A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> ARCHITECTURE (Total: 219 journals)
We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Similar Journals
Journal Cover
Construction Robotics
Number of Followers: 4  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 2509-811X - ISSN (Online) 2509-8780
Published by Springer-Verlag Homepage  [2469 journals]
  • Safety, quality, schedule, and cost impacts of ten construction robots

    • Free pre-print version: Loading...

      Abstract: Introduction Robots have increased productivity, quality, and safety in structured manufacturing environments while lowering production costs. In the last decade, advances in computing and sensing have started to enable robots in unstructured environments such as construction. Objectives Given this new reality, this research aims to quantify the impacts of existing construction robots. Methods This study evaluates the Safety, Quality, Schedule, and Cost impacts of ten on-site construction robots for 12 construction projects spanning 11 contractors from Europe, Asia, South America, and the United States. Results The robots showed the potential to reduce repetitive site work between 25 and 90% and reduce time spent on hazardous tasks by 72% on average. On average, accuracy was improved by 55%, and rework was reduced by over 50%. Robots reduced the schedule on average 2.3 times with a median of 1.4x. The cost was reduced by 13%, with six cases that reduced it but four that increased the total costs. The comparative results also highlight under what project conditions (Product, Organization, and Process) could the robot perform better than the traditional method. Conclusion Even at this relatively early stage of robot deployment worldwide, the consistent evaluation of ten examples showed how promising the technology already is for a range of robot types, mobility, autonomy, scale, business models, and locations. Future work will expand the number of robot case studies utilizing the same comparison method.
      PubDate: 2022-06-27
       
  • Autonomous robotic additive manufacturing through distributed modelā€free
           deep reinforcement learning in computational design environments

    • Free pre-print version: Loading...

      Abstract: Abstract The objective of autonomous robotic additive manufacturing for construction in the architectural scale is currently being investigated in parts both within the research communities of computational design and robotic fabrication (CDRF) and deep reinforcement learning (DRL) in robotics. The presented study summarizes the relevant state of the art in both research areas and lays out how their respective accomplishments can be combined to achieve higher degrees of autonomy in robotic construction within the Architecture, Engineering and Construction (AEC) industry. A distributed control and communication infrastructure for agent training and task execution is presented, that leverages the potentials of combining tools, standards and algorithms of both fields. It is geared towards industrial CDRF applications. Using this framework, a robotic agent is trained to autonomously plan and build structures using two model-free DRL algorithms (TD3, SAC) in two case studies: robotic block stacking and sensor-adaptive 3D printing. The first case study serves to demonstrate the general applicability of computational design environments for DRL training and the comparative learning success of the utilized algorithms. Case study two highlights the benefit of our setup in terms of tool path planning, geometric state reconstruction, the incorporation of fabrication constraints and action evaluation as part of the training and execution process through parametric modeling routines. The study benefits from highly efficient geometry compression based on convolutional autoencoders (CAE) and signed distance fields (SDF), real-time physics simulation in CAD, industry-grade hardware control and distinct action complementation through geometric scripting. Most of the developed code is provided open source.
      PubDate: 2022-05-23
       
  • Beyond transparency: architectural application of robotically fabricated
           polychromatic float glass

    • Free pre-print version: Loading...

      Abstract: Abstract This research investigates robotically fabricated polychromatic float glass for architectural applications. Polychromatic glass elements usually require labor-intensive processes or are limited to film applications of secondary materials onto the glass. Previous research employs computer numerical control (CNC) based multi-channel granule deposition to manufacture polychromatic relief glass; however, it is limited in motion, channel control, and design space. To expand the design and fabrication space for the manufacture of mono-material polychromatic glass elements, this paper presents further advancements using a UR robotic arm with an advanced multi-channel dispenser, linear and curved-paths granule deposition, customized color pattern design approaches, and a computational tool for the prediction and rendering of outcomes. A large-scale demonstrator serves as a case study for upscaling. Robotic multi-channel deposition and tailored computational design tools are employed to facilitate a full-scale installation consisting of eighteen large glass panels. Novel optical properties include locally varying color, opacity, and texture filter light and view. The resulting product constructs sublime architectural experiences through light refraction, reflection, color, opacity - beyond mere transparency.
      PubDate: 2022-04-28
       
  • Digital twins as education support in construction: a first development
           framework based on the Reference Construction Site Aachen West

    • Free pre-print version: Loading...

