A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> GEOGRAPHY (Total: 493 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Lithosphere
Journal Prestige (SJR): 1.892
Citation Impact (citeScore): 3
Number of Followers: 3  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1941-8264 - ISSN (Online) 1947-4253
Published by Geological Society of America Homepage  [4 journals]
  • Effect of Multiple Factors for the Roadway Excavation Process Stability in
           FLAC3D

    • Abstract: AbstractAppropriate simulation set parameters are the precondition to obtain accurate results; while the simulation results are affected by multiple factors, it is thus crucial to investigate the sensibility of different factors. This paper first analyses the application situation of numerical simulation software in the field of geotechnical engineering and finds that Fast Lagrangian analysis of continua in three dimensions (FLAC3D) has been widely used on roadways or tunnels. Then, taking the roadway excavation process as the engineering background, FLAC3D was used to create 171 schemes of different simulation parameters and analyze the influence of different factors on the simulation results. The findings show that there is a considerable difference in the degree of effect of different parameters on the simulation results. Most of the factors have a remarkable effect on the numerical simulation results (displacement and stress), and only some factors (parameter uniformity and density) have almost no effect on the results. Meanwhile, the trend of displacement and stress is opposite in most cases. In addition, some neglected factors can also have a considerable effect on the simulation results, such as the zone amount; therefore, it is necessary to avoid the variation of nonstudy factors as possible when carrying out the numerical simulation. This study may significantly assist concerned engineers and technicians in developing a more organized and thorough grasp of the impacts of various parameters on simulation outcomes.
      PubDate: Fri, 23 Feb 2024 00:00:00 GMT
       
  • Influence of the Advance Jacked Pipe on the Jacking Force of the
           Subsequent Pipe Based on Pipe–Soil Full Contact Model

    • Abstract: AbstractIn pipe jacking engineering, accurate prediction of jacking force is the key to pipe jacking design. Based on a project of the Beijing Daxing Airport Line, the influence of the advance jacked pipes on the jacking force of the subsequent pipe is carried out in the present work. First, the verified numerical model of practical engineering was established, and the jacking force and radial stress of different pipes were analyzed. Then, the two pipes were taken as research object, and the parameters of spacing, angle, buried depth, and pipe diameter were investigated, respectively. The results show that in the actual project, the advance jacked pipes have amplification and superposition effects on friction resistance of the subsequent pipe, and the maximum growth rate is 37.2%. The friction resistance of the subsequent pipe presents a trend of first increasing and then decreasing with the change of the layout angle of advance jacked pipe from 0° to 180°. With the increase of buried depth and pipe diameter, the absolute value of incremental friction resistance of the subsequent pipe increases gradually, but the growth rate remains constant. Finally, the empirical formulas for predicting the friction resistance growth rate of subsequent pipes under different angles are proposed. The research results can provide some reference for the design of pipe jacking.
      PubDate: Fri, 23 Feb 2024 00:00:00 GMT
       
  • Petrogenesis of the Early Paleozoic Dioritic–Granitic Magmatism in the
           Eastern North Qilian Orogen, NW China: Implications for Tethyan Tectonic
           Evolution

    • Abstract: AbstractThe North Qilian Orogen witnessed the opening, subduction, and closure of the Proto-Tethys Qilian Ocean and the post-subduction of multiple exhumation events from Late Neoproterozoic to Early Paleozoic. The Early Paleozoic dioritic–granitic magmatic suites, prominently exposed in the eastern North Qilian Orogen, offer valuable insights into the evolution of the Proto-Tethys Ocean. However, their petrogenesis, magma source, and tectonic evolution remain controversial. Here, we investigate the Leigongshan, Zhigou, and Dalongcun intrusions and present geochronological, geochemical, and isotopic data, aiming to refine the comprehension of their timing and petrogenesis, which will contribute to understanding the tectonic evolution of the Proto-Tethys Ocean. Zircon U-Pb dating reveals mean ages of 471–427 Ma for these intrusions, consistent with compiled formation ages of dioritic–granitic intrusions in the eastern North Qilian Orogen, indicating close temporal links with the tectonic evolution of the Proto-Tethys Ocean during the Early Paleozoic. The studied magmatic rocks could be categorized into two major types: granitoids and diorites. The granitoids are majorly I-type granitoids that are generated through partial melting of the mafic lower crust and fractional crystallization at the middle-upper crust, with the involvement of mantle-derived materials. The diorites underwent limited crustal contamination and fractionation of hornblende, plagioclase, and some accessory minerals. They were derived mainly from the mixture of fertile mantle and reworked crustal components, with minor contributions from subduction-related slab fluids and sediment melts. In addition, all the studied Early Paleozoic dioritic–granitic intrusions (ca. 471–427 Ma) formed within subduction-related arc settings. Combined with the tectonic evolution of the Early Paleozoic Qilian orogenic system, we interpret these Cambrian to Silurian dioritic–granitic intrusions as tectonic responses to the subduction (ca. 520–460 Ma) and closure (~440 Ma) of the Proto-Tethys Ocean, whereas the Devonian Huangyanghe intrusion witnessed the final stage of extensional collapse of the Qilian orogenic system at ca. 400–360 Ma.
      PubDate: Tue, 20 Feb 2024 00:00:00 GMT
       
  • Study on Shear Slip Characteristics of Sandstone Plane Joints under Normal
           Dynamic Load Disturbance

