A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> METEOROLOGY (Total: 106 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
International Journal of Biometeorology
Journal Prestige (SJR): 0.897
Citation Impact (citeScore): 3
Number of Followers: 3  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-1254 - ISSN (Online) 0020-7128
Published by Springer-Verlag Homepage  [2467 journals]
  • Correction to: Utility of the Heat Index in defining the upper limits of
           thermal balance during light physical activity (PSU HEAT Project)

    • Free pre-print version: Loading...

      PubDate: 2022-12-01
       
  • Drought timing and severity affect radial growth of Picea crassifolia at
           different elevations in the western Qilian Mountains

    • Free pre-print version: Loading...

      Abstract: Abstract In the context of continued global climate change, the intensity and frequency of droughts have increased to varying degrees in many places. Due to the complexity of drought events, the mechanisms by which trees respond to drought are not well understood. In this study, we analyzed the growth trends of Qinghai spruce (Picea crassifolia) at different elevations in the western part of Qilian Mountains and the dynamic response to climate change. We also compared the differences in radial growth of trees at different elevations in response to drought events in the growing and non-growing seasons based on resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that (1) trees at all three elevations were limited by drought stress and the lower the elevation the more sensitive the trees were to drought. (2) The response of middle- and low-elevation trees to the standardized precipitation evaporation index in June of that year was stable. (3) Growing season drought limits radial growth of trees more than non-growing season drought, and Rt is smaller and Rc is larger at low elevations. With increasing drought severity, trees at all three elevations exhibited a trend of decreasing Rt and Rs and increasing Rc. (4) There were significant differences in the growth trends of trees at the three elevations. Therefore, we should continuously pay attention to the dynamics of the forest ecosystem in the western part of Qilian Mountains and take improved measures to cope with the adverse effects of drought on Qinghai spruce.
      PubDate: 2022-12-01
       
  • The influence of heat and cold waves on mortality in Russian subarctic
           cities with varying climates

    • Free pre-print version: Loading...

      Abstract: Abstract   Publications on ambient temperature-related mortality among Arctic or subarctic populations are extremely rare. While circumpolar areas cover large portions of several European countries, Canada, and the USA, the population of these territories is relatively small, and the data needed for statistical analysis of the health impacts of extreme temperature events are frequently insufficient. This study utilizes standard time series regression techniques to estimate relative increases in cause- and age-specific daily mortality rates during heat waves and cold spells in four Russian cities with a subarctic climate. The statistical significance of the obtained effect estimates tends to be greater in the continental climate than in the marine climate. A small meta-analysis was built around the obtained site-specific health effects. The effects were homogeneous and calculated for the selected weather-dependent health outcomes. The relative risks of mortality due to ischemic heart disease, all diseases of the circulatory system, and all non-accidental causes during cold spells in the age group ≥ 65 years were 1.20 (95% CI: 1.11–1.29), 1.14 (1.08–1.20), and 1.12 (1.07–1.17), respectively. Cold spells were more harmful to the health of the residents of Murmansk, Archangelsk, and Magadan than heat waves, and only in Yakutsk, heat waves were more dangerous. The results of this study can help the public health authorities develop specific measures for the prevention of excess deaths during cold spells and heat waves in the exposed subarctic populations.
      PubDate: 2022-12-01
       
  • Negative effects of heat stress on maize yield were compensated by
           increasing thermal time and declining cold stress in northeast China

    • Free pre-print version: Loading...

