Abstract: In this article, we consider kinematical considerations of a rigid body rotating around a given fixed point in a Newtonian force field exerted by an attractive center with a rotating couple about their principal axes of inertia. The kinematic equations and their well-known three elementary integrals of the problem are introduced. The existence properties of the algebraic integrals are considered. Besides, we search as a special case of the fourth algebraic integral for the problem of the rigid body’s motion around a fixed point under the action of a Newtonian force field with an orbiting couple. Lagrange’s case and Kovalevskaya’s one are obtained. The large parameter is used for satisfying the existing conditions of the algebraic integrals. The comparison between the obtained results and the previous ones is arising. The numerical solutions of the regulating system of motion are obtained utilizing the fourth-order Runge-Kutta method and are plotted in some figures to illustrate the positive impact of the imposed forces and torques on the behavior of the body at any time. PubDate: Fri, 22 Apr 2022 10:20:01 +000

Abstract: Possible correlation is studied between Water Equivalent Hydrogen (WEH) in the Martian subsurface, as measured by the DAN (Dynamic Albedo of Neutrons) instrument along the Curiosity traverse, and the presence of hydrated minerals on the surface, as seen from the orbit by CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument onboard MRO (Mars Reconnaissance Orbiter). Cross-analysis of the subsurface WEH values from DAN passive measurements with the distribution of hydrated minerals over the surface of Gale crater according to Specialized Browse Product Mosaics is performed for the initial 20 km part of traverse. As a result, we found an increase up to 0.4 wt% of the mean WEH value for the surface areas with the spectral signatures of polyhydrated sulfates. The increase is shown to be higher with the more prominent spectral signature on the surface. Similar WEH increase for the two other types of hydrated minerals, such as monohydrated sulfates and phyllosilicates, was not found for the tested part of the traverse. Polyhydrated sulfates being a part of the sedimentary deposits composing the surface of Gale crater should have considerable thickness that is necessary for the subsurface neutron sensing by DAN measurements. PubDate: Fri, 01 Apr 2022 15:50:01 +000

Abstract: The restricted three body problem was outlined. The acceleration due to planetary magnetic field, in terms of space craft’s orbital elements, was analysed. The conditions for calculating the liberation points including the mutual gravitational attraction and the effect of Lorentz acceleration were derived for the case of circular planer restricted three bodies. The stability of the solution for the artificial Lorentz triangular liberation points was studied. Finally, numerical investigation for the case of Sun-Jupiter system was calculated as case study. The results show the ability of changing the position of the triangular liberation points by an order from 10−7 to 10−6 for the dimensionless x, y coordinates and distance r from Jupiter. This is equivalent to about hundreds of Kilometers which is considerable. PubDate: Tue, 22 Mar 2022 12:35:01 +000

Abstract: Large sky survey telescopes have produced a tremendous amount of astronomical data, including spectra. Machine learning methods must be employed to automatically process the spectral data obtained by these telescopes. Classification of stellar spectra by applying deep learning is an important research direction for the automatic classification of high-dimensional celestial spectra. In this paper, a robust ensemble convolutional neural network (ECNN) was designed and applied to improve the classification accuracy of massive stellar spectra from the Sloan digital sky survey. We designed six classifiers which consist six different convolutional neural networks (CNN), respectively, to recognize the spectra in DR16. Then, according the cross-entropy testing error of the spectra at different signal-to-noise ratios, we integrate the results of different classifiers in an ensemble learning way to improve the effect of classification. The experimental result proved that our one-dimensional ECNN strategy could achieve 95.0% accuracy in the classification task of the stellar spectra, a level of accuracy that exceeds that of the classical principal component analysis and support vector machine model. PubDate: Tue, 04 Jan 2022 12:20:11 +000

Abstract: Tribocorrosion is a degradation phenomenon of material surfaces subjected to the combined action of mechanical loading and corrosion attack caused by the environment. Although corrosive chemical species such as materials like chloride atoms, chlorides, and perchlorates have been detected on the Martian surface, there is a lack of studies of its impact on materials for landed spacecraft and structures that will support surface operations on Mars. Here, we present a series of experiments on the stainless-steel material of the ExoMars 2020 Rosalind Franklin rover wheels. We show how tribocorrosion induced by brines accelerates wear on the materials of the wheels. Our results do not compromise the nominal ExoMars mission but have implications for future long-term surface operations in support of future human exploration or extended robotic missions on Mars. PubDate: Tue, 28 Dec 2021 09:50:05 +000