    • Abstract: AbstractRock joints are susceptible to slip instability due to dynamic load disturbances such as blasting, earthquakes, and fracturation. A series of direct shear tests under the dynamic load were conducted on sandstone plane joints using the RDS-200xl. The work investigated the effects of normal static loads and normal dynamic-load frequencies and amplitudes on plane joints. Besides, the following items were proposed, that is, the peak-to-valley response rate, shear velocity vibration dominant frequency, shear-stress reduction coefficient, and discrete element numerical simulation method for plane-joint direct shear tests. The results were as follows: (1) The normal dynamic load frequency played a role in attenuating the shear stress amplitude with a threshold value of 0.5 Hz. (2) The shear velocity of the plane joint was completely controlled by the high normal dynamic load frequency. Their vibrational dominant frequencies were identical. (3) The amplitude of shear stress increased, and the median stress decreased with the increased normal dynamic load amplitude. The reduction-coefficient equation for sandstone plane joints was proposed to evaluate the shear stress under the normal dynamic load disturbance. (4) The shear-stress hysteresis phenomenon existed in the plane joints under the normal dynamic load, which required excessive shear displacements to reach peak shear strength. The peak shear displacement increased with the increased normal static load. Numerical simulations and indoor tests showed that high- and low-shear-velocity regions were the main reason for shear-stress hysteresis. The findings are conducive to revealing the shear destabilization mechanism of rock joints under dynamic load disturbance.
      PubDate: Tue, 20 Feb 2024 00:00:00 GMT
       
  • Compressive Fracture Behavior and Acoustic Emission Characteristics of
           Sandstone under Constant Crack Water Pressure

    • Abstract: AbstractEngineering rock containing flaws or defects under a large water source is frequently subject to the couple influence of constant crack water pressure and geostress. To investigate the fracture behavior of precracked rock under hydromechanical coupling with constant crack water pressure, compression tests were conducted on red sandstone specimens containing a single crack of different angles using a device to realize the constant crack water pressure during loading, and the failure process of rock specimens was monitored by acoustic emission (AE) technique. The results show that the presence of constant crack water pressure has a significant promotion effect on the development of shear wing cracks, and the promotion effect is influenced by the prefabricated crack angle and water pressure. As the constant crack water pressure increases, the failure mode of the 0° precrack specimen changes from “X”- shear failure to the single oblique shear failure along the shear wing crack direction, the main failure crack of the inclined precracked specimens (precrack angles of 15°, 45°, and 60°) changes from a small acute angle with the prefabricated crack to a direction along the shear wing crack, and irregular cracks occur at the chipped prefabricated crack in the 90° precracked specimen. With an increase in the constant crack water pressure, the average energy for a single hit, cumulative AE energy, and cumulative AE hits decrease, and the proportion of the tensile cracks increases and that of the shear cracks decreases.
      PubDate: Fri, 16 Feb 2024 00:00:00 GMT
       
  • Investigating the Mechanism of Strong Roof Weighting and Support
           Resistance Near Main Withdrawal Roadway in Large-Height Mining Face

    • Abstract: AbstractAiming at investigating the strong roof weighting when the large height mining face is nearing the main withdrawal roadway, the 52,304 working face (WF) nearly through the main withdrawal roadway mining in a colliery of Shendong coalfield was taken as the research background. The ground pressure, roof structure, and superposition effect of stress in the last mining stage were studied by field measurement, physical simulation, and numerical calculations. The obtained results demonstrated that the main roof formed the “long step voussoir beam” structure under the influence of the main withdrawal roadway. The superposition effect of the front abutment pressure of the WF and the concentrated stress of the main withdrawal roadway caused the stress asymmetrical distribution on the two sides -level hard rock straof the main withdrawal roadway, and the stability of the pillar on the mining side decreases. The initial average periodic weighting interval was 20.7 m. While the WF approaches the main withdrawal roadway, the pillar near the WF of the main withdrawal roadway collapsed, the main roof was broken ahead of the WF, and the actual roof control distance of support and the periodic weighting interval increased by 2.56 and 1.26 times the normal state, respectively. Consequently, the “static load” of the immediate roof and the “dynamic load” of the sliding unsteadiness of the long step voussoir beam increased. The structural model of the “long step voussoir beam” under the superposition of “static and dynamic load” was established concerning those results, and an expression was proposed to compute the support resistance. Meanwhile, the mechanism of strong roof weighting was revealed when the WF was nearly through the main withdrawal roadway. The research conclusion is expected to provide a guideline for the safe withdrawal of the large-height mining faces under similar conditions.
      PubDate: Fri, 16 Feb 2024 00:00:00 GMT
       
  • Deep Subsurface Pseudo-Lithostratigraphic Modeling Based on
           Three-Dimensional Convolutional Neural Network (3D CNN) Using Inversed
           Geophysical Properties and Shallow Subsurface Geological Model