      Abstract: Abstract Northeast China (NEC), an important maize region located at high northern latitudes, is undergoing pronounced climate warming. This warming highlights the importance of taking the effects of brief extreme high and low temperature events into account when addressing the impacts of climate warming on crop yields. The spatiotemporal variability of heat and cold stress and their impact on yield were determined by combining climate data, maize phenological observations and yield records from 1981 to 2018 for 17 counties in the major maize cropping area of NEC. Spatially, more severe heat stress during the vegetative phase occurred in the western border and cold stress occurred in the central regions. Both stresses during the reproductive phase and growing degree days (GDD) showed a northeast–southwest gradient. Temporally, we found overall increased (0.5 °C•d/yr) heat stress during the vegetative phase, which was predominantly more than five times that during the reproductive phase. The cold stress during the vegetative phase was alleviated by an average of –1.3 °C•d/yr, particularly in the central regions. In contrast, exposure to a cold environment during the reproductive phase was intensified, with an average of 0.3 °C•d/yr, though a few downward trends mainly occurred near the borders of three provinces. The increasing trend in GDDr was 3.6 °C•d/yr, almost twice as high as that in the vegetative phase. The impact of increased heat stress contributed an average yield loss of 0.10 t/ha/10a, while reduced cold stress during the vegetative phase coupled with increased GDD increased yield by 0.42 t/ha/10a. Although cold stress during the reproductive phase had an insignificant impact on yield, its intensity together with the increase in heat stress, especially in the vegetative phase, should be considered when developing appropriate adaptations to increase maize yield in the face of ongoing warming.
      PubDate: 2022-12-01
       
  • Quantifying the impact of heat on human physical work capacity; part IV:
           interactions between work duration and heat stress severity

    • Free pre-print version: Loading...

      Abstract: Abstract High workplace temperatures negatively impact physical work capacity (PWC). Although PWC loss models with heat based on 1-h exposures are available, it is unclear if further adjustments are required to accommodate repeated work/rest cycles over the course of a full work shift. Therefore, we examined the impact of heat stress exposure on human PWC during a simulated work shift consisting of six 1-h work-rest cycles. Nine healthy males completed six 50-min work bouts, separated by 10-min rest intervals and an extended lunch break, on four separate occasions: once in a cool environment (15 °C/50% RH) and in three different air temperature and relative humidity combinations (moderate, 35 °C/50% RH; hot, 40 °C/50% RH; and very hot, 40 °C/70%). To mimic moderate to heavy workload, work was performed on a treadmill at a fixed heart rate of 130 beats·min−1. During each work bout, PWC was quantified as the kilojoules expended above resting levels. Over the shift, work output per cycle decreased, even in the cool climate, with the biggest decrement after the lunch break and meal consumption. Expressing PWC relative to that achieved in the cool environment for the same work duration, there was an additional 5(± 4)%, 7(± 6)%, and 16(± 7)% decrease in PWC when work was performed across a full work shift for the moderate, hot, and very hot condition respectively, compared with 1-h projections. Empirical models to predict PWC based on the level of heat stress (Wet-Bulb Globe Temperature, Universal Thermal Climate Index, Psychrometric Wet-Bulb Temperature, Humidex, and Heat Index) and the number of work cycles performed are presented.
      PubDate: 2022-12-01
       
  • Implications of exposing mungbean (Vigna radiata L.) plant to higher CO2
           concentration on seed quality

    • Free pre-print version: Loading...

      Abstract: Abstract Understanding the crop response to elevated carbon dioxide (e[CO2]) condition is important and has attracted considerable interest owing to the variability and crop-specific response. In mungbean, reports are available regarding the effect of e[CO2] on its growth, physiology and yield. However, no information are available on the germination and vigour status of seeds produced at e[CO2]. Therefore, in the present investigation, mungbean (Virat) was grown in the open top chamber during summer season of 2018 and 2019 to study the implications of e[CO2] (600 ppm) on quality of the harvested seeds (germination and vigour). The exposure of mungbean plant to e[CO2] had no major impact on seed quality as the percent viability (normal seedling + hard seeds) was not reduced. However, in one season (2018), the seed germination (normal seedling) was slightly reduced from 72 to 68%, attributed majorly to an increase in the hard seeds (from 13 to 19%), a predominant form of seed dormancy in mungbean. The changes in seed germination were apparent only in first year of the experiment. Accelerated ageing test (AAT) and storage studies revealed no differences in the vigour of seeds produced at ambient and e[CO2] environments. Also, the seeds from e[CO2] had low protein and sugar but recorded higher starch content than the seeds from ambient [CO2].
      PubDate: 2022-12-01
       
  • Prediction of leptospirosis outbreaks by hydroclimatic covariates: a
           comparative study of statistical models

    • Free pre-print version: Loading...

