A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 113 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 4)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 45)
Advances in Climate Change Research     Open Access   (Followers: 39)
Advances in Meteorology     Open Access   (Followers: 28)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 10)
Aeolian Research     Hybrid Journal   (Followers: 6)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 20)
American Journal of Climate Change     Open Access   (Followers: 34)
Atmósfera     Open Access   (Followers: 3)
Atmosphere     Open Access   (Followers: 29)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 16)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 13)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 48)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 16)
Atmospheric Environment     Hybrid Journal   (Followers: 75)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 71)
Atmospheric Science Letters     Open Access   (Followers: 40)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 32)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 5)
Bulletin of the American Meteorological Society     Open Access   (Followers: 51)
Carbon Balance and Management     Open Access   (Followers: 5)
Ciencia, Ambiente y Clima     Open Access   (Followers: 3)
Climate     Open Access   (Followers: 6)
Climate and Energy     Full-text available via subscription   (Followers: 7)
Climate Change Economics     Hybrid Journal   (Followers: 33)
Climate Change Responses     Open Access   (Followers: 18)
Climate Dynamics     Hybrid Journal   (Followers: 44)
Climate of the Past (CP)     Open Access   (Followers: 5)
Climate of the Past Discussions (CPD)     Open Access  
Climate Policy     Hybrid Journal   (Followers: 51)
Climate Research     Hybrid Journal   (Followers: 6)
Climate Resilience and Sustainability     Open Access   (Followers: 21)
Climate Risk Management     Open Access   (Followers: 7)
Climate Services     Open Access   (Followers: 3)
Climatic Change     Open Access   (Followers: 68)
Current Climate Change Reports     Hybrid Journal   (Followers: 10)
Developments in Atmospheric Science     Full-text available via subscription   (Followers: 31)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 5)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 19)
Earth Perspectives - Transdisciplinarity Enabled     Open Access  
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 9)
Energy & Environment     Hybrid Journal   (Followers: 24)
Environmental and Climate Technologies     Open Access   (Followers: 4)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 17)
Frontiers in Climate     Open Access   (Followers: 3)
GeoHazards     Open Access   (Followers: 2)
Global Meteorology     Open Access   (Followers: 18)
International Journal of Atmospheric Sciences     Open Access   (Followers: 23)
International Journal of Biometeorology     Hybrid Journal   (Followers: 1)
International Journal of Climate Change Strategies and Management     Hybrid Journal   (Followers: 27)
International Journal of Climatology     Hybrid Journal   (Followers: 30)
International Journal of Environment and Climate Change     Open Access   (Followers: 12)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 2)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 36)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 34)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 210)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 22)
Journal of Climate     Hybrid Journal   (Followers: 57)
Journal of Climate Change     Full-text available via subscription   (Followers: 16)
Journal of Climatology     Open Access   (Followers: 3)
Journal of Hydrology and Meteorology     Open Access   (Followers: 36)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 11)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 1)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 17)
Journal of Space Weather and Space Climate     Open Access   (Followers: 28)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 84)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 6)
Journal of Weather Modification     Full-text available via subscription   (Followers: 2)
Large Marine Ecosystems     Full-text available via subscription   (Followers: 1)
Mediterranean Marine Science     Open Access   (Followers: 1)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Hybrid Journal   (Followers: 4)
Meteorological Monographs     Hybrid Journal   (Followers: 2)
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 3)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 27)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal   (Followers: 1)
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 16)
Monthly Weather Review     Hybrid Journal   (Followers: 33)
Nature Climate Change     Full-text available via subscription   (Followers: 144)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 39)
Nīvār     Open Access  
npj Climate and Atmospheric Science     Open Access   (Followers: 6)
Open Atmospheric Science Journal     Open Access   (Followers: 4)
Open Journal of Modern Hydrology     Open Access   (Followers: 7)
Revista Brasileira de Meteorologia     Open Access  
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access  
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Space Weather     Full-text available via subscription   (Followers: 25)
Studia Geophysica et Geodaetica     Hybrid Journal  
Tellus A     Open Access   (Followers: 22)
Tellus B     Open Access   (Followers: 21)
The Cryosphere (TC)     Open Access   (Followers: 6)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 28)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 13)
Tropical Cyclone Research and Review     Open Access  
Urban Climate     Hybrid Journal   (Followers: 4)
Weather     Hybrid Journal   (Followers: 18)
Weather and Climate Dynamics     Open Access  
Weather and Climate Extremes     Open Access   (Followers: 16)
Weather and Forecasting     Hybrid Journal   (Followers: 27)
Weatherwise     Hybrid Journal   (Followers: 4)
气候与环境研究     Full-text available via subscription   (Followers: 1)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Number of Followers: 2  