Abstract: Aims. The complex dynamics of bodies, originating from the interplanetary matter and passing through Earth’s atmosphere, defines their further position, velocity, and final location on Earth’s surface in the form of meteorites. One of the important factors that affect the movement of a body in the atmosphere is its shape and orientation. Our goal is to model the interaction of real shape meteoroids with Earth’s atmosphere and compare the results with the standard spherical body approach. Methods. In the simulation, we use 3D models of fragments of the Košice meteorite with different sizes and shapes. Using a 3D model of fragments, we consider the real shape of the body to define its resistance properties during atmospheric transition more specifically. The simulation is performed using virtual wind tunnel in the MicroCFD (Computational Fluid Dynamics) software to obtain more realistic drag coefficients and using the µ(m)-Trajectory software to model the particle trajectory in the atmosphere including the wind profile. The final outputs from these programs are the drag coefficient as a function of the altitude and the particle orientation. Using these parameters we get the more realistic body trajectory and the impact area coordinates. Comparison of the results for real and spherical model meteorite impact location is discussed. Results. Simulation showed significant differences in trajectory and the impact area for the different real body orientations compared to the spherically symmetric body. Also, an important result is a difference in the impact area of the real body with a specific orientation without rotation and the body with considered rotation. The significant difference between the modeled impact of a real shape body and its real place of finding compared to a spherically symmetric body indicates the importance of the method used. PubDate: Thu, 23 Dec 2021 11:20:01 +000

Abstract: Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction. PubDate: Fri, 03 Dec 2021 06:50:02 +000

Abstract: Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice. PubDate: Thu, 02 Sep 2021 09:05:01 +000

Abstract: In this study, we used the flare index (FI) data taken from Kandilli Observatory for the period of 2009–2020. The data sets are analyzed in three categories as Northern Hemisphere, Southern Hemisphere, and total FI data sets. Total FI data set is obtained from the sum of Northern and Southern Hemispheric values. In this study, the periodic variations of abovementioned three categories FI data sets were investigated by using the MTM and Morlet wavelet analysis methods. The wavelet coherence (XWT) and cross wavelet (WTC) analysis methods were also performed between these data sets. As a result of our analysis, the following results were found: (1) long- and short-term periodicities ( day and periodicities smaller than 62 days) exist in all data sets without any exception at least with confidence level; (2) all periodic variations were detected maximum during the solar cycle, while during the minima, no meaningful period is detected; (3) some periodicities have data preference that about 150 days Rieger period appears only in the whole data set and 682-, 204-, and 76.6-day periods appear only in the Northern Hemisphere data sets; (4) During the Solar Cycle 24, more flare activity is seen at the Southern Hemisphere, so the whole disk data periodicities are dominated by this hemisphere; (5) in general, there is a phase mixing between Northern and Southern Hemisphere FI data, except about 1024-day periodicity, and the best phase coherency is obtained between the Southern Hemisphere and total flare index data sets; (6) in case of the Northern and Southern Hemisphere FI data sets, there is no significant correlation between two continuous wavelet transforms, but the strongest correlation is obtained for the total FI and Southern Hemisphere data sets. PubDate: Tue, 24 Aug 2021 07:50:02 +000

Abstract: An analytical model for the Maxwell radiation field in an axisymmetric galaxy, proposed previously, is first checked for its predictions of the spatial variation of the spectral energy distributions (SEDs) in our Galaxy. First, the model is summarized. It is now shown how to compute the SED with this model. Then the model is adjusted by asking that the SED predicted at our local position in the Galaxy coincides with the available observations. Finally, the first predictions of the model for the spatial variation of the SED in the Galaxy are compared with those of a radiation transfer model. We find that the two predictions do not differ too much. This indicates that, in a future work, it should be possible with the present model to check if the “interaction energy” predicted by an alternative, scalar theory of gravitation, contributes to the dark matter. PubDate: Mon, 02 Aug 2021 08:35:01 +000