      Abstract: Abstract Leptospirosis, the infectious disease caused by a spirochete bacteria, is a major public health problem worldwide. In Argentina, some regions have climatic and geographical characteristics that favor the habitat of bacteria of the Leptospira genus, whose survival strongly depends on climatic factors, enhanced by climate change, which increase the problems associated with people’s health. In order to have a method to predict leptospirosis cases, in this paper, five time series forecasting methods are compared: two parametric (autoregressive integrated moving average and an alternative one that allows covariates, ARIMA and ARIMAX, respectively), two nonparametric (Nadaraya-Watson Kernel estimator, one and two kernels versions, NW-1 K and NW-2 K), and one semiparametric (semi-functional partial linear regression, SFPLR) method. For this, the number of cases of leptospirosis registered from 2009 to 2020 in three important cities of northeastern Argentina is used, as well as hydroclimatic covariates related to the presence of cases. According to the obtained results, there is no method that improves considerably the rest and can be recommended as a unique tool for leptospirosis prediction. However, in general, the NW-2 K method gets a better performance. This work, in addition to using a long-term high-quality time series, enriches the area of applications of statistical models to epidemiological leptospirosis data by the incorporation of hydroclimatic variables, and it is recommended directing further efforts in this line of research, under the context of current climate change.
      PubDate: 2022-12-01
       
  • Can spa rehabilitative interventions play a role for patients suffering
           from neurodegenerative disorders at the early stages' A scoping review
           

    • Free pre-print version: Loading...

      Abstract: Abstract The global burden of neurodegenerative disorders is significantly increasing as life expectancy rises but currently there is no cure for these conditions. An extensive search on MEDLINE (PubMed) and PEDro databases was conducted selecting clinical trials, Randomized Controlled Trials, and longitudinal studies published in the last 20 years in order to highlight what evidence there is for a role of spa rehabilitative interventions for patients with neurodegenerative diseases, in terms of motor function, symptoms, and quality of life (QoL) improvement and cost-effectiveness. A total of 225 publications were analyzed. Only three manuscripts were selected for review because they matched the inclusion criteria. These studies demonstrated statistically significant differences in the outcomes evaluated among patients affected by Parkinson’s disease after thermal rehabilitative treatments: motor function, balance, QoL, and psychological well-being statistically improved. In addition, rehabilitation in the spa setting seemed to be cost-effective for these patients. However, further studies are needed to define the role of spa rehabilitative interventions for these patients as the literature is still limited.
      PubDate: 2022-12-01
       
  • Tree-ring-based seasonal temperature reconstructions and ecological
           implications of recent warming on oak forest health in the Zagros
           Mountains, Iran

    • Free pre-print version: Loading...

      Abstract: Abstract Abrupt changes in temperature have especially strong impacts on fragile ecosystems located in semi-arid regions. In this study, we analyzed tree-ring widths (TRW) of Mediterranean cypress (Cupressus sempervirens var. horizontalis) in the Zagros Mountains, Iran. Furthermore, we separately measured earlywood width (EWW) and latewood width (LWW) of Persian oak (Quercus brantii Lindl.) to examine if intra-annual resolution of tree-ring parameters of Q. brantii tree rings can be used as high-resolution paleoclimate proxies. Climate-growth relationships revealed that mean monthly maximum temperatures (Tmax) are a dominant factor determining radial tree growth and negatively affect both oak and cypress in the Zagros Mountains. Accordingly, we reconstructed two different seasonal windows of past Tmax variability, namely, January–March and June–August over the periods 1860–2015 and 1560–2015, respectively. Regime shift detection identified twelve warm and nine cold significant regime shifts in our summer Tmax reconstructions. The longest hot summer period occurred in the twentieth century, and two warm regime shifts occurred in 1999 and 2008. The highest values of the warm summer regime shift index occurred in 2008, which coincided with fungal pathogen attacks and insect outbreak of the oak leaf roller moth (Tortrix viridana L.) in the Zagros oak woodlands. Interestingly, we found common warm and cold periods in historic climate variability between the summer and winter Tmax reconstructions. Warm and cold regime shifts occurred simultaneously from 1955 to 2015, and significant regional warm summer and winter regime shifts have occurred between 2008 and 2015. The winter and summer Tmax reconstructions show high spatial correlations with large areas in West Asia, North Africa, and the eastern Mediterranean region. Our results strengthen initial studies on past climate variability in Iran and contribute to an enhanced understanding of past temperature variability in West Asia.
      PubDate: 2022-12-01
       
  • Study on correlation between shadow patterns and human behaviour in hot,
           arid cities: a case study of Biskra, Algeria

    • Free pre-print version: Loading...