    • Abstract: AbstractLithostratigraphic modeling holds a vital role in mineral resource exploration and geological studies. In this study, we introduce a novel approach for automating pseudo-lithostratigraphic modeling in the deep subsurface, leveraging inversed geophysical properties. We propose a three-dimensional convolutional neural network with adaptive moment estimation (3D Adam-CNN) to achieve this objective. Our model employs 3D geophysical properties as input features for training, concurrently reconstructing a 3D geological model of the shallow subsurface for lithostratigraphic labeling purposes. To enhance the accuracy of pseudo-lithostratigraphic modeling during the model training phase, we redesign the 3D CNN framework, fine-tuning its parameters using the Adam optimizer. The Adam optimizer ensures controlled parameter updates with minimal memory overhead, rendering it particularly well-suited for convolutional learning involving huge 3D datasets with multi-dimensional features. To validate our proposed 3D Adam-CNN model, we compare the performance of our approach with 1D and 2D CNN models in the Qingniandian area of Heilongjiang Province, Northeastern China. By cross-matching the model’s predictions with manually modeled shallow subsurface lithostratigraphic distributions, we substantiate its reliability and accuracy. The 3D Adam-CNN model emerges as a robust and effective solution for lithostratigraphic modeling in the deep subsurface, utilizing geophysical properties.
      PubDate: Fri, 16 Feb 2024 00:00:00 GMT
       
  • Influence of Lithology on the Characteristics of Wave Propagation and
           Dynamic Response in Rocky Slope Sites Subject to Blasting Load Via the
           Discrete Element Method

    • Abstract: AbstractTo investigate the dynamic response and attenuation law of rock slope sites subjected to blasting, three lithological numerical models, including slate (hard rock), tuff (relatively soft rock), and shale (soft rock), are established by using MatDEM. By analyzing the wave field, velocity, and acceleration response of the models and their Fourier spectrum, combined with stress and energy analysis, their dynamic response characteristics are investigated. The results show that blasting waves propagate from near field to far field in a circular arc, and the attenuation effect of waves in soft rock is less than that in hard rock. The influence of lithology on the dynamic response of the ground surface and bedrock is different. Blasting waves mainly affect the dynamic response in the near-field area of the blasting source. In addition, the dynamic amplification effect of slopes is as follows: hard rock > relatively soft rock > soft rock. The slope surface has an elevation attenuation effect. A dynamic amplification effect appears in the slope interior within the relative elevation (0.75, 1.0). The Fourier spectrum has an obvious predominant frequency, and that of the slope crest and interior is less than that of the slope surface. Moreover, the total energy generated by the rocky sites gradually changes into kinetic energy, gravitational potential energy, elastic potential energy, and heat. Energy-based analysis shows that the attenuation effect of blasting waves in hard rock is larger than that in soft rock overall. This work can provide a reference for revealing the blasting vibration effect of rock sites.
      PubDate: Mon, 05 Feb 2024 00:00:00 GMT
       
  • Numerical Study on Characteristics of Stick-Slip Instability of Coal-Rock
           Parting-Coal Structure under Lateral Unloading

    • Abstract: AbstractUnloading excavation can increase the possibility of rock burst, especially for coal seam with rock parting. In order to explore the evolution process of rock burst under lateral unloading, the combination of in situ measures and numerical experiments is used to study. The following four points were addressed: (1) the coal seam with rock parting easily causes the stick-slip and instability along the interface, and the process of stick-slip and instability has hysteresis characteristics; (2) the greater the degree of unloading or the smaller the interface friction angle of the Coal-Rock Parting-Coal Structure (CRCS), the more likely it is for stick-slip and instability to occur; (3) the abnormal increase of shear stress and slip dissipation energy can be used as the precursory information of the stick-slip and instability of CRCS; (4) the damage intensity of rock burst induced by stick-slip and instability of CRCS can be reduced by reducing the unloading speed or increasing the roughness of interface. The research results can be used for early warning and controlling of dynamic disaster induced by stick-slip instability in coal seam with rock parking.
      PubDate: Mon, 05 Feb 2024 00:00:00 GMT
       
  • Experimental and Numerical Investigation of Rock Failure Process under
           Hydromechanical Coupling Action

    • Abstract: AbstractIn order to study the initiation mechanism of rocks under hydromechanical coupling, hydromechanical coupling triaxial tests and acoustic emission tests were carried out on basalt in the Xiluodu hydropower station dam site area in southwestern China. The test results indicate that the basalt displays typical hard brittle behavior, and its peak strength increases as confining pressure rises. Conversely, the peak strength decreases gradually as the initial water pressure increases, which leads to decreased hardness. Meanwhile, tensile failure is the main crack initiation mode under hydromechanical coupling action. During the stable crack growth stage, tensile failure is predominant, complemented by shear failure, with failures mainly occurring in the rock middle position. Contrary to this, during the unstable stage, the rock failure is mainly due to shear failure. The critical pore water pressure failure criterion of rock crack initiation under hydromechanical coupling conditions is derived based on the test results and introduced into the numerical simulation. The hydromechanical coupling failure process and pore water pressure distribution law of basalt are analyzed, and the rationality of the critical pore water pressure failure criterion is verified. These findings are significant for understanding the rock failure process under hydromechanical coupling action and provide a valuable reference for future research.
      PubDate: Thu, 25 Jan 2024 00:00:00 GMT
       
  • Influence of Hydraulic Conditions on Seepage Characteristics of Loose
           Sandstone