  This is an Open Access Journal Open Access journal
ISSN (Online) 2624-795X
Published by MDPI Homepage  [238 journals]
  • GeoHazards, Vol. 2, Pages 302-320: Threshold Effects of Relative Sea-Level
           Change in Intertidal Ecosystems: Empirical Evidence from
           Earthquake-Induced Uplift on a Rocky Coast

    • Authors: Shane Orchard, Hallie S. Fischman, Shawn Gerrity, Tommaso Alestra, Robyn Dunmore, David R. Schiel
      First page: 302
      Abstract: Widespread mortality of intertidal biota was observed following the 7.8 Mw Kaikōura earthquake in November 2016. To understand drivers of change and recovery in nearshore ecosystems, we quantified the variation in relative sea-level changes caused by tectonic uplift and evaluated their relationships with ecological impacts with a view to establishing the minimum threshold and overall extent of the major effects on rocky shores. Vertical displacement of contiguous 50 m shoreline sections was assessed using comparable LiDAR data to address initial and potential ongoing change across a 100 km study area. Co-seismic uplift accounted for the majority of relative sea-level change at most locations. Only small changes were detected beyond the initial earthquake event, but they included the weathering of reef platforms and accumulation of mobile gravels that continue to shape the coast. Intertidal vegetation losses were evident in equivalent intertidal zones at all uplifted sites despite considerable variation in the vertical displacement they experienced. Nine of ten uplifted sites suffered severe (>80%) loss in habitat-forming algae and included the lowest uplift values (0.6 m). These results show a functional threshold of c.1/4 of the tidal range above which major impacts were sustained. Evidently, compensatory recovery has not occurred—but more notably, previously subtidal algae that were uplifted into the low intertidal zone where they ought to persist (but did not) suggests additional post-disturbance adversities that have contributed to the overall effect. Continuing research will investigate differences in recovery trajectories across the affected area to identify factors and processes that will lead to the regeneration of ecosystems and resources.
      Citation: GeoHazards
      PubDate: 2021-09-29
      DOI: 10.3390/geohazards2040016
      Issue No: Vol. 2, No. 4 (2021)
  • GeoHazards, Vol. 2, Pages 153-171: Seismic Liquefaction Risk Assessment of
           Critical Facilities in Kathmandu Valley, Nepal

    • Authors: Prabin Acharya, Keshab Sharma, Indra Prasad Acharya
      First page: 153
      Abstract: Kathmandu Valley lies in an active tectonic zone, meaning that earthquakes are common in the region. The most recent was the Gorkha Nepal earthquake, measuring 7.8 Mw. Past earthquakes caused soil liquefaction in the valley with severe damages and destruction of existing critical infrastructures. As for such infrastructures, the road network, health facilities, schools and airports are considered. This paper presents a liquefaction susceptibility map. This map was obtained by computing the liquefaction potential index (LPI) for several boreholes with SPT measurements and clustering the areas with similar values of LPI. Moreover, the locations of existing critical infrastructures were reported on this risk map. Therefore, we noted that 42% of the road network and 16% of the airport area are in zones of very high liquefaction susceptibility, while 60%, 54%, and 64% of health facilities, schools and colleges are in very high liquefaction zones, respectively. This indicates that most of the critical facilities in the valley are at serious risk of liquefaction during a major earthquake and therefore should be retrofitted for their proper functioning during such disasters.
      Citation: GeoHazards
      PubDate: 2021-07-15
      DOI: 10.3390/geohazards2030009
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 172-195: Fifteen Years of Continuous
           High-Resolution Borehole Strainmeter Measurements in Eastern Taiwan: An
           Overview and Perspectives