      Abstract: Abstract Although the thermal comfort benefits of shade in warm areas are well known, empirical work on the link between public space use and shade pattern from hot, arid cities remain poorly investigated. The aim of the present study is to investigate the correlation between shadow pattern, outdoor thermal comfort and human behaviour, according to the intensity of public space use by urban dwellers. This work was conducted in an urban area in Biskra City (Algeria), characterized by a hot climate, with an average high temperature 40.2 °C in summer. In situ investigation and behavioural method were applied for behaviour evaluation. Modelling of shadow pattern and assessment of outdoor comfort utilised the physiological equivalent temperature (PET) index and predicted mean vote (PMV). The findings show that the presence of shadow contributes to low PET; as a result, the PET is closely related to shadow in spring than summer while the distribution of people was significantly affected by shadow in summer than spring which affects the city’s liveability. Our findings shed the light on the importance of shadow generated by the built environment to enhance comfort and urban liveability in hot and arid cities.
      PubDate: 2022-12-01
       
  • Machine Learning approach to Predict net radiation over crop surfaces from
           global solar radiation and canopy temperature data

    • Free pre-print version: Loading...

      Abstract: Abstract As the ground-based instruments for measuring net radiation are costly and need to be handled skillfully, the net radiation data at spatial and temporal scales over Indian subcontinent are scanty. Sometimes, it is necessary to use other meteorological parameters to estimate the value of net radiation, although the prediction may vary based on season, ground cover and estimation method. In this context, artificial intelligence can be used as a powerful tool for predicting the data considering past observed data. This paper proposes a novel method to predict the net radiation for five crop surfaces using global solar radiation and canopy temperature. This contribution includes the generation of real-time data for five crops grown in West Bengal state of India. After manual analysis and data preprocessing, data normalization has been done before applying machine learning approaches for training a robust model. We have presented the comparison in various machine learning algorithm such as ridge and spline regression, random forest, ensemble and deep neural networks. The result shows that the gradient boosting regression and ridge regression are outperforming other ML approaches. The estimated predictors enable to reduce the number of resources in terms of time, cost and manpower for proper net radiation estimation. Thus, the problem of predicting net radiation over various crop surfaces can be sorted out through ML algorithm.
      PubDate: 2022-12-01
       
  • Modelling Fagus sylvatica stem growth along a wide thermal gradient in
           Italy by incorporating dendroclimatic classification and land surface
           phenology metrics

    • Free pre-print version: Loading...

      Abstract: Abstract Calibrating land surface phenology (LSP) with tree rings is important to model spatio-temporal variations in forest productivity. We used MODIS (resolution: 250 m) NDVI, WDRVI and EVI series 2000–2014 to derive LSP metrics quantifying phenophase timing and canopy photosynthetic rates of 26 European beech forests covering a large thermal gradient (5–16 °C) in Italy. Average phenophase timing changed greatly with site temperature (e.g. growing season 70 days longer at low- than high-elevation); average VI values were affected by precipitation. An annual temperature about 12 °C (c. 1100 m asl) represented a bioclimatic threshold dividing warm from cold beech forests, distinguished by different phenology-BAI (basal area increment) relationships and LSP trends. Cold forests showed decreasing VI values (browning) and delayed phenophases and had negative BAI slopes. Warmer forests tended to increase VI (greening), and positive BAI slopes. NDVI peak, commonly used in global trend assessments, changed with elevation in agreement with changes in wood production. A cross-validation modelling approach demonstrated the ability of LSP to predict average BAI and its interannual variability. Merging sites into bioclimatic groups improved models by amplifying the signal in growth or LSP. NDVI had highest performances when informing on BAI trends; WDRVI and EVI were mostly selected for modelling mean and interannual BAI. WDRVI association with tree rings, tested in this study for the first time, showed that this VI is highly promising for studying forest dynamics. MODIS LSP can quantify forest functioning changes across landscapes and model interannual spatial variations and trends in productivity dynamics under climate change.
      PubDate: 2022-12-01
       
  • Changes in the pattern of heat waves and the impacts on Holstein cows in a
           subtropical region

    • Free pre-print version: Loading...