      Abstract: Abstract The Reference Construction Site Aachen West, located in Aachen, Germany, is a campus-based living lab for research and university education in construction. To ensure and improve the education quality, this paper researches a new study tool in the form of a digital twin framework powered by the Unreal Engine. By implementing MQTT, an IoT communication protocol, the digital twin realizes synchronicity of cyber-physical bi-directional data flows. Representing the virtual Reference Construction Site, an online multiplayer application was developed as a use case to answer the research questions: (1) how to design the digital twin and structure in an extendable and accessible development framework for different users and (2) how to support education in construction with this digital twin. To validate the concept, a group of students were invited online to explore the application and provide user feedback. Results show positive effects of the digital twin on enhancing the quality of the online education in construction with its real-time interaction and data from on-site machinery and processes. The digital twin is planned to be transferred to research and construction projects.
      PubDate: 2022-04-06
      DOI: 10.1007/s41693-022-00070-7
       
  • 3DWoodWind: robotic winding processes for material-efficient lightweight
           veneer components

    • Free pre-print version: Loading...

      Abstract: Abstract Winding processes are known from fiber composite technology for highly resistance lightweight components for aviation. These fiber-based processes work predominantly with synthetic composites made of carbon or glass fibers. For the construction industry, these additive processes are very promising and resource-efficient building processes, but they are still hardly used in timber construction despite the very high level of digitalization and technical development. The 3DWoodWind research project uses a continuous strip of thin veneer as a sustainable alternative as its application material. Its natural fibers are intact, continuous, and tensile. In the project, three-dimensional winding processes were developed for material-efficient hollow profile lightweight components made of wood. We describe the material system, composed of suitable combinations of veneers and adhesives, and develop computational design methods for filament layout and robotic fabrication methods. We also show an open-source prototype development method, necessary for efficient prototyping. Through several fabrication case studies, we demonstrate the capabilities of the production process, and investigate suitable architectural applications. These hollow lightweight components could save large amounts of material in timber construction and serve as a substitute for concrete or steel components in the future. We conclude by discussing possible applications in the construction industry and future research possibilities.
      PubDate: 2022-03-25
      DOI: 10.1007/s41693-022-00067-2
       
  • Dynamic 3D print head for spatial strand extrusion of fiber-reinforced
           concrete: requirements, development and application

    • Free pre-print version: Loading...

      Abstract: Abstract Additive manufacturing is gaining more significance in architecture and construction due to a shortage of skilled workers, resource scarcity and increasing design requirements. Over the past years, approaches for layer-wise and spatial extrusion of concrete were developed for automated, formwork free and complex concrete processing. The spatial concrete extrusion is possible due to an inert support suspension that stabilizes the strands during hydration. The process is capable for unlimited overhangs, increasing printing speed and ultra-lightweight concrete structures. Even though, for filigree and spatial framework structure, its application is highly impaired by the anisotropic strength and brittle concrete behavior requiring reinforcements. In following research, the use of fiber-reinforced concrete is investigated for spatial concrete extrusion. Compared to unreinforced concrete, fibers improve the tensile strength and ductility and can be obtained from recyclable sources. Since its structural effect is dependent on their orientation in the matrix, its processing requires a controlled extrusion and high flexibility of nozzle rotation. Therefore, a print head was developed that increases the rotation freedom of a nozzle without harming its robot reachability to improve additive manufacturing of fiber-reinforced concrete strands. This paper concludes investigations of fiber orientation in extruded strands depending on nozzle alignment, a concept and prototype of a dynamic 3D print head, which is capable of 3D rotations, and applications for filigree 3D structures, which demonstrate new possibilities for fiber-reinforced materials.
      PubDate: 2022-03-23
      DOI: 10.1007/s41693-022-00066-3
       
  • Real-time state synchronization between physical construction robots and
           process-level digital twins

    • Free pre-print version: Loading...