    • Authors: Alexandre Canitano, Maxime Mouyen, Ya-Ju Hsu, Alan Linde, Selwyn Sacks, Hsin-Ming Lee
      First page: 172
      Abstract: As one of the most sensitive instruments for deformation monitoring in geophysics, borehole strainmeter has the capability to record a large spectrum of tectonic and environmental signals. Sensors are usually deployed near active faults and volcanoes and provide high-resolution continuous recordings of seismic and aseismic signals, hydrological variations (rainfall, groundwater level) and natural hazards (tropical cyclones, landslides, tsunamis). On the occasion of the 50th anniversary of the installation of the first Sacks–Evertson borehole strainmeter, in central Japan, we present an overview of the major scientific contributions and advances enabled by borehole strainmeter measurements in Taiwan since their installation in the mid 2000s. We also propose a set of future research directions that address recent challenges in seismology, hydrology and crustal strain modeling.
      Citation: GeoHazards
      PubDate: 2021-07-16
      DOI: 10.3390/geohazards2030010
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 196-211: Reconstructing the Snow Avalanche of
           Coll de Pal 2018 (SE Pyrenees)

    • Authors: Marcos Sanz-Ramos, Carlos A. Andrade, Pere Oller, Glòria Furdada, Ernest Bladé, Eduardo Martínez-Gomariz
      First page: 196
      Abstract: Developments in mountain areas prone to natural hazards produce undesired impacts and damages. Thus, disaster assessment is mandatory to understand the physics of dangerous events and to make decisions to prevent hazardous situations. This work focusses on the practical implementation of methods and tools to assess a snow avalanche that affected a road at the Coll de Pal in 2018 (SE Pyrenees). This is a quite common situation in mountain roads and the assessment has to focus specially in the avalanche–road interaction, on the return periods considered and on the dynamics of the phenomena. This assessment presents the field recognition, snow and weather characterization and numerical modelling of the avalanche. Field campaigns revealed evidences of the avalanche triggering, runout trajectory and general behavior. An unstable situation of the snowpack due to a relatively large snowfall fallen some days before over a previous snowpack with weak layers, caused the avalanche triggering when an additional load was added by a strong wind-drift episode. A medium size (<2500 m3) soft slab avalanche, corresponding to a return period of 15–20 years, occurred and crossed the road of the Coll de Pal pass. The event was reproduced numerically by means of the 2D-SWE based numerical tool Iber aiming to analyze the avalanche behavior. Results of the simulation corresponded with the observations (runout trajectory and snow deposit); thus, relevant information about the avalanche dynamics could be obtained. Identified differences probably come from the terrain elevation data, which represent “snow free” topography and do not consider the snowpack on the terrain.
      Citation: GeoHazards
      PubDate: 2021-07-22
      DOI: 10.3390/geohazards2030011
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 212-227: Landslide Inventory along a National
           Highway Corridor in the Hissar-Allay Mountains, Central Tajikistan