      Abstract: Abstract This study aimed to evaluate the change in the air temperature and the impacts of heat waves using Climate Change Indexes on the physiological and productive responses of lactating Holstein cows. Daily data of maximum and minimum air temperature for 1981–2021 were used. Heat waves were determined using six Climate Change Indexes. Individual data on respiratory rate, rectal temperature, and milk yield were collected in the summers of 2018, 2019, and 2021. The temperature trend analysis showed a significant (p < 0.0001) increase in maximum temperature, minimum temperature, and days in a heat wave. All six indexes increased significantly (p > 0.01). The increase in warm nights (> 20 °C) and the hottest days (> 35 °C) was the highest since 2010. Heat waves were classified into short (< 5 days) and long (> 5 days) of greater (> 36 °C) or lesser (< 36 °C) intensity. During the long and short heat waves of greater intensity, the respiratory rate increased (p < 0.05) until the fourth day. On the other hand, rectal temperature was higher (p < 0.05) from the fourth day until the end of the long heat waves. Therefore, the decrease in milk yield was significantly greater from the fourth or fifth day onwards. Finally, the evaluation method based on indexes was efficient to demonstrate the negative effects on physiological parameters and milk yield and can be indicated to evaluate heat stress in lactating cows.
      PubDate: 2022-12-01
       
  • The influence of weather and temperature on pedestrian walking
           characteristics on the zigzag bridge

    • Free pre-print version: Loading...

      Abstract: Abstract With the increasing number of tourists in recent years, ensuring the safety of visitors in tourist attractions has become an enormous challenge for safety management. At present, many experiments have been conducted to study pedestrian dynamics, but empirical data on tourists’ movement state under different weather conditions are still few. Therefore, a series of field experiments were conducted to analyze the effect of external weather and temperature on pedestrians’ movement characteristics. The results show that pedestrians are more concentrated in the middle and inner tracks during the turning process to seek the shortest path on rainy days. Moreover, it is found that pedestrians speed up under the conditions with low (below 10 °C) and high (over 30 °C) temperatures. The average speed of pedestrians is 0.677 m/s as the temperature is below 0 °C, which is much higher than the average speed of pedestrians in other temperature ranges. In addition, the speed of pedestrians changed more dramatically under the low-temperature conditions. It is hoped that this research can provide a reference for crowd control and rational design of pedestrian facilities.
      PubDate: 2022-12-01
       
  • Prediction of rectal temperature in Holstein heifers using infrared
           thermography, respiration frequency, and climatic variables

    • Free pre-print version: Loading...

      Abstract: Abstract The objective of this study was to develop an equation to predict rectal temperature (RT) using body surface temperatures (BSTs), physiological and climatic variables in pubertal Holstein heifers in an arid region. Two hundred Holstein heifers were used from July to September during two consecutive summers (2019 and 2020). Respiratory frequency (RF) was used as a physiological variable and ambient temperature, relative humidity and temperature-humidity index as climatic variables. For the body surface temperatures, infrared thermography was used considering the following anatomical regions: shoulder, belly, rump, leg, neck, head, forehead, nose, loin, leg, vulva, eye, flank, and lateral area (right side). Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equation. Physiological parameters RT and RF were highly correlated with each other (r = 0.73; P˂0.0001), while all BST presented from low to moderate correlations with RT and RF. BST forehead temperature (FH) showed the highest (r = 0.58) correlation with RT. The equation RT = 35.55 + 0.033 (RF) + 0.030 (FH) + ei is considered the best regression equation model to predict RT in Holstein heifers in arid zones. This decision was made on the indicators R2 = 60%, RMSE = 0.25, and AIC = 0.25, which were considered adequate variability indicators.
      PubDate: 2022-12-01
       
  • Heat wave exposure impairs reproductive performance in primiparous sows
           and gilts in a tropical environment

    • Free pre-print version: Loading...