    • Abstract: AbstractTo investigate the impact of hydraulic conditions on the seepage characteristics of loose sandstone, this study employed optimized methods to prepare loose sandstone samples. Subsequently, seepage experiments were conducted under different injection pressures, flow rates, and flow volumes. The permeability, porosity, particle size distribution, and other parameters of the rock samples were obtained. By analyzing the response of seepage characteristics to pore and particle size characteristics, the influence of different hydraulic conditions on the seepage characteristics of loose sandstone was explored. The results indicated that improvements in the parameters of hydraulic conditions had different effects on various rock samples. For rock samples with developed seepage channels, increasing the value of each hydraulic condition parameter could expand the channels and discharge particles, and improve permeability. For rock samples with a larger number of small pores, increasing each hydraulic condition parameter caused particles to crack under pressure, drove particles to block holes, and thus reduced permeability. In this experiment, the permeability parameter had a significant positive response to the proportion of pores larger than 0.1 µm and a significant negative response to the proportion of particles smaller than 150 µm.
      PubDate: Thu, 25 Jan 2024 00:00:00 GMT
       
  • Gravity-Seismic Joint Inversion of Lithospheric Density Structure in the
           Qiongdongnan Basin, Northwest South China Sea

    • Abstract: AbstractQiongdongnan Basin (QDNB), located at the northwestern corner of the South China Sea (SCS), is a key juncture between the extensional tectonic regime in the northern continental margin and the shear tectonic regime in the western continental margin. Analyzing the crustal density structure and tracking the thermodynamic controlling factors are effective approaches to reveal the nonuniform breakup process of the northwestern SCS. Herein, focusing on the obvious tectonic deformation with distinct eastern and western parts in the QDNB, we present the crustal density structures of five profiles and identify the high-density anomaly related to the synrifting mantle underplating and postrifting magmatic intrusions. The crustal density model was constructed from the Bouguer gravity anomaly, ocean bottom seismic profiles, and multichannel seismic reflection profiles. The northern part of QDNB, with normal crustal density, lower surface heat flow of <55 mW/m2, and limited extension factor of 1.25–1.70, is recognized as the initial nonuniform extension continental crust. The mantle underplating beneath the QDNB is identified as a high mantle density of 3.30–3.40 g/cm3 and a high lower crustal density of 2.92–2.96 g/cm3, which is usually recognized by the high-velocity layers in the northeastern margin of SCS. The magmatic intrusions are identified as the high-density bodies ranging from 3.26 g/cm3 at the base to 2.64 g/cm3 at the top, which become stronger from the west to east. The central part of Xisha Trough is featured by the cooling of the heavily thinned lower crust in the final continental rifting stage, which is close to the cold and rigid oceanic crust. Lateral variations in the deep magmatic anomaly should be the crucial factor for the nonuniform breakup process in the northwestern margin of SCS.
      PubDate: Thu, 25 Jan 2024 00:00:00 GMT
       
  • Effects of Stress on Transport Properties in Fractured Porous Rocks

    • Abstract: AbstractThe nonlinear characteristics of the rock transport properties (permeability and electrical conductivity in this study) as a function of stress are closely related to the geometry of the pore space, which consists of stiff pores, microcracks, or microfractures. We consider two behaviors of the pore space, one linear and the other exponential, related to the stiff pores and microfractures, respectively, where the relation between stress and strain can be described by the Two-Part Hooke’s Model. With this model, the relations between porosity, transport properties, and effective stress (confining minus pore pressure) can be obtained and validated with the experimental data of four tight sandstones collected from the Shaximiao Formation of Sichuan Basin, southwest China. The agreement is good. At low effective stresses, the closure of cracks is the main mechanism affecting the transport properties, whose behavior is similar in terms of their parameters. Subsequently, experimental data of nine tight sandstones from the Yanchang Formation, collected from the Ordos Basin, west China, are employed to confirm the previous results, indicating that the fluid and electrical current follow the same path in the pore space.
      PubDate: Thu, 25 Jan 2024 00:00:00 GMT
       
  • New Insights on the Early Proto-Tethys Subduction History: Evidence from
           Ages and Petrogenesis of Volcanic Rocks in the Bulunkuole Complex, West
           Kunlun Orogen

    • Abstract: AbstractThe Proto-Tethys Ocean has played a significant role in the geological history of Earth. However, ongoing debates persist regarding the timing and polarity of its early subduction. Volcanic rocks associated with iron deposits in the Bulunkuole Complex, West Kunlun Orogen, offer insights into both the complex’s formation age and Proto-Tethys evolution. This study presents newly obtained zircon U–Pb age data (~536 Ma) along with comprehensive whole-rock major and trace element and Sr–Nd–Hf isotope analyses of these volcanic rocks. Our dataset implies that the Bulunkuole Complex partly formed in the early Paleozoic rather than entirely in the Paleoproterozoic, as previously suggested. Geochemically, the volcanic rocks exhibit enrichments in large ion lithophile elements and light rare earth elements, along with depletions in high-field strength elements. They also display elevated initial 87Sr/86Sr values (0.71093, 0.72025) and negative εNd(t) values (−5.13, −6.18), classifying them as continental arc volcanic rocks. These geochemical fingerprints, complemented by zircon εHf(t) values (−12.7 to −1.6), indicate that the parental magmas of the volcanic rocks were produced by partial melting of the lithospheric mantle wedge, which had been metasomatized by subducted sediment-derived melts. The available data, in conjunction with previously published findings, strongly suggest that the Proto-Tethys Ocean subducted southward prior to approximately 536 Ma due to the assembly of Gondwana. Subsequent slab rollback may have resulted in a crustal thinning of 9–25 km during 536–514 Ma. Further shifts in subduction dynamics led to the transition from high-angle subduction to either normal or low-angle subduction, facilitating the formation of a thicker crust ranging from 39 to 70 km between 514 and 448 Ma. This study, therefore, provides valuable insights into the early evolution of the Proto-Tethys Ocean and contributes significantly to our understanding of the tectonic history of the West Kunlun Orogen.
      PubDate: Mon, 22 Jan 2024 00:00:00 GMT
       