    • Authors: Akmal Ubaidulloev, Hu Kaiheng, Manuchekhr Rustamov, Makhvash Kurbanova
      First page: 212
      Abstract: An increasing amount of landslides leading to significant human and economic consequences is a primary concern for the government of Tajikistan and local authorities. Based on the Committee on Emergency Situations data, from 1996 to 2018, there were 3460 emergencies and more than 1000 fatalities because of earthquake-triggered and rainfall-induced landslides in the region. In addition, landslides caused severe damage to houses and infrastructure facilities due to the population’s lack of landslide hazard knowledge. Therefore, current research focuses on developing a regional-scale landslide inventory map in the Hissar–Allay region, central Tajikistan, where the population density is much higher than at other mountainous territories. In recent decades, the enhancements in geographic information systems, the open access to high-resolution remote sensing data, and an extensive field survey allowed us to identify 922 landslides possible along the highway corridor in the Hissar–Allay region. Based on Varnes’s system, these landslides are classified into four categories: debris flows, rockfalls, shallow landslides, and complex (deep-seated) landslides, considering landslides morphology, geology, deformation of slopes, degree and aspect of slopes, and weathered and disintegrated zones on slopes in the study area. The results show that 8.24% of the total study area is affected by landslides. Along the highway corridor in the Hissar–Allay region there are 96 bodies of deep-seated landslides and 216 rockfall catchments, 273 debris flow catchments, and 313 shallow landslides. Thus, shallow landslides are the most frequent type of movement. In addition, landslide frequency-area distribution analysis shows that shallow landslides are frequent with an area of 1.88E+04 m2; most frequent debris flow channels have a place of 5.58E+05 m2; rockfalls, for its part, are rife with an area of 1.50E+05 m2, and frequent complex landslides have an area of 4.70E+06 m2. Furthermore, it was found out that slopes consist of Silurian formation comprise shales, pebbles, sands, loams, and limestones, metamorphic clays are exposed to landslides more than other geological formations because of the layered structure and their broad spatial distribution in the study area. As the first applied research to compile a landslide inventory map in the Hissar–Allay region on the regional scale, our study provides a sound basis for future explorations of landslide susceptibility, hazard, and risk assessment for this region.
      Citation: GeoHazards
      PubDate: 2021-08-09
      DOI: 10.3390/geohazards2030012
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 228-256: Megatsunamis Induced by Volcanic
           Landslides in the Canary Islands: Age of the Tsunami Deposits and Source

    • Authors: Mercedes Ferrer, Luis González de Vallejo, José Madeira, César Andrade, Juan C. García-Davalillo, Maria da Conceição Freitas, Joaquín Meco, Juan F. Betancort, Trinidad Torres, José Eugenio Ortiz
      First page: 228
      Abstract: Evidence for frequent, large landslides on the flanks of the volcanic edifices forming the Canary Islands include outstanding landslide scars and their correlative submarine and subaerial rock and debris avalanche deposits. These landslides involved volumes ranging from tens to hundreds of km3. The sudden entry of large volumes of rock masses in the sea may have triggered tsunamis capable of affecting the source and neighboring islands, with the resulting huge waves dragging coastal and seabed materials and fauna and redepositing them inland. Here, we present new geological evidence and geochronological data of at least five megatsunamis in Tenerife, Lanzarote, and Gran Canaria, triggered by island flank megalandslides, and occasionally explosive eruptions, during the last 1 million years. The exceptional preservation of the megatsunami deposits and the large area they cover, particularly in Tenerife, provide fundamental data on the number of tsunami events and run-ups, and allow proposals on the sources and age of the tsunamis. Tsunami run-up heights up to 290 m above coeval sea level, some of the highest known on Earth in recent geological times, were estimated based on sedimentological, geomorphological, paleontological, and geochronological data. The research results made it possible to estimate the recurrence of tsunamis in the archipelago during the last hundreds of thousands of years, and to establish relationships between tsunami deposits and the probable triggering island flank landslides.
      Citation: GeoHazards
      PubDate: 2021-08-12
      DOI: 10.3390/geohazards2030013
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 257-276: NAM-NMM Temperature Downscaling Using
           Personal Weather Stations to Study Urban Heat Hazards