      Abstract: Abstract We studied the effects of heat waves (HW), defined as three consecutive days with an ambient temperature ≥ 25 °C and a temperature and humidity index (THI) > 74, on the reproductive performance of sows. Meteorological data were obtained from the National Institute of Meteorology and reproductive data from a commercial farm with 51,578 inseminations and 49,103 pregnancies from September 5, 2013, to July 12, 2019. Sows were divided into the following groups according to the parity order: group 1 (sows that did not experience HW on the day of insemination) and group 2 (sows exposed to HW on the day of insemination). The percentage of days that pregnant sows were exposed to HW was calculated as 0 to 25% (1), 26 to 50% (2), 51 to 75% (3), and > 75% (4). Out of a total of 2137 days, there were 160 HW and more than 10 HW per month, except in May, June, and July. Gilts in group 2 showed a decrease in the percentage of gestation (98.21% and 98.78%, respectively, P = 0.0267) and the percentage of births compared with those in group 1 (95.53% and 96.61, respectively, P = 0.0065). Primiparous sows in group 2 had a higher percentage of abortions than gilts in group 1 (3.20% and 2.42%, respectively; P = 0.0334). Sows exposed to more than 50% HW during gestation produced more mummified piglets than sows exposed to less than 50% HW. The number of stillborn piglets was higher in sows exposed to temperatures above 25% HW during gestation. The occurrence of heat waves in gilts and primiparous sows impairs reproductive performance.
      PubDate: 2022-12-01
       
  • Adverse effects of heat stress during summer on broiler chickens
           production and antioxidant mitigating effects

    • Free pre-print version: Loading...

      Abstract: Abstract Broiler chicken meat is a good source of protein consumed universally, and is one of the most commonly farmed species in world. In addition to providing food, poultry non-edible byproducts also have value. A major advantage of broiler chicken production is their short production cycle, which results in a greater rate of production in comparison to other species. However, as with any production system, there are constraints in broiler production with one of the most pressing being energy requirements to keep the birds warm as chicks and cool later in the growth cycle, as a result of the cost needing mechanical heating and cooling. While this is feasible in more advanced economies, this is not readily affordable in developing economies. As a result, farmers rely on natural ventilation to cool the rearing houses, which generally becoming excessively warm with the resultant heat stress on the birds. Since little can be done without resorting to mechanical ventilation and cooling, exploring the use of other means to reduce heat stress is needed. For this review, we cover the various factors that induce heat stress, the physiological and behavioral responses of broiler chickens to heat stress. We also look at mitigating the adverse effect of heat stress through the use of antioxidants which possess either an anti-stress and/or antioxidant effects.
      PubDate: 2022-12-01
       
  • Prior heat exposure diminishes upper-body endurance work capacity and
           maximal arm and leg strength in young men

    • Free pre-print version: Loading...

      Abstract: Abstract Workers often experience heat exposure before manual labour. This study investigated whether prior heat exposure diminished upper-body endurance work capacity and maximal isokinetic arm and leg strength in young men. Ten male participants completed two trials in a climatic chamber maintained at 25°C with 50% relative humidity. The two trials required them to complete a 30-min pre-exercise water-immersion at either 40°C (HOT) to provoke an approximately 1°C rise in rectal temperature (Tre) or 36°C (CON) to maintain a normal Tre. Pre- and post-immersion and following arm-cranking, isokinetic maximal voluntary contraction (MVC) torque was assessed for the elbow flexors and knee extensors. During arm-cranking, time to exhaustion was measured using arm crank ergometry at 60% peak oxygen uptake. Electromyography was recorded from the elbow flexors and knee extensors to calculate the integrated electromyography. Tre at post-immersion was higher in HOT (Mean ± SD, 38.1 ± 0.3°C) than CON (37.1 ± 0.3°C; P < 0.01). Time to exhaustion was less in HOT (41 ± 13 min) than CON (52 ± 12 min; P < 0.01). Isokinetic MVC torque in the elbow flexors and knee extensors was lower in HOT than CON (both P < 0.05). The integrated electromyography of the elbow flexors and knee extensors were lower in HOT than CON (both P < 0.05). This study indicates that a 1°C rise in Tre by prior heat exposure reduces time to exhaustion during arm-cranking and isokinetic MVC torque of the elbow flexors and knee extensors. Workers should be careful about reductions in upper-body endurance work capacity and maximal arm and leg strength when exposed to heat before manual labour.
      PubDate: 2022-11-30
       