  • Geochronological and Geochemical Constraints on the Magmatic Evolution of
           the Dun Mountain Ophiolite Belt, New Zealand

    • Abstract: AbstractNew whole-rock major and trace element geochemical, zircon U-Pb geochronological, and Hf isotopic data from gabbroic rocks in New Zealand’s mid-Permian Dun Mountain ophiolite belt (DMO) provide insight into the evolution of subduction systems and early stages of intraoceanic arc development. Fe-oxide-bearing gabbros yielded high εHf(t) values (+10.3 to +13) and zircon U-Pb ages of 271.6 ± 0.6 Ma. In contrast, Fe-Ti-oxide-bearing gabbros of 268.1 ± 0.6 Ma show more enriched geochemical characteristics, including a wide range of εHf(t) values (+15.5 to +6.8). New findings strengthen the evolutionary model for the DMO and place constraints on its youngest known magmatic episode. We infer that late magmatism fingerprinted by these gabbros, including consistent negative Nb-Ta anomalies, reflects early stages of arc development and formation of island arc tholeiites on the DMO. Our model is consistent with other existing regional geochronological and geochemical data, implying that the DMO had an early stage of normal-mid-ocean ridge basalt crustal accretion followed by an influx of slab-derived components and maturity of the subducting system between ca. 271.6 and 268 Ma. These results extend our understanding of the evolution of distinct intraoceanic systems.
      PubDate: Fri, 19 Jan 2024 00:00:00 GMT
       
  • The Late Cambrian to Neogene Evolution of the Khanom Core Complex
           (Peninsular Thailand)

    • Abstract: AbstractThe Khanom Core Complex in Peninsular Thailand is a part of the crystalline basement of Sundaland and plays a key role in our understanding of the evolution of Thailand and SE Asia. The complex comprises ortho- and paragneisses, schists, meta-volcanics, subordinate calcsilicate rocks, and postkinematic granitoids. New petrochronological data reveal that the sedimentation and metamorphism of the paragneiss precursors (Haad Nai Phlao complex, Khao Yoi paragneisses) occurred in the Late Cambrian at the latest. A syn- to postsedimentary andesitic intrusion/extrusion in the Haad Nai Phlao complex at 495 ± 10 Ma defines a minimum age for the former event(s). In the Early Ordovician (477 ± 7 Ma), the Haad Nai Phlao complex and the Khao Yoi paragneisses were intruded by the Khao Dat Fa granite. During the Indosinian orogenic events, the Laem Thong Yang (211 ± 2 Ma) and Haad Nai Phlao (210 ± 2 Ma) granitoid plutons were intruded. Immediately afterward (ca. 208–205 Ma), the first metamorphic overprinting of the Laem Thong Yang granite and the Haad Nai Phlao complex including the Khao Dat Fa granite occurred. A second metamorphic overprinting of all lithological units and the contemporaneous intrusion of the Khao Pret granite followed in the Late Cretaceous and Early Paleogene (ca. 80–68 Ma). The tectonic formation of the core complex took place in the Eocene (<42 Ma), followed by exhumation and regional cooling below ca. 450°C and the latest cooling to ca. 120°C in the Miocene (ca. 20 Ma). The evolutionary data show that the Khanom Core Complex is part of Sibumasu, and its Late Cretaceous-Neogene cooling pattern and exhumation history can be directly related to the northward drift of India.
      PubDate: Fri, 19 Jan 2024 00:00:00 GMT
       
  • Asymmetrical Microfracture Density Across an Active Thrust Fault: Evidence
           from the Longmen Shan Fault, Eastern Tibet

    • Abstract: AbstractMicrofracture density in fault damage zones can reflect spatial variability that decays in intensity as a function of distance from the fault, which is crucial in understanding the mechanical, seismological, and fluid-flow properties of the fault system. However, few studies explored the characteristics of fracture density between the two sides of active dip-slip faults due to rare field observations. Here, we measured and modeled microfractures across an active thrust fault associated with the 2008 Mw 7.9 Wenchuan earthquake in the Longmen Shan, eastern Tibetan Plateau. The results showed that the microfracture density at the Qingping site developed more intensely in the hanging wall than in the footwall for an exposed thrust fault, indicating an asymmetrical pattern. The hidden thrust fault at the Jushui site showed that microfractures developed more intensely in vertical planes in the hanging wall than in the footwall, whereas microfractures developed similarly in horizontal planes within the two sides, indicating a quasiasymmetrical pattern. Comparing the data at the two sites with computational modeling, we suggest that fault geometry might exert a first-order control of the asymmetrical microfracture density pattern, which is helpful for revealing different deformational behaviors of rock masses in the fault damage zones and better understanding the hanging-wall effect for evaluating seismic hazards on active thrust faults.
      PubDate: Fri, 19 Jan 2024 00:00:00 GMT
       
  • Late Oligocene to Early Pliocene Exhumation and Structural Development in
           the Western Himalaya, Northern Pakistan: Implications for the Cenozoic
           Metamorphic Overprint