    • Authors: Martina Calovi, Weiming Hu, Guido Cervone, Luca Delle Monache
      First page: 257
      Abstract: Rising temperatures worldwide pose an existential threat to people, properties, and the environment. Urban areas are particularly vulnerable to temperature increases due to the heat island effect, which amplifies local heating. Throughout the world, several megacities experience summer temperatures that stress human survival. Generating very high-resolution temperature forecasts is a fundamental problem to mitigate the effects of urban warming. This paper uses the Analog Ensemble technique to downscale existing temperature forecast from a low resolution to a much higher resolution using private weather stations. A new downscaling approach, based on the reuse of the Analog Ensemble (AnEn) indices, resulted by the combination of days and Forecast Lead Time (FLT)s, is proposed. Specifically, temperature forecasts from the NAM-NMM Numerical Weather Prediction model at 12 km are downscaled using 83 Private Weather Stations data over Manhattan, New York City, New York. Forecasts for 84 h are generated, hourly for the first 36 h, and every three hours thereafter. The results are dense forecasts that capture the spatial variability of ambient conditions. The uncertainty associated with using non-vetted data is addressed.
      Citation: GeoHazards
      PubDate: 2021-08-13
      DOI: 10.3390/geohazards2030014
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 277-301: Reduction of Bias and Uncertainty in
           Regional Seismic Site Amplification Factors for Seismic Hazard and Risk

    • Authors: Mohammad Kamruzzaman Talukder, Philippe Rosset, Luc Chouinard
      First page: 277
      Abstract: Site amplification factors in National Building Codes are typically specified as a function of the average shear wave velocity over the first 30 m (Vs30) or site class (A, B, C, D and E) for defined ranges of Vs30 and/or ranges of depth to bedrock. However, a single set of amplification factors may not be representative of site conditions across the country, introducing a bias in seismic hazard and seismic risk analyses. This is exemplified by significant differences in geological settings between East and West coast locations in North America. Western sites are typically characterized by lower impedance contrasts between recent surface deposits and bedrock in comparison to Eastern sites. In North America, site amplification factors have been derived from a combination of field data on ground motions recorded during West Coast earthquakes and numerical models of site responses that are meant to be representative of a wide variety of soil profiles and ground motions. The bias on amplifications and their impact on seismic hazards is investigated for the Montreal area, which ranks second for seismic risks in Canada in terms of population and hazard (PGA of 0.25 g for a 2475 years return period). Representative soil profiles at several locations in Montreal are analyzed with 1-D site response models for natural and synthetic ground motions scaled between 0.1 to 0.5 g. Since bedrock depths are typically shallow (<30 m) across the island, bedrock shear wave velocities have a significant influence on the impedance contrast and amplifications. Bedrock shear wave velocity is usually very variable due to the differences in rock formations, level of weathering and fracturing. The level of this uncertainty is shown to be greatly decreased when rock quality designation (RQD) data, common information when bore hole data are logged, is available since it is highly correlated with both shear and compression wave velocities. The results are used to derive region-specific site amplification factors as a function of both Vs30 and site fundamental frequency and compared to those of the National Building Code of Canada (2015). The results of the study indicate that there are large uncertainties associated with these parameters due to variability in soil profiles, soil properties and input seismic ground motions. Average and confidence intervals for the mean and for predictions of amplification factors are calculated for each site class to quantify this uncertainty. Amplifications normalized relative to class C are obtained by accounting for the correlation between site class amplifications for given ground motions. Non-linearity in the analysis of equivalent linear 1-D site response is taken into account by introducing the non-linear G/Gmax and damping ratios curves. In this method, it is assumed that the shear strain compatible shear modulus and damping ratio values remains constant throughout the duration of the seismic excitation. This assumption is not fully applicable to a case when loose saturated soil profile undergo heavy shaking (PGA > 0.3 g). In this study, all simulations with input motion PGA >0.3 g have been performed by using the EL method instead of the NL method considering that cohesive soils (clay and silt) at Montreal sites are stiff and cohesionless soils (sand and gravel) are considerably dense. In addition, the field and laboratory data required to perform NL analyses are not currently available and may be investigated in future works.
      Citation: GeoHazards
      PubDate: 2021-09-03
      DOI: 10.3390/geohazards2030015
      Issue No: Vol. 2, No. 3 (2021)
  • GeoHazards, Vol. 2, Pages 17-40: A Framework for Studying Hydrology-Driven
           Landslide Hazards in Northwestern US Using Satellite InSAR, Precipitation
           and Soil Moisture Observations: Early Results and Future Directions