  • Thermal comfort thresholds for Japanese quails based on performance and
           egg quality

    • Free pre-print version: Loading...

      Abstract: Abstract Knowledge of the effects of thermal stress on Japanese quails helps support decision-making regarding the management of climate control systems. Thus, the objective of this study was to evaluate the performance and egg quality of Japanese quails subjected to different air temperatures (tair) and to propose thresholds for the temperature-humidity index (THI), the Black globe humidity index (BGHI), and enthalpy (H). Two experiments (21 days each) were conducted in four climate-controlled wind tunnels. In the first experiment, tair was 20, 22, 24, and 26 °C, and in the second, tair was 20, 28, 30, and 32 °C. The relative humidity (RH) and air velocity were 60% and 0.3 ms−1, respectively. To define the comfort thresholds, the productive performance of the birds, water intake, and egg quality were evaluated. No differences were observed (p > 0.05) for the performance-related variables, except for feed intake, which decreased (p < 0.05) as tair increased, and water intake, which increased (p < 0.5) by 15.9% starting at 28 °C. For experiments 1 and 2, with tair at 20 °C (tair,obs = 20.8 and 21.3 °C, respectively), there was evidence of cold stress. The shell thickness, Haugh unit, and internal quality unit were negatively influenced (p < 0.05) by tair starting at 28 °C. Japanese quails were able, within certain limits, to adapt to continuous thermal stress. The Japanese quails thermal comfort intervals recommended for THI, BGHI, and H are 68.4 to 76.2, 69.1 to 77.2, and 50.5 to 67.2 kJ kgdry air−1, respectively.
      PubDate: 2022-11-28
       
  • Maximum July‚ÄďAugust temperatures for the middle of the southern Tien
           Shan inferred from tree-ring latewood maximum densities

    • Free pre-print version: Loading...

      Abstract: Abstract  Long-term temperature reconstructions are urgently needed to prolong meteorological climatic data, which are too short to evaluate the anthropogenic effect on climate change since the Industrial Revolution. The maximum latewood chronology (MXD) of Picea schrenkiana in the middle of the southern Tien Shan was established, and it showed a strong correlation with the mean maximum temperature of the current July to August (TmaxJA), with r = 0.773 (p < 0.001, 1959–2016), which implies that a high temperature in the late growing season could increase the cell wall thickness and lead to high latewood density. Then, the TmaxJA of the middle of the southern Tien Shan was reconstructed over the period of 1720–2018. Three MXD chronologies from Kyrgyzstan significantly correlated with our TmaxJA reconstruction at the interannual scale, and they also showed similar variations on decadal scales. None of these MXD series showed a warming trend in the past century, which was also found in several MXD series from different regions of the world. Spatial correlation analysis revealed that our TmaxJA reconstruction showed significant correlations with that in eastern Asia, southern Europe, and north-western Africa, forming a teleconnection called the Silk Road Pattern. However, moving correlation analysis between our TmaxJA reconstruction and Hokkaido temperature series indicated that this teleconnection was unstable in the past 3 centuries. The volcanic eruptions from the mid-high latitudes in the Northern Hemisphere showed a stronger cooling effect than those from the Southern Hemisphere and the low latitudes of the Northern Hemisphere. The summer North Atlantic Oscillation was also shown to affect the temperature in the Tien Shan to a certain extent.
      PubDate: 2022-11-24
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.210.85.190
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-