      Abstract: Abstract This research focuses on developing a robot digital twin (DT) and the communication methods to connect it with the corresponding physical robot in collaborative human–robot construction work. Robots are being increasingly deployed on construction sites to assist human workers with physically demanding work tasks. Robot simulations in a process-level DT can be used to extend design models, such as building information modeling, to the construction phase for real-time monitoring of robot motion planning and control. Robots can be enabled to plan work tasks and execute them in the DT simulations. Once simulated tasks and trajectories are approved by human workers, commands can be sent to the physical robots to perform the tasks. However, a system to bridge a virtual DT and a physical robot and allow for such communication to occur is a capability that has not been readily available thus far, primarily due to the complexity involved in physical robot operations. This paper discusses the development of a system to bridge robot simulations and physical robots in construction and digital fabrication. The Gazebo robot simulator is used for DT, and the robot operating system is leveraged as the primary framework for bi-directional communication with the physical robots. The virtual robots in Gazebo receive planned trajectories from motion planners and then send the commands to the physical robots for execution. Two different robot control modes, i.e., joint angle control mode and Cartesian path control mode, are developed to accommodate various construction strategies. The system is implemented in a digital fabrication case study with a full-scale KUKA KR120 six-degrees-of-freedom robotic arm mounted on a track system. We evaluated the system by comparing the data transmission time, joint angles, and end-effector pose between the virtual and physical robot using several planned trajectories and calculated the average and maximum mean square errors. The results showed that the proposed real-time process-level robot DT system can plan the robot trajectory inside the virtual environment and execute it in the physical environment with high accuracy and real-time performance, offering the opportunity for further development and deployment of the collaborative human–robot work paradigm on real construction sites.
      PubDate: 2022-03-22
      DOI: 10.1007/s41693-022-00068-1
       
  • Building rethought – 3D concrete printing in building practice

    • Free pre-print version: Loading...

      Abstract: Abstract After only a few of years of intensive research all over the world, 3D printing of buildings has been induced in practical application in construction industry. In the course of this, in 2021, the first 3D printed residential building was realised in Beckum, Germany. The aim of this paper is to give an insight to the impetus, the ideas and the individual steps to realize this project. We describe the technology used and give an overview about background of the material development and the requirements for the material. Furthermore the architectural design und planning process is displayed. However, existing design codes do not cover all special technical features of the new construction method. Consequently, we describe the concept how the building permission (approval) for the construction by following existing standards (DIN EN) for concrete and masonry construction was achieved and granted. Finally we give an insight in the construction process and conclude with lessons learned for future projects.
      PubDate: 2022-02-08
      DOI: 10.1007/s41693-022-00064-5
       
  • Online capability-based resource allocation for on-site construction
           operations utilizing digital twin models

    • Free pre-print version: Loading...

      Abstract: Abstract Planning and controlling on-site construction operations are complex and dynamic procedures, mainly manually executed without algorithmic decision support. An initial challenge is to allocate available resources to construction processes based on required and available capabilities. Due to the dynamic nature of construction projects (e.g., redesigns, resource failure, unpredictable restrictions), there is a demand for frequent reallocation of resources. In recent years, researchers studied capability-based resource allocation approaches by defining ontologies to describe the capabilities of resources. However, since most of the existing approaches focus on ontologies for resources in production environments (e.g., industrial robots), the modeling and application of the models for online allocation in dynamic construction environments remain unsolved. In this study, an ontology-based Digital Twin model, adopted from a production engineering background, is used to enable online capability-based resource allocations for construction-specific approaches. The Digital Twin model can be updated by a lightweight, publish-subscribe network, triggering an update of capability-based feasibility checks for resource allocations. The resulting framework is tested on a demo construction project from the research project “Internet of Construction (IoC)”. The results contribute to the automation of planning and controlling resource allocations for dynamic on-site construction operations. Using machine-readable ontologies, the transition from manually performed activities to robotically supported tasks is enabled.
      PubDate: 2022-01-25
      DOI: 10.1007/s41693-022-00065-4
       
  • Depth-camera-based rebar detection and digital reconstruction for robotic
           concrete spraying