    • Authors: Zhong Lu, Jinwoo Kim
      First page: 17
      Abstract: The mountainous Pacific Northwest is prone to heavy winter rainfall, resulting in hundreds of landslides per year, human casualties, and billions of dollars of property damage. Precipitation is a major hydrologic trigger for landslides in the northwestern US and around the world. This paper reviews existing literature to outline a framework to study the linkage between precipitation and landslide hazards over the northwestern US using satellite remote sensing techniques including interferometric synthetic aperture radar (InSAR) methods, Tropical Rainfall Measuring Mission (TRMM) satellite precipitation products, and Soil Moisture Active Passive (SMAP) satellite soil moisture data, along with correlation analysis and numerical modeling. InSAR time-series displacements provide an indication of landslide occurrence and extent, and help characterize the basal slip surface and slide-body volume based on the law of mass conservation. Precipitation and soil moisture sensed from the space and ground contribute to creating hydrogeological models associated with water infiltration. These crucial parameters are tracked through correlation and slope stability analysis to understand landslide dynamics. We highlight the results on mapping landslides over the state of Washington and analyses at a few select sites over southern Washington and southwestern Oregon. We conclude that satellite observations of landslide motions and the attributing hydrological variables from both radar and optical images improve our understanding of the inter-relationships between the hydrologic processes along with topographic and geologic settings, and the landslide kinematics and mechanisms inferred from time-series measurements and landslide modeling on a regional scale.
      Citation: GeoHazards
      PubDate: 2021-04-22
      DOI: 10.3390/geohazards2020002
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 41-62: Displacement Analyses for a Natural Slope
           Considering Post-Peak Strength of Soils

    • Authors: Chien-Li Lo, Ching-Chuan Huang
      First page: 41
      Abstract: A natural slope undergoing recurrent movements caused by rainfall-induced groundwater table rises is studied using a novel method. The strength and displacement parameters are back-calculated using a force-equilibrium-based finite displacement method (FFDM) based on the first event of slope movement recorded in the monitoring period. Slope displacements in response to subsequent rainfall-induced groundwater table rises are predicted using FFDM based on the back-calculated material parameters. Important factors that may influence the accuracy of slope displacement predictions, namely, the curvature of the Mohr-Coulomb (M-C) failure envelope and post-peak strength softening, are investigated. It is found that the accuracy of slope displacement predictions can be improved by taking into account post-peak stress-displacement relationship in the analysis. The accuracy of slope displacement predictions is not influenced by the curvature of the M-C failure envelope in the displacement analysis.
      Citation: GeoHazards
      PubDate: 2021-05-01
      DOI: 10.3390/geohazards2020003
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 63-79: Multiscale Quantification of Tsunami
           Hazard Exposure in a Pacific Small Island Developing State: The Case of