    • Abstract: AbstractNew middle Miocene to Pliocene (~14–3 Ma) apatite fission track (AFT) cooling ages combined with published K–Ar/Ar–Ar and zircon fission track (ZFT) ages from the Hazara and Swat regions of Pakistan are used to explain the Oligocene to Pliocene structural evolution in the Western Himalaya. The structural model explains the distribution of K–Ar/Ar–Ar ages in three distinct age groups (Proterozoic, Paleozoic-Mesozoic, and Eocene to Oligocene). The Proterozoic to Mesozoic sequence of northern Hazara and Swat experienced elevated temperature and pressure conditions, evident by reset Eocene to Oligocene K–Ar/Ar–Ar hornblende and Eocene to Miocene muscovite ages, caused by Kohistan overthrusting the Indian margin during and after the India–Asia collision. Samples from the Indus syntaxis with Paleo to Mesoproterozoic K–Ar/Ar–Ar hornblende ages and Eocene to Oligocene Ar–Ar muscovite ages show no signs of Cenozoic metamorphism; these samples were thermally imprinted up to the Ar–Ar muscovite closure temperature. Neoproterozoic to Lower Paleozoic rocks from the southern parts of Hazara and Swat show Mesozoic to Oligocene partially reset Ar–Ar muscovite ages and preservation of Ordovician metamorphism. The combined analysis of published K–Ar/Ar–Ar (muscovite), ZFT, and new AFT ages (~14–12 Ma) suggests that the Main Central thrust/Panjal thrust was active from Oligocene to early Miocene (~30–18 Ma), and the Nathia-Gali and Main Boundary thrusts were active from the middle to late Miocene (~14–9 Ma) in the Hazara area. New and published AFT ages (~6–3 Ma) from the Indus syntaxis suggest that early Pliocene tectonic thickening in the hinterland formed the N–S trending Indus anticline, creating an erosional half window in the Main Mantle thrust, forming the Indus syntaxis, and dividing the Main Central thrust sheet into the Hazara and Swat segments.
      PubDate: Fri, 19 Jan 2024 00:00:00 GMT
       
  • On the Influence of Grain Size Compared with Other Internal Factors
           Affecting the Permeability of Granular Porous Media: Redefining the
           Permeability Units

    • Abstract: AbstractThis study first reviews the influence of grain size on the permeability of porous granular media in comparison to other factors, especially the sorting of grain size distribution, in order to improve the physical knowledge of permeability. The aim of this research is to counter the widespread misconception that the characteristics of water flow in granular porous media can be associated exclusively with an area regarding grain size. This review involves two different aspects. First, the dependence of the intrinsic permeability on the particle size distribution is highlighted, independently of the other internal factors such as porosity and average grain size, by simply reviewing the main existing formulas. Second, the historical literature on the influence of the average grain size in porosity is analyzed, and it is compared with the influence of the granulometric sorting. The most recognized data show that the influence of each of these two factors is of the same order, but it was not expressed in mathematical form, so a relationship of porosity versus average grain size and sorting is established. The two aforementioned steps conclude that the factors influencing permeability do not advise the use of area dimensions because it leads to only link permeability with the average grain size, especially when nonspecialists come into contact with earth sciences. Finally, after a review of the historical evolution of the permeability units, they are redefined to avoid the common misconception that occurs when the established unit leads to only a partial understanding of the key parameters influencing permeability.
      PubDate: Wed, 17 Jan 2024 00:00:00 GMT
       
  • The Long-Lasting Exhumation History of the Ötztal-Stubai Complex (Eastern
           European Alps): New Constraints from Zircon (U–Th)/He Age-Elevation
           Profiles and Thermokinematic Modeling

    • Abstract: AbstractThe Eastern European Alps formed during two orogenic cycles, which took place in the Cretaceous and Cenozoic, respectively. In the Ötztal-Stubai Complex—a thrust sheet of Variscan basement and Permo-Mesozoic cover rocks—the record of the first (Eoalpine) orogeny is well preserved because during the second (Alpine) orogeny, the complex remained largely undeformed. Here, new zircon (U–Th)/He (ZHe) ages are presented, and thermokinematic modeling is applied to decipher the cooling and exhumation histories of the central part of the Ötztal-Stubai Complex since the Late Cretaceous. The ZHe ages from two elevation profiles increase over a vertical distance of 1500 m from 56 ± 3 to 69 ± 3 Ma (Stubaital) and from 50 ± 2 to 71 ± 4 Ma (Kaunertal), respectively. These ZHe ages and a few published zircon and apatite fission track ages were used for inverse thermokinematic modeling. The modeling results show that the age data are well reproduced with a three-phase exhumation history. The first phase with relatively fast exhumation (~250 m/Myr) during the Late Cretaceous ended at ~70 Ma and is interpreted to reflect the erosion of the Eoalpine mountain belt. As Late Cretaceous normal faults occur at the margins of the Ötztal-Stubai Complex, normal faulting may have also contributed to the exhumation of the study area. Subsequently, a long period with slow exhumation (<10 m/Myr) prevailed until ~16 Ma. This long-lasting phase of slow exhumation suggests a rather low topography with little relief in the Ötztal-Stubai Complex until the mid-Miocene, even though the Alpine orogeny had already begun in the Eocene with the subduction of the European continental margin. Accelerated exhumation since the mid-Miocene (~230 m/Myr) is interpreted to reflect the erosion of the mountain belt due to the development of high topography in front of the Adriatic indenter and repeated glaciations during the Quaternary.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Oil Production Rate Forecasting by SA-LSTM Model in Tight Reservoirs

