. The test results showed that flexural rigidity and tensile strength of flax fiber-reinforced composites are highly dependent on the direction of fiber orientation. The results also reveal that in a parallel direction to fiber orientation, UD composites have higher flexural rigidity and tensile strength than woven fabric-reinforced composite.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Defect Detection of Printed Fabric Based on RGBAAM and Image Pyramid

    • Abstract: To solve the problem of defect detection in printed fabrics caused by abundant colors and varied patterns, a defect detection method based on RGB accumulative average method (RGBAAM) and image pyramid matching is proposed. First, the minimum period of the printed fabric is calculated by the RGBAAM. Second, a Gaussian pyramid is constructed for the template image and the detected image by using the minimum period as a template. Third, the similarity measurement method is used to match the template image and the detected image. Finally, the position of the printed fabric defect is marked in the image to be detected by using the Laplacian pyramid restoration. The experimental results show that the method can accurately segment the printed fabric periodic unit and locate the defect position. The calculation cost is low for the method proposed in this article.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Quick Detection of Aldehydes and Ketones in Automotive Textiles

    • Abstract: This study was aimed to develop a quick detection method to test aldehydes and ketones in textiles in order to control the quality of automotive textiles in the development process from fabric production to end-use in vehicles. In this study, a pretreatment of samples was applied to simulate the actual environment of textiles used in vehicles. Collected volatiles were reacted with 2,4-dinitrophenylhydrazine and then eluted with acetonitrile tetrahydrofuran. The eluent was analyzed with high-performance liquid chromatography. Findings showed more than 90% volatiles could be detected in the established method; the lowest determination limit was 0.0297 mg/mL; and the lowest quantification limit was 0.0991 mg/mL, which meant sensitivity and capability of the method were high. Regression coefficients of linear models between volatile concentrations and chromatographic peak characteristics were >0.995, indicating that the method could effectively and efficiently determine the contents of volatiles in automotive textiles.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Preparation of Polypyrrole/Silver Conductive Polyester Fabric by UV

    • Abstract: In this study, polypyrrole/silver (PPy/Ag) conductive polyester fabric was synthesized via an in-situ polymerization method under UV exposure, using silver nitrate (AgNO3) as an oxidizing agent in the presence of sodium dodecyl benzene sulfonate (SDBS) and polyvinylpyrrolidone (PVP). The effect of the preparation processes on the properties of the conductive fabric was studied experimentally, and the optimal preparation process of the conductive fabric was obtained. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) showed the chemical structural properties of the PPy/Ag conductive polyester fabric. X-ray diffraction (XRD) confirmed the presence of silver nanoparticles in the prepared material. Furthermore, subsequent test results proved that the PPy/Ag conductive polyester fabric prepared by UV irradiation had good electrical conductivity and antibacterial property. The sheet resistance of the prepared conductive fabric was 61.54 Ω • sq−1.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Effect of Temperature on the Structure and Filtration Performance of
           Polypropylene Melt-Blown Nonwovens

    • Abstract: By applying the simultaneous corona-temperature treatment, the effect of electret temperature on the structure and filtration properties of melt-blown nonwovens was investigated. Fiber diameter, pore size, thickness, areal weight, porosity, crystallinity, filtration efficiency, and pressure drop were evaluated. The results demonstrated that some changes occurred in the structure of electret fabrics after treatment under different temperatures. In the range of 20°C~105°C, the filtration efficiency of melt-blown nonwovens has a relationship with the change in crystallinity, and the pressure drop increased because of the change in areal weight and porosity. This work may provide a reference for further improving filtration efficiency of melt-blown nonwovens.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Prediction of Sewing Thread Consumption for Over-Edge Stitches Class 500
           Using Geometrical and Multi-Linear Regression Models

    • Abstract: Rapid and precise methods (geometrical and statistical), which aim to predict the amount of sewing thread needed to sew a garment using different over-edge stitches of class 500 (501, 503, 504, 505, 512, 514, 515, and 516), have been provided. Using a geometrical method of different over-edge stitch shapes, sewing consumption value was determined to avoid the unused stocks for each stitch type. The prediction of the sewing thread consumption relative to each investigated over-edge stitch was proposed as a function of the studied input parameters, such as material thickness, stitch density, yarn diameter, and seam width (distance between the needle and the cutter and the distance between two needles). To improve the established models using a geometrical method, a statistical method based on multi-linear regression was studied. Geometrical and statistical results were discussed, and the coefficient R2 value was determined to evaluate the accuracy of the tested methods. By comparing the estimated thread consumption with the experimental ones, we concluded that the geometrical method is more accurate than the statistical method regarding the range of R2 (from 97.00 to 98.78%), which encourages industrialists to use geometrical models to predict thread consumption.All studied parameters contributing to the sewing thread consumption behavior were investigated and analyzed in the experimental design of interest. It was concluded that the most important parameter affecting thread consumption is the stitch density. The material thickness and the seam width (B1) have a little impact on thread consumption values. However, the seam thread diameter has a neglected effect on thread consumption.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Hydrophilization of Polyester Textiles by Nonthermal Plasma