    • Authors: Shaun Williams, Ryan Paulik, Rebecca Weaving, Cyprien Bosserelle, Josephina Chan Ting, Kieron Wall, Titimanu Simi, Finn Scheele
      First page: 63
      Abstract: This study presents a scenario-based approach for identifying and comparing tsunami exposure across different sociopolitical scales. In Samoa, a country with a high threat to local tsunamis, we apply scenarios for the 2009 South Pacific tsunami inundation at different grid resolutions (50 and 10 m) to quantify building and road exposure at the national, district and village levels. We show that while the coarser 50 m model is adequate for use in the rapid identification of exposure at the national and district levels, it can overestimate exposure by up to three times more at the village level. Overestimation typically occurs in areas characterized by flat, low-lying, gentle-rising terrain. Overall, a 35% increase in buildings exposed to the 50 m model is observed compared with the 10 m scenario on southeast Upolu island. Similarly, a 31% increase in road exposure is observed for the 50 m scenario. These observations are discussed within the context of tsunami evacuation planning and logistics. Notwithstanding the variability in exposure, a precautionary approach leads us to conclude that while higher-resolution models are recommended where available data and/or financial resources permit, the absence of such datasets should not preclude the use of coarser hazard datasets in risk assessments. Finer-resolution models provide more credence in detailed local-level exposure evaluation. While the results of this study are specific to the Samoan context, the results can be applied to the multiscale assessment of tsunami risk exposure in similar hazard contexts.
      Citation: GeoHazards
      PubDate: 2021-05-11
      DOI: 10.3390/geohazards2020004
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 80-100: Status of Mean Sea Level Rise around the
           USA (2020)

    • Authors: Phil J. Watson
      First page: 80
      Abstract: The potential threats to the USA from current and projected sea level rise are significant, with profound environmental, social and economic consequences. This current study continues the refinement and improvement in analysis techniques for sea level research beyond the Fourth US National Climate Assessment (NCA4) report by incorporating further advancements in the time series analysis of long tide gauge records integrated with an improved vertical land motion (VLM) assessment. This analysis has also been synthesised with an updated regional assessment of satellite altimetry trends in the sea margins fringing the USA. Coastal margins more vulnerable to the threats posed by rising sea levels are those in which subsidence is prevalent, higher satellite altimetry trends are evident and higher ‘geocentric’ velocities in mean sea level are being observed. The evidence from this study highlights key spatial features emerging in 2020, which highlight the northern foreshore of the Gulf Coast and along the east coast of the USA south of the Chesapeake Bay region being more exposed to the range of factors exacerbating threats from sea level rise than other coastlines at present. The findings in this study complement and extend sea level research beyond NCA4 to 2020.
      Citation: GeoHazards
      PubDate: 2021-05-19
      DOI: 10.3390/geohazards2020005
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 101-119: Seismic Vulnerability Assessment and
           Strengthening Interventions of Structural Units of a Typical Clustered
           Masonry Building in the Campania Region of Italy

    • Authors: Antonio Formisano, Nicola Chieffo, Generoso Vaiano
      First page: 101
      Abstract: The present paper aims at inspecting the structural behaviour of a typical masonry aggregate located in the historical centre of Cercola, a municipality in the province of Naples. The clustered building under study consists of four structural units mutually connected to each other made of tuff stone and deformable floors. Two distinct structural units, namely in heading and intermediate places, in both isolated and aggregate conditions, are examined to estimate the influence of structural positions on the global seismic response of the examined case study buildings. For this purpose, non-linear static analyses are performed using the 3MURI software. Pushover analyses are conducted to both evaluate the seismic behaviour of examined structural units and improve their earthquake performances while considering proper retrofit interventions on vertical and horizontal structures. The analysis results are plotted in terms of risk factor, stiffness, and ductility. Finally, a set of fragility functions are derived to point out the structural response of the case study buildings before and after retrofit interventions. From the achieved results, it is highlighted that retrofit interventions improve the structural performances of the buildings, especially those of structural units in aggregate conditions.
      Citation: GeoHazards
      PubDate: 2021-06-02
      DOI: 10.3390/geohazards2020006
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 120-136: Improving Community Resilience and
           Emergency Plans by Mapping Risk and Preparedness at the Neighborhood Scale

    • Authors: Yaron Finzi, Noam Ganz, Yoash Limon, Sebastian Langer
      First page: 120
      Abstract: People living in areas of significant seismic risk seldom undertake sufficient preparations to safeguard their families. This is most problematic in remote communities such as those along the Dead Sea Fault, Israel, where self-reliance is a key factor in coping with disasters. To facilitate individual and familial involvement in earthquake preparedness in remote areas, we designed a tool for self-assessment of risk and preparedness