    • Abstract: AbstractThe accurate forecasting of oil field production rate is a crucial indicator for each oil field’s successful development, but due to the complicated reservoir conditions and unknown underground environment, the high accuracy of production rate forecasting is a popular challenge. To find a low time consumption and high accuracy method for forecasting production rate, the current paper proposes a hybrid model, Simulated Annealing Long Short-Term Memory network (SA-LSTM), based on the daily oil production rate of tight reservoirs with the in situ data of injection and production rates in fractures. Furthermore, forecasting results are compared with the numerical simulation model output. The LSTM can effectively learn time-sequence problems, while SA can optimize the hyperparameters (learning rate, batch size, and decay rate) in LSTM to achieve higher accuracy. By conducting the optimized hyperparameters into the LSTM model, the daily oil production rate can be forecasted well. After training and predicting on existing production data, three different methods were used to forecast daily oil production for the next 300 days. The results were then validated using numerical simulations to compare the forecasting of LSTM and SA-LSTM. The results show that SA-LSTM can more efficiently and accurately predict daily oil production. The fitting accuracies of the three methods are as follows: numerical reservoir simulation (96.2%), LSTM (98.1%), and SA-LSTM (98.7%). The effectiveness of SA-LSTM in production rate is particularly outstanding. Using the same SA-LSTM model, we input the daily oil production data of twenty oil wells in the same block and make production prediction, and the effect is remarkable.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Petrogenesis and Tectonic Implication of Jurassic Granites in Central
           Guangdong, SE China: Constraints from Zircon U-Pb-Hf-O and Whole-Rock
           Geochemical and Sr-Nd Isotopic Data

    • Abstract: AbstractThe origin and tectonic regime responsible for the inland Jurassic granites in Southeast (SE) China remain controversial. This study presents zircon secondary ion mass spectrometry (SIMS) U-Pb ages, in situ zircon Hf-O isotopes, and whole-rock geochemical and Sr-Nd isotopic data for the Fogang and Xinxing Batholiths in central Guangdong. Mineralogical and geochemical features indicate that these granites are high-K (>4.8 wt% K2O at 72 wt% SiO2), calc-alkaline I-type granites. SIMS U-Pb analyses on magmatic zircons yield consistent ages ranging from 158 to 163 Ma, suggesting that the Fogang and Xinxing granites were emplaced in the period of 163–158 Ma. In addition, these granites have whole-rock initial Sr87/Sr86 ratios of 0.6802–0.7072 and negative εNd(t) values of −9.5 to −8.2, zircon negative εHf(t) values of −12.34 to −0.56, and high δ18O values of 7.64‰–10.08‰. The above features imply that the granites were most likely generated through the mixture of supracrustal sedimentary components with minor addition of mantle-derived magmas. Granites from the Fogang and Xinxing Batholiths in SE China should be derived from the Proterozoic crustal reworking due to asthenosphere upwelling or underplating and intrusion of mafic magmas. These Jurassic granites reflect anorogenic magmatism probably formed in an intraplate extensional setting resulted from the foundering of the flat slab beneath SE China.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Carbon Isotopic Behavior During Hydrocarbon Expulsion in Semiclosed
           Hydrous Pyrolysis of Type I and Type II Saline Lacustrine Source Rocks in
           the Jianghan Basin, Central China

    • Abstract: AbstractOrganic carbon isotopic analysis is a significant approach for oil-source correlation, yet organic carbon isotopic behavior during oil expulsion from saline lacustrine source rocks is not well constrained, and this hinders its wide application for fingerprinting oils generated by saline lacustrine source rock. To resolve this puzzle, semiclosed hydrous pyrolysis was conducted on typical saline lacustrine source rocks from the Qianjiang Formation (type I kerogen) and Xingouzui Formation (type II kerogen) sampled in the Jianghan Basin, China, under high-temperature high-pressure conditions (T = 275℃–400℃; P = 65–125 MPa). Experimental results show that there is minor carbon isotopic fractionation (<3‰) between pyrolyzed and nonpyrolyzed retained oil fractions during the main oil generation/expulsion stage of both type I and II source rocks. Carbon isotopic fractionations between expelled and retained oil fractions are also minor (<2‰) during this stage. The δ13C values of retained and expelled oil fractions generated by the type I saline lacustrine source rock correlate positively with the degree of oil expulsion, whereas the influence of oil expulsion on the δ13C values of oil fractions generated by the type II source rock was not consistent. In addition, carbon isotopic analysis also unravels the mixing of oil-associated gases with different maturity levels and/or generated via different processes. Outcomes of this study demonstrate that oil expulsion from type I and II saline lacustrine source rocks cannot be able to result in large-degree carbon isotopic fractionation, indicating that carbon isotopic analysis is a feasible approach for conducting oil-source correlation works in saline lacustrine petroleum systems.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Whole-Rock and Apatite Geochemistry of Late Triassic Plutonic Rocks in the
           Eastern Songpan-Ganzi Orogenic Belt: Petrogenesis and Implications for
           Tectonic Evolution