    • Abstract: Polyester is a popular class of material used in material engineering. With its 0.4% moisture regain, polyethylene terephthalate (PET) is classified as highly hydrophobic, which originates from its lack of polar groups on its backbone. This study used a parallel-plate nonthermal plasma dielectric barrier discharge system operating at medium pressure in dry air and nitrogen (N2) to alter the surface properties of PET fabrics to increase their hydrophilic capabilities. Water contact angle, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were utilized to analyze any effect from the plasma treatment. The wettability analysis revealed a reduction in the contact angle of more than 80% within 5 min for both discharges. Scanning electron microscopy analysis showed no microscopic damage to the fiber structure, guaranteeing that the fabrics’ structural integrity was preserved after treatment. AFM analysis showed an increase in the nanometer roughness, which was considered beneficial because it increased the total surface area, further increasing the hydrophilic capacity. XPS analysis revealed a sharp increase in the presence of polar functional groups, indicating that the induced surface changes are mostly chemical in nature. Comparing that of untreated fabrics to treated fabrics, a Increase in water absorption capacity was observed for air-treated and N2-treated fabrics, when these fabrics were used immediately after plasma exposure.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Experimental Investigation of the Properties of Laminated Nonwovens Used
           for Packaging of Powders in Mineral Warmers

    • Abstract: The study involved laminated nylon and viscose nonwovens, both perforated and non-perforated, with a view to using them for packaging of powders in mineral warmers. The nonwovens were examined in terms of morphology as well as tensile strength in dry and wet states. Thermal properties were determined by differential scanning calorimetry. Dynamic mechanical analysis was carried out in a broad range of temperatures. Surface wettability and water vapor permeability were assessed. The findings were analyzed to determine the utility of the studied materials as mineral warmer packaging materials in cold work or living environments.
      PubDate: Tue, 18 May 2021 00:00:00 GMT
  • Identification of Miao Embroidery in Southeast Guizhou Province of China
           Based on Convolution Neural Network

    • Abstract: Miao embroidery of the southeast area of Guizhou province in China is a kind of precious intangible cultural heritage, as well as national costume handcrafts and textiles, with delicate patterns that require exquisite workmanship. There are various skills to make Miao embroidery; therefore, it is difficult to distinguish the categories of Miao embroidery if there is a lack of sufficient knowledge about it. Furthermore, the identification of Miao embroidery based on existing manual methods is relatively low and inefficient. Thus, in this work, a novel method is proposed to identify different categories of Miao embroidery by using deep convolutional neural networks (CNNs). Firstly, we established a Miao embroidery image database and manually assigned an accurate category label of Miao embroidery to each image. Then, a pre-trained deep CNN model is fine-tuned based on the established database to learning a more robust deep model to identify the types of Miao embroidery. To evaluate the performance of the proposed deep model for the application of Miao embroidery categories recognition, three traditional non-deep methods, that is, bag-of-words (BoW), Fisher vector (FV), and vector of locally aggregated descriptors (VLAD) are employed and compared in the experiment. The experimental results demonstrate that the proposed deep CNN model outperforms the compared three non-deep methods and achieved a recognition accuracy of 98.88%. To our best knowledge, this is the first one to apply CNNs on the application of Miao embroidery categories recognition. Moreover, the effectiveness of our proposed method illustrates that the CNN-based approach might be a promising strategy for the discrimination and identification of different other embroidery and national costume patterns.
      PubDate: Wed, 03 Mar 2021 00:00:00 GMT
  • Comparison of the Effects of the Cationization of Raw, Bio- and
           Alkali-Scoured Cotton Knitted Fabric with Different Surface Charge Density

    • Abstract: Modification of cotton with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) has been studied extensively and can be operated by means of exhaustion, cold pad-batch, and continuous and pad-steam methods. Most of the research addresses the cationization of cotton fabric after bleaching or mercerization, or during the mercerization process. In our studies, we performed a comparison of the cationization effects on raw, enzymatic, and alkali-scoured cotton knitted fabrics applying CHPTAC according to the exhaustion method. The charge density of the cotton surface was measured using a Muetek Particle Charge Detector and a “back titration” method with polyelectrolytes. These results were compared with the nitrogen content in the samples, K/S measurements of tested samples after dyeing with anionic dye (Acid Yellow 194), and other physicochemical parameters such as weight loss, whiteness, and wettability.
      PubDate: Fri, 29 Jan 2021 00:00:00 GMT
  • Moisture and Thermal Transport Properties of Different Polyester
           Warp-Knitted Spacer Fabric for Protective Application

    • Abstract: Warp-knitted spacer fabrics are generally used for sportswear, functional clothing, protective clothing, and other applications. This article studied the heat and mass transfer properties of polyester warp-knitted spacer fabrics from low thickness (2 mm) to high thickness (20 mm), from low mass (247.34 g/m2) to high mass (1,585.9 g/m2), and surface structure in plain or mesh construction. Water vapor permeability, air permeability, water absorption, and thermal insulation property were conducted to evaluate the spacer fabrics. The results revealed that with increasing volume density the water vapor permeability of spacer fabrics decreased, but the water absorption ratio increased. The water vapor permeability of fabrics increased when thickness decreased and volume density increased. It was further found that spacer fabrics with mesh worn nearby the skin and plain structure worn far from the skin could facilitate water vapor and air transmission. The difference of 8.82% for water vapor permeability and 14.19% for air permeability were found between testing mesh side up and down for the spacers (2.56 and 3.37 mm), respectively. Thermal insulation ratio was highly and significantly correlated with heat transfer coefficient at −0.958 and with thickness at 0.917. Thermal insulation ratio is highly and significantly correlated with air permeability at 0.941.
      PubDate: Mon, 06 Jul 2020 00:00:00 GMT
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-