Abstract: This article aims to investigate the points of equilibrium and the associated convergence basins in a seventh-order generalized Hénon–Heiles potential. Using the well-known Newton–Raphson iterator, we numerically locate the positions of the points of equilibrium, while we also obtain their linear stability. Furthermore, we demonstrate how the two variable parameters, entering the generalized Hénon–Heiles potential, affect the convergence dynamics of the system as well as the fractal degree of the basin diagrams. The fractal degree is derived by computing the (boundary) basin entropy as well as the uncertainty dimension. PubDate: Wed, 14 Jul 2021 06:35:02 +000

Abstract: We discuss the restricted rhomboidal six-body problem (RR6BP), which has four positive masses at the vertices of the rhombus, and the fifth mass is at the intersection of the two diagonals. These masses always move in rhomboidal CC with diagonals and . The sixth body, having a very small mass, does not influence the motion of the five masses, also called primaries. The masses of the primaries are and . The masses and are written as functions of parameters and such that they always form a rhomboidal central configuration. The evolution of zero velocity curves is discussed for fixed values of positive masses. Using the first integral of motion, we derive the region of possible motion of test particle and identify the value of Jacobian constant for different energy intervals at which these regions become disconnected. Using semianalytical techniques, we show the existence and uniqueness of equilibrium solutions on the axes and off the axes. We show that, for , there always exist 12 equilibrium points. We also show that all 12 equilibrium points are unstable. PubDate: Thu, 01 Jul 2021 08:35:02 +000

Abstract: The control system is the central control unit of the radio telescope. It is used to monitor, control, coordinate, and manage software and hardware systems so as to satisfy the requirements of high-precision control in astronomical observation of radio telescope. The control system architecture is the foundation for the implementation of the control system, which determines the stability, scalability, and maintainability of the control system. Furthermore, the architecture design of the control system is closely geared towards the technological development of radio telescope and computer software architecture. In this article, we analyze the characteristic of the control system of a radio telescope in various steps and discuss the development of their architecture and middleware framework. System architecture and middleware framework of control system also serve as a useful reference for the design of other radio telescope control systems. PubDate: Tue, 29 Jun 2021 06:35:02 +000

Abstract: To model the interaction with the atmosphere of fragments of a disrupted asteroid, which move independently of each other, it is necessary to know their mass distribution. In this regard, an analogy is drawn with fragmentation in high-speed impact experiments performed to simulate the disruption of asteroids at their collisions in outer space. Based on the results of impact experiments and assuming a power law for the mass distribution in a differential form, we obtained the cumulative number of fragments as a function of the fragment mass m normalized to the total mass of fragments, the mass fraction of the largest fragment(s), the number of the largest fragments, and the power index. The formula for the cumulative number of fragments of a disrupted body is used to describe the results of impact experiments for different fragmentation types. The proposed fragment mass distribution is also tested by comparison with the mass distributions of recovered meteorites in the cases of Mbale, Bassikounou, Almahata Sitta, Košice, and Chelyabinsk meteorite falls. PubDate: Thu, 24 Jun 2021 11:05:01 +000

Abstract: In Einstein’s relativity theory, the existence of traversable wormholes requires the involvement of exotic matter which violates the null energy condition (NEC). Our aim, in this article, is to construct wormhole solutions with the nonexotic matter. To achieve this, we choose an interesting gravitational framework of theory which contains a quadratic term of energy-momentum tensor trace and a well-known Starobinsky model in its extended form. We analyze the behavior of energy constraints in the framework of (where ,, and are some random constants) model for the well-proposed shape function (where is a constant and is the wormhole throat). A detailed analysis of validity regions is presented for some choices of coupling parameters along with the free parameter of EoS . It is shown that, under this model, the existence of viable wormhole geometry is possible without requiring any exotic matter. PubDate: Sat, 19 Jun 2021 06:20:02 +000

Abstract: In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). The corresponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrange multiplier is designed in the solving process. The application of the Laplace variational iteration algorithm (LVIA) for the problems is clarified. With graphics and tables, LVIA approximates to a high degree of accuracy with a few numbers of iterates. Also, computational results of the considered examples imply that LVIA is accurate, simple, and appropriate for solving a system of multipantograph delay differential equations (SMPDDEs). PubDate: Mon, 14 Jun 2021 06:50:01 +000