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, we tackle the challenge of detection and accurate digital reconstruction of steel rebar meshes using a set of industrial depth cameras. A construction example under investigation in this paper is robotic concrete spraying, where material is sprayed onto double-curved single layered rebar meshes. Before the spraying process can start, the location and geometry of the rebar mesh needs to be accurately know. We present an automatic image-based processing approach of depth images for grid point extraction at an accuracy of a few mm. Furthermore, we propose a sequence of execution steps in a robotic setup, including the hand–eye calibration, which enables the direct georeferencing of multiple data sets acquired from various poses into a common coordinate system. With the proposed approach we are able to digitally reconstruct a mesh of an unknown geometry in under 10 min with an accuracy better than 5 mm. The digitally reconstructed mesh allows for computation of material needed for its construction, enabling sustainable use of concrete in digital fabrication. The accurately reconstructed digital mesh, generated based on the proposed approach in this paper, is the input for the following spraying step, allowing for generation of accurate spray trajectories.
      PubDate: 2021-10-16
      DOI: 10.1007/s41693-021-00063-y
       
  • Hand-drawn digital fabrication: calibrating a visual communication method
           for robotic on-site fabrication

    • Free pre-print version: Loading...

      Abstract: Abstract According to the 2016 Mckinsey report, the global construction industry is one of the least productive (The Construction Productivity Imperative, McKinsey Report, 2016), which can be attributed to a minimal implementation of digital and automation technology (Berger Digtization in the Construction industry—Building Europe's road to "Construction 4.0 THINK/ACT—BEYOND MAINSTREAM, 2015). This research argues that this relates to the skill base of construction workers since very few, if any, can operate digital fabrication systems. Here, a digital model is considered foundational knowledge and is used to communicate with a fabrication unit. The difficulty lies in communicating the digital model to the fabrication machine, which arguably requires a level of specialist knowledge. However, history shows that other methods of communicating complex construction information have existed, such as 1:1 on-site drawing, which used to be made by architects or construction workers to communicate complex information related to constructing jigs or building components (The Tracing Floor of York Minster.” In Studies in the History of Civil Engineering, 1:81–86. The Engineering of Medieval Cathedrals. Routledge, 1997). We propose an alternative where we learn from history and amalgamate that knowledge with a robotic framework. We present the calibration process behind a parametric visual feedback method for robotic fabrication that detects on-object hand-drawn markings and allows us to assign digital information to detected markings. The technique is demonstrated through a 1:2 prototype that is fabricated using an ABB IRB 120 robot arm.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-020-00049-2
       
  • Robotic embankment

    • Free pre-print version: Loading...

      Abstract: Abstract Automating earth-moving tasks has the potential to resolve labour-shortage, allow for unseen designs and foster sustainability through using on-site materials. In this interdisciplinary project involving robotics and landscape architecture, we combine our previous work on autonomous excavation of free-form shapes, dynamic landscape design and terrain modelling tools into a robotic landscape system. It tightly connects survey, design and fabrication to exchange information in real-time during fabrication. We purposely built a LiDAR survey drone for tight integration. The design environment contains terrain modelling tools to balance cut and fill volumes for material-neutral, on-site construction. Its parametric nature allows it to adapt the geometry to changing site conditions during fabrication. Our autonomous walking excavator is used to create these free-form shapes in natural granular material. We propose an excavation planner for free-form embankments that computes the next excavation location and subsequently the location where the excavated soil should be dumped. This robotic excavation system achieves the world’s first autonomous completion of free-form embankments with high accuracy. A \(20\hbox { m}\) long S-shaped and a two-faced embankment with a corner with roughly 0.03–0.05 m average error were created.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-021-00061-0
       
  • Improving data communication on construction sites via LoRaWAN

    • Free pre-print version: Loading...

      Abstract: Abstract Easily-accessible and reliable data communication in construction processes ensures high building quality, efficient workflow and secure working environments. The setup of network infrastructure on construction sites provides the necessary condition for timely and effective data communication. This paper researches a solution for on-site networking by implementing an IoT network on a reference construction site in Germany. In contrast to high-cost and high-bandwidth network infrastructure, a Long Range Wide Area Network–LoRaWAN with low cost and low bandwidth was deployed on the site. With additional IoT servers and LoRa-enabled devices, the reference construction site is able to communicate remotely with a robotic lab. In order to validate this concept of LoRaWAN on construction sites, an intra-site logistics and task scheduling system was developed to test the network performance. This paper conducts a preliminary study on the application of the IoT network technology–LoRaWAN in the logistics automation in construction. The test results can be used as references for other automation applications, such as internet of robot, intelligent process management, decision making system, etc.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-021-00059-8
       