    • Abstract: AbstractTo constrain the late Triassic tectonic evolution of the Songpan-Ganzi orogenic belt, we present new whole-rock and in situ apatite geochemistry for plutonic rocks in its eastern margin. The Taiyanghe pluton can be classified into two rock types: dioritic and granitic rocks. The former exhibits low SiO2 and MgO contents but high Al2O3, Th, LREE contents, and Th/Yb and Th/Nb ratios, as well as low Ba/La and Ba/Th ratios and enriched Sr-Nd isotopic compositions, which, together with apatite geochemistry and Nd isotopes, indicate that they were derived from low degrees of partial melting of lithospheric mantle metasomatized by sediment-derived melts. The latter is characterized by high Sr and low Y and Yb, with elevated Sr/Y and (La/Yb)N ratios, implying an adakitic affinity. Notably, their similar Sr-Nd isotopic compositions indicate an origin from partial melts of a newly underplated lower crust. The Maoergai granitic rocks, characterized by high Sr and low Y and Yb contents with high Sr/Y and (La/Yb)N ratios, are indicative of adakitic rocks. In combination with the enriched whole-rock Sr-Nd isotopes and the apatite Nd isotopic data, we suggest that they were generated by the partial melting of the ancient thickened mafic lower crust. The Markam and Yanggonghai felsic granitoid rocks are peraluminous and similar to typical S-type granitoids, indicating an origin from remelting of the Triassic metasedimentary rocks. Based on the temporal-spatial relationship of the late Triassic plutonic rocks in the orogenic belt, we suggest that these rocks were formed in association with the roll-back and subsequent break-off of a subducted slab of the Paleo-Tethys Ocean. During the subduction, the formation of the Maoergai adakitic rocks was triggered by slab roll-back, whereas the magmatic “flare up” (ca. 216–200 Ma) was likely caused by slab break-off. This indicates that the final closure of the Paleo-Tethys Ocean happened in the end of the Triassic or Early Jurassic.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Stochastic Reconstruction of 3D Heterogeneous Microstructure Using a
           Column-Oriented Multiple-Point Statistics Program

    • Abstract: AbstractThree-dimensional (3D) microstructure reconstruction is a key approach to exploring the relationship between pore characteristics and physical properties. Viewing the training image as a prior model, multiple-point statistics (MPS) focus on reproducing spatial patterns in the simulation grid. However, it is challenging to efficiently generate 3D nonstationary models with varying microstructures. In this work, we propose column-oriented simulation (ColSIM) to achieve the stochastic reconstruction of 3D porous media. A heterogeneous system is understood as a spatially evolving process that consists of frequent transitions of small magnitude and abrupt changes of large magnitude. First, a training image selection step is suggested to find representative microstructures. Our program applies modified Hausdorff distance, t-distributed stochastic neighboring embedding, and spectral clustering to organize two-dimensional (2D) candidate images. The medoid of each group is applied to guide the following programs. Second, we introduce column-oriented searching into MPS. To save simulation time, a subset of conditioning points is checked to find desired instances. Our program suggests an early stopping strategy to address complex microstructures. Third, a contrastive loss term is designed to create 3D models from 2D slice. To automatically calibrate the volume fraction and simplify parameter specification, the computer consistently monitors the difference between the present model and the target. The performance of ColSIM is examined by 3D multiphase material modeling and 3D heterogeneous shale simulation. To achieve quantitative evaluation, we compute various statistical functions and physical descriptors on simulated realizations. The proposed ColSIM exhibits competitive performance in terms of calculation efficiency, microstructure reproduction, and spatial uncertainty.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
  • Late Cenozoic Cooling History of the Xigaze Fore-Arc Basin along the
           Yarlung–Zangbo Suture Zone (Southern Tibet): New Insights from
           Low-Temperature Thermochronology

    • Abstract: AbstractThe Tibetan Plateau is currently the widest and highest elevation orogenic plateau on Earth. It formed as a response to the Cenozoic and is still ongoing collision between the Indian and Eurasian plates. The Xigaze fore-arc basin distributed along the Indus–Yarlung suture zone in southern Tibet preserves important information related to the late Cenozoic tectonic and topographic evolution of the plateau. In this study, apatite fission track (AFT) thermochronology was carried out on twelve sandstone samples from the middle segment of the Xigaze basin and additionally on four sedimentary rocks from the neighboring Dazhuka (Kailas) and Liuqu Formations. Inverse thermal history modeling results reveal that the fore-arc basin rocks experienced episodic late Oligocene to Miocene enhanced cooling. Taking into account regional geological data, it is suggested that the late Oligocene-early Miocene (~27–18 Ma) cooling recognized in the northern part of the basin was promoted by fault activity along the Great Counter thrust, while mid-to-late Miocene-accelerated exhumation was facilitated by strong incision of the Yarlung and Buqu rivers, which probably resulted from enhanced East Asian summer monsoon precipitation. Sandstone and conglomerate samples from the Dazhuka and Liuqu Formations yielded comparable Miocene AFT apparent ages to those of the Xigaze basin sediments, indicative of (mid-to-late Miocene) exhumation soon after their early Miocene burial (> ~3–4 km). Additionally, our new and published low-temperature thermochronological data indicate that enhanced basement cooling during the Miocene prevailed in vast areas of central southern Tibet when regional exhumation was triggered by both tectonic and climatic contributing factors. This recent and widespread regional exhumation also led to the formation of the high-relief topography of the external drainage area in southern Tibet, including the Xigaze fore-arc basin.
      PubDate: Fri, 12 Jan 2024 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.220.62.183
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> GEOGRAPHY (Total: 493 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.220.62.183
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-