Abstract: While the vast majority of ESA’s funding for Mars exploration in the 2020s is planned to be invested in ExoMars and Mars Sample Return, there is an interest to assess the possibility of implementing a small mission to Mars in parallel with, or soon after, the completion of the MSR programme. A study was undertaken in the Concurrent Design Facility at ESA ESTEC to assess low-cost mission architectures for small satellite missions to Mars. Given strict programmatic constraints, the focus of the study was on a low-cost ( PubDate: Thu, 10 Jun 2021 12:20:01 +000

Abstract: With the rapid growth in astronomical spectra produced by large sky survey telescopes, traditional manual classification processes can no longer fulfill the requirements of precision and efficiency of spectral classification. There is an urgent need to employ machine learning approaches to conduct automated spectral classification tasks. Feature extraction is a critical step which has a great impact on any classification result. In this paper, a novel gradient-based method together with principal component analysis is proposed for the extraction of partial features of stellar spectra, that is, a feature vector indicating obvious local changes in data, which corresponds to the element line positions in the spectra. Furthermore, a general feature vector is utilized as an additional characteristic centering on the overall tendency of spectra, which can indicate stellar effective temperature. The two feature vectors and raw data are input into three neural networks, respectively, for training and each network votes for a predicted category of spectra. By selecting the class having the maximum votes, different types of spectra can be classified with high accuracy. The experimental results prove that a better performance can be achieved using the partial and general methods in this paper. The method could also be applied to other similar one-dimensional spectra, and the concepts proposed could ultimately expand the scope of machine learning application in astronomical spectral processing. PubDate: Tue, 08 Jun 2021 06:50:02 +000

Abstract: In this paper, we present a modified version of Hill’s dynamical system that is called the quantized Hill’s three-body problem in the sense that the equations of motion for the classical Hill’s problem are now derived under the effects of quantum corrections. To do so, the position variables and the parameters that correspond to the quantum corrections of the respective quantized three-body problem are scaled appropriately, and then by taking the limit when the parameter of mass ratio tends to zero, we obtain the relevant equations of motion for the spatial quantized Hill’s problem. Furthermore, the Hamiltonian formula and related equations of motion are also derived. PubDate: Mon, 07 Jun 2021 11:50:02 +000

Abstract: The Mount Wilson magnetic classification of sunspot groups is thought to be meaningful to forecast flares’ eruptions. In this paper, we adopt a deep learning method, CornerNet-Saccade, to perform the Mount Wilson magnetic classification of sunspot groups. It includes three stages, generating object locations, detecting objects, and merging detections. The key technologies consist of the backbone as Hourglass-54, the attention mechanism, and the key points’ mechanism including the top-left corners and the bottom-right corners of the object by corner pooling layers. These technologies improve the efficiency of detecting the objects without sacrificing accuracy. A dataset is built by a total of 2486 composited images which are composited with the continuum images and the corresponding magnetograms from HMI and MDI. After training the network, the sunspot groups in a composited solar full image are detected and classified in 3 seconds on average. The test results show that this method has a good performance, with the accuracy, precision, recall, and mAP as 0.94, 0.93, 0.94, and 0.90, respectively. Moreover, the flare productivities of different types of sunspot groups from 2011 to 2020 are calculated. As 1, the flare productivities of , and sunspot groups are 0.14, 0.28, 0.61, 0.71, and 0.87, respectively. As 10, the flare productivities are 0.02, 0.07, 0.27, 0.45, and 0.65, respectively. It means that the , and types are indeed very closely related to the eruption of solar flares, especially the type. Based on the reliability of this method, the sunspot groups of the HMI solar full images from 2011 to 2020 are detected and classified, and the detailed data are shared on the website (https://61.166.157.71/MWMCSG.html). PubDate: Mon, 07 Jun 2021 07:05:02 +000

Abstract: In this study, we investigate the ablation properties of bolides capable of producing meteorites. The casual dashcam recordings from many locations of the Chelyabinsk superbolide associated with the atmospheric entry of an 18 m in diameter near-Earth object (NEO) have provided an excellent opportunity to reconstruct its atmospheric trajectory, deceleration, and heliocentric orbit. In this study, we focus on the study of the ablation properties of the Chelyabinsk bolide on the basis of its deceleration and fragmentation. We explore whether meteoroids exhibiting abrupt fragmentation can be studied by analyzing segments of the trajectory that do not include a disruption episode. We apply that approach to the lower part of the trajectory of the Chelyabinsk bolide to demonstrate that the obtained parameters are consistent. To do that, we implemented a numerical (Runge–Kutta) method appropriate for deriving the ablation properties of bolides based on observations. The method was successfully tested with the cases previously published in the literature. Our model yields fits that agree with observations reasonably well. It also produces a good fit to the main observed characteristics of Chelyabinsk superbolide and provides its averaged ablation coefficient σ = 0.034 s2 km−2. Our study also explores the main implications for impact hazard, concluding that tens of meters in diameter NEOs encountering the Earth in grazing trajectories and exhibiting low geocentric velocities are penetrating deeper into the atmosphere than previously thought and, as such, are capable of producing meteorites and even damage on the ground. PubDate: Sat, 27 Mar 2021 08:35:01 +000

Abstract: We make a systematic examination of the basic theory of general relativity and reemphasize the meaning of coordinates. Firstly, we prove that Einsteinʼs gravitational field equation has the light speed invariant solution and black holes are not an inevitable prediction of general relativity. Second, we show that the coupling coefficient of the gravitational field equation is not unique and can be modified as to replace the previous , distinguish gravitational mass from the inertial mass, and prove that dark matter and dark energy are not certain existence and the expansion and contraction of the universe are proven cyclic, and a new distance-redshift relation which is more practical is derived. After that, we show that galaxies and celestial bodies are formed by gradual growth rather than by the accumulation of existing matter and prove that new matter is generating gradually in the interior of celestial bodies. For example, the radius of the Earth increases by 0.5 mm every year, and its mass increases by 1.2 trillion tons. A more reasonable derivation of the precession of planetary orbits is given, and the evolution equation of planetary orbits in the expanding space-time is also given. In a word, an alive universe unfolds in front of readers and the current cosmological difficulties are given new interpretations. PubDate: Sat, 20 Mar 2021 07:50:01 +000

Abstract: The helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the three elements, carbon, oxygen, and neon, are synthesized. The present paper is twofold: firstly, it develops an analytical solution to the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the series expansion method and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon. Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameter with step . We found that the effects of the fractional parameter on the product abundances are small which coincides with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar burning networks. PubDate: Tue, 16 Mar 2021 12:05:01 +000

Abstract: Extensions of fuzzy sets to broader contexts constitute one of the leading areas of research in the context of problems in artificial intelligence. Their aim is to address decision-making problems in the real world whenever obtaining accurate and sufficient data is not a straightforward task. In this way, spherical fuzzy sets were recently introduced as a step beyond to modelize such problems more precisely on the basis of the human nature, thus expanding the space of membership levels, which are defined under imprecise circumstances. The main goal in this study is to apply the spherical fuzzy set version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), a well-established multicriteria decision-making approach, in the context of planetary defense. As of the extraction of knowledge from a group of experts in the field of near-Earth asteroids, they rated four deflection technologies of asteroids (kinetic impactor, ion beam deflection, enhanced gravity tractor, and laser ablation) that had been previously assessed by means of the classical theory of fuzzy series. This way, a comparative study was carried out whose most significant results are the kinetic impactor being the most suitable alternative and the spherical fuzzy set version of the TOPSIS approach behaves more sensitively than the TOPSIS procedure for triangular fuzzy sets with regard to the information provided by our group of experts. PubDate: Mon, 08 Mar 2021 04:20:01 +000

Abstract: This study is devoted to explore bouncing cosmology in the context of theory of gravity. For this purpose, a Gauss–Bonnet cosmological model with logarithmic trace term is considered. In particular, the possibility of obtaining bouncing solutions by considering two equations of state parameters is investigated. A graphical analysis is provided for analyzing the obtained bouncing solutions. The energy conditions are discussed in detail. It is interesting to notice that null and strong energy conditions are violated near the neighborhood of bouncing points justifying the accelerating universe in the light of the recent observational data. The behavior of the scale factor, red shift function, deceleration parameter, and Hubble parameter is also debated. An important feature of the current study is the discussion of conservation equation in gravity. The possibility of some suitable constraint equations which recover the standard conservation equation is discussed, and all the free parameters are assumed accordingly. All the results in this study suggest that the proposed gravity model provides good bouncing solutions with the chosen EoS parameters. PubDate: Wed, 03 Mar 2021 10:20:00 +000