  • Optimal trajectory planning of complicated robotic timber joints based on
           particle swarm optimization and an adaptive genetic algorithm

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, a methodology for path distance and time synthetic optimal trajectory planning is described in order to improve the work efficiency of a robotic chainsaw when dealing with cutting complex timber joints. To demonstrate this approach one specific complicated timber joint is used as an example. The trajectory is interpolated in the joint space by using a quantic polynomial function which enables the trajectory to be constrained in the kinematic limits of velocity, acceleration, and jerk. The particle swarm optimization (PSO) is applied to optimize the path of all cutting surfaces of the timber joint in operating space to achieve the shortest path. Based on the optimal path, an adaptive genetic algorithm (AGA) is used to optimize the time interval of interpolation points of every joint to realize the time-optimal trajectory. The results of the simulation show that the PSO method shortens the distance of the trajectory and that the AGA algorithm reduces time intervals and helps to obtain smooth trajectories, validating the effectiveness and practicability of the two proposed methodology on path and time optimization for 6-DOF robots when used in cutting tasks.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-021-00057-w
       
  • Robotic additive construction of bar structures: unified sequence and
           motion planning

    • Free pre-print version: Loading...

      Abstract: Abstract Additive robotic construction of building-scale discrete bar structures, such as trusses and space frames, is increasingly attractive due to the potential improvements in efficiency, safety, and design possibilities. However, programming complex robots, such as manipulators with seven degrees of freedom, to successfully complete construction tasks can be tedious, challenging, or impossible for a human to do manually. Namely, the structure must be constructed in a sequence that preserves structural properties, such as stiffness, at each step. At the same time, this sequence must allow for the robot to precisely manipulate elements within the in-progress structure while respecting geometric constraints that, for example, ensure the robot does not collide with what it has built. In this work, we present an automated and newly generalized planning approach for jointly finding a construction sequence and robot motion plan for additive construction that satisfies these requirements. Our approach can be applied in a variety of additive construction processes, and we demonstrate it specifically on spatial extrusion and discrete bar assembly in this paper. We demonstrate the effectiveness of our approach on several simulated and real-world extrusion and assembly tasks, including a human-scale physical prototype, for which our algorithm is deployed for the first time to plan the assembly of a complicated double tangent bar system design.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-021-00062-z
       
  • Integrated design-for-manufacturing and AR-aided-assembly workflows for
           lightweight reciprocal frame timber structures

    • Free pre-print version: Loading...

      Abstract: Abstract This paper presents a novel workflow for the design, robotic fabrication and assembly of lightweight timber structures based on a reciprocal frame structural principle. The described method expands existing research in the field by demonstrating a unified mesh-based workflow throughout the form-finding, manufacturing and assembly phases, as well as applications of augmented reality (AR) at several process stages. A case study in the design and construction of a prototypical self-supporting lightweight timber structure is presented. The process illustrates the dynamic transfer of data between various design, analysis and manufacturing simulation environments through the use of a common lightweight skeletal model and a just-in-time approach to manufacturing geometry creation. As such, the method serves as an example of Fabrication Information Modelling (FIM), an approach characterized by the synthesis of multiscale, interdisciplinary geometric representations, material properties, and fabrication parameters.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-020-00048-3
       
  • A novel approach of geopolymer formulation based on clay for additive
           manufacturing

    • Free pre-print version: Loading...

      Abstract: Abstract This paper investigates the potential for combining robotic and additive manufacturing in construction with geopolymerization. 3D printing is considered an essential element of the new industrial revolution. As a technology that facilitates construction work and minimizes the production line. Geopolymers obtained by alkaline activation of aluminosilicate materials are considered ecological. These materials can help solve the CO2 emission problem and be an effective substitute for building materials due to their mechanical performance and significant durability properties. This study presents a new approach of geopolymer based on clay for 3D printing purpose. Four formulations based on a silicate and sodium hydroxide geopolymer binder were prepared. The silicate to sodium hydroxide ratio was 0.24 and the molarity of NaOH was 10 M. The ratio sand/clay was 1:1. The printability, extrudability and buildability of this new material have been studied. This geopolymer was printed using a robotic arm 3D printer based on the extrusion technique for formulation validation. Mechanical tests for compressive and flexural strength were carried out on the printed geopolymer. The results of this study demonstrate that clay-based geopolymer can replace cement mortar in the 3D printing process with interesting mechanical performance to meet the application requirements in the construction sector.
      PubDate: 2021-06-01
      DOI: 10.1007/s41693-021-00060-1
       
  • Material characterization of workability and process imaging for robotic
           concrete finishing

    • Free pre-print version: Loading...

