Abstract: Publication date: 26 October 2021 Source: International Letters of Chemistry, Physics and Astronomy Vol. 87 Author(s): Aaron R. Hurst The supercharged nature of the Earth’s geothermal core can be demonstrated by three thought experiments exhibiting it is tremendously more powerful than any other terrestrial object in the solar system (planet or moon). Identifying a minimum of four byproduct asteroid blast patterns linked to the formation of Earth’s supercharged geothermal core is critical to properly identifying stars that also have these four byproduct asteroid blast patterns. These stars are the most likely to host an Earth-like planet qualified by having a supercharged geothermal core. The Planetary Vaporization-Event (PVE) Hypothesis provides a basis for correlation between the supercharged nature of Earth’s geothermal core and at least 14 listed side effects: (1) the asteroid-wide/planet-scale homogenization and lack thereof of 182W ε for Earth, the Moon, Mars and meteors, (2) the primary and secondary shifting of Earth’s tectonic plates, (3) the solar system wide displacement of Earth’s wayward moons (including Ceres, Pluto, Charon and Orcus) outgassing identical samples of ammoniated phyllosilicates, (4) the formation of asteroids at 100+ times the expected density of a nebular cloud vs. pre-solar grains formation density at the expected density of a nebular cloud, (5) three distinct formation timestamps for all known asteroids within a 5 million year window 4.55+ billion years ago, (6) the estimated formation temperature of CAI at 0.86 billion Kelvin and (7) the remaining chondritic meteorite matrix flash vaporizing at 1,200–1,900 °C, (8) followed by rapid freezing near 0 K, (9) the development of exactly 2 asteroid belts and a swarm of non-moon satellites, (10) particulate size distinction between the 2 asteroid belts of small/inner, large/outer, (11) the proximity of the Trojan Asteroid Groups to the Main Asteroid Belt, (12) observation of a past or present LHB, (13) the development of annual meteor showers for Earth proximal to apogee and/or perigee, (14) the Sun being the most-likely object struck by an asteroid in the inner solar system. Through better understanding of the relevant data at hand and reclassification of the byproducts of supercharging the core of a planet, at least 5 new insights can be inferred and are listed as: (1) the original mass, (2) distance and (3) speed of Earth Mark One, (4) the original order of Earth’s multi-moon formation and (5) the high probability of finding detectable signs of life on a planet orbiting the stars Epsilon Eridani and Eta Corvi. There are at least 6 popular hypothesis that the PVE Hypothesis is in conflict with, listed they are: (1) a giant impact forming the Moon, (2) asteroids being the building blocks of the solar system, (3) the Main Asteroid Belt being the result of a planet that never formed, (4) the LHB being a part of the accretion disk process, (5) the heat in Earth’s core coming primarily from the decay of radioactive elements, (6) the Oort Cloud being the source of ice comets.
Abstract: Publication date: 26 October 2021 Source: International Letters of Chemistry, Physics and Astronomy Vol. 87 Author(s): Umar Aishetu, Kamfa A. Salisu, Bashir Umar The motion is investigated of dust/gas particles in the elliptic restricted three-body problem (ER3BP) in which the less massive primary is an oblate spheroid and the more massive a luminous body surrounded by a circumbinary disk. The paper has investigated both analytically and numerically the effects of oblateness and radiation pressure of the primaries respectively together with the gravitational potential from a disk on the triangular equilibrium L4,5 of the system, all in the elliptic framework of the restricted problem of three bodies. The important result obtained therein is a move towards the line joining the primaries in the presence of any /all perturbation(s). A significant shift away from the origin as the radiation pressure factor decreases and oblateness of the smaller primary increase is also observed. It is also seen that, all aforementioned parameters in the region of stability have destabilizing tendencies resulting in a decrease in the size of the region of stability except the gravitational potential from the disc. The binary system Ruchbah in the constellation Cassiopeiae is an excellent model for the problem, using the analytic results obtained, the locations of the triangular points and the critical mass parameter are computed numerically.