Abstract: The QiTai Radio Telescope (QTT) will be equipped with the active surface adjustment system (ASAS) to correct the main reflector deformation caused by environmental loading. In order to guarantee the stability and performance of the active surface system under fault conditions, it is necessary to adopt the fault-tolerant method when actuator faults have occurred. In this paper, a fault control method based on actuator faults weighting is proposed to solve the active surface fault control problem. According to the coordinates of the adjustable points of the panels corresponding to the faulty actuators, a new paraboloid is fitted by a weighted health matrix, and the fitting surface is taken as the target to adjust the surface shape. PubDate: Fri, 26 Feb 2021 16:20:01 +000

Abstract: This work aims to study the stability of certain motions of a rigid body rotating about its fixed point and carrying a rotor that rotates with constant angular velocity about an axis parallel to one of the principal axes. This motion is presumed to take place due to the combined influence of the magnetic field and the Newtonian force field. The equations of motion are deduced, and moreover, they are expressed as a Lie–Poisson Hamilton system. The permanent rotations are calculated and interpreted mechanically. The sufficient conditions for instability are presented employing the linear approximation method. The energy-Casimir method is applied to gain sufficient conditions for stability. The regions of linear stability and Lyapunov stability are illustrated graphically for certain values of the parameters. PubDate: Mon, 22 Feb 2021 14:05:00 +000

Abstract: Using an analytical and numerical study, this paper investigates the equilibrium state of the triangular equilibrium points of the Sun-Earth system in the frame of the elliptic restricted problem of three bodies subject to the radial component of Poynting–Robertson (P–R) drag and radiation pressure factor of the bigger primary as well as dynamical flattening parameters of both primary bodies (i.e., Sun and Earth). The equations of motion are presented in a dimensionless-pulsating coordinate system , and the positions of the triangular equilibrium points are found to depend on the mass ratio and the perturbing forces involved in the equations of motion. A numerical analysis of the positions and stability of the triangular equilibrium points of the Sun-Earth system shows that the perturbing forces have no significant effect on the positions of the triangular equilibrium points and their stability. Hence, this research work concludes that the motion of an infinitesimal mass near the triangular equilibrium points of the Sun-Earth system remains linearly stable in the presence of the perturbing forces. PubDate: Thu, 11 Feb 2021 15:50:01 +000

Abstract: This study presents the chaotic oscillation of the satellite around the Earth due to aerodynamic torque. The orbital plane of the satellite concurs is same as the tropical plane of Earth. The half-width of riotous separatrix is assessed utilizing Chirikov’s measure. Variety of boundary techniques shows that streamlined force boundary (ɛ), unpredictability of circle (e), and mass-proportion (ω0) convert normal wavering to the disorganized one. We studied the behavior of trajectories due to change in parameters with Lyapunov exponents and time series plots. The theory is applied to Resourcesat-1, an artificial satellite of the Earth. PubDate: Wed, 10 Feb 2021 09:50:01 +000

Abstract: In the present work, we investigate the existence of compact star model in the background of gravity theory, where represents the Ricci scalar and refers to the energy-momentum tensor trace. Here, we use Karmarkar condition for the interior stellar setup so that a complete and precise model following the embedding class-I strategy can be obtained. For this purpose, we assume anisotropic matter contents along with static and spherically symmetric geometry of compact star. As Karmarkar embedding condition yields a relationship of metric potentials, therefore we assume a suitable form for one of the metric components as , where and represent constants and is a free parameter, and evaluate the other. We approximate the values of physical parameters like , and by utilizing the known values of mass and radius for the compact star Vela X-1. The validity of the acquired model is then explored for different values of coupling parameter graphically. It is found that the resulting solution is physically interesting and well-behaved. PubDate: Tue, 09 Feb 2021 08:05:01 +000