      Abstract: Abstract In this paper, we discuss a robotic-assisted concrete finishing method for fabricating architectural panels. Concrete finishing is an important process for producing architectural elements with acceptable surface quality. It is also a challenging process conventionally relying on skillful laborers. We describe a hybrid framework incorporating both human skill and robotics in the concrete finishing process and a multi-phase sensing strategy to assist in part touch-up and to validate final surface quality. The paper discusses a general approach to finishing from three perspectives: (1) Material characterization of concrete’s workability throughout its setting process, (2) A modular system-architecture for collaborative human-robot concrete finishing, and (3) Assessment feedback of surface quality using process images.
      PubDate: 2021-03-01
      DOI: 10.1007/s41693-021-00058-9
       
  • Soft Office: a human–robot collaborative system for adaptive spatial
           configuration

    • Free pre-print version: Loading...

      Abstract: Abstract The Soft Office project was developed in response to the rapidly changing context of commercial architecture, where accommodating fluid programmatic requirements of occupants has become key to sustainable interior space. The project is placed within a broader context of relevant research in architectural robotics, in situ robotic fabrication, and adaptive and reconfigurable architecture. It establishes a methodology for spatial configuration through the implementation of a custom collaborative robotic interior reconfiguration system. Within this system, human users and task-specific robots perform complementary tasks toward a dynamic spatial goal that is defined by a set of evaluative criteria intended to predict successful interior space configurations (Bailey et al. in Humanizing digital reality: design modeling symposium Paris 2017, Springer Singapore, Singapore, pp 337–348, 2018). Venturing beyond robotics as merely a means of construction automation, the presented research deploys an approach that critically engages future models of interaction between humans and robotic architecture, mediated by in situ, architecturally embedded machines. In contrast to a conventional collaborative robotic manufacturing process, where a human worker is executing fabrication and manufacturing tasks according to a pre-designed blueprint, the proposed approach engages the human user as the designer, the worker, and the consumer of the architectural outcome. This gives the occupant the agency to rapidly reconfigure their environment in response to changing programmatic needs as well as the ability to respond ad hoc to outside forces, such as social distancing requirements for the post-quarantine re-occupation of buildings. Furthermore, task-specificity of the presented robotic system allows us to speculate on future roles of designers in the development of architectural fabrication technology beyond the appropriation of existing hardware and to look towards systems that are architecture specific.
      PubDate: 2021-03-01
      DOI: 10.1007/s41693-021-00056-x
       
  • The geometry of air: large-scale multi-colour robotic additive fabrication
           for air-diffusion systems

    • Free pre-print version: Loading...

      Abstract: Abstract This research investigates the integrated design, robotic fabrication and materialisation of novel air-diffusion systems for contemporary office environments. Specifically, the research focuses on the integration of computational design, multi-objective optimisation and the development of novel approaches and techniques for large-scale 3D-printed module systems for low-embodied energy air ducts in the context of a pilot study for an open office environment. By investigating the interrelationship of polymer extrusion, material behaviour, computational design, computational fluid dynamic (CFD) simulation and multi-objective optimisation, the research leverages the capacities of each of these methods to create highly detailed geometries that are optimised for air diffusion to create locally differentiated thermal comfort. The paper contributes to and further extends existing research in the domain of large-scale 3D printing by presenting a series of developed novel approaches and techniques combining the diverse methods above to address the plural performance demands of low-embodied energy air-diffusion systems. It presents empirical research towards air simulation, geometry optimisation and bespoke fabrication for a high-quality, customised and resilient air-diffusion system to support the flexibility of contemporary office environments and reduce the adverse per capita environmental impact of cities through increased resource-use efficiency and substantial waste and embodied energy reduction.
      PubDate: 2021-03-01
      DOI: 10.1007/s41693-021-00054-z
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.236.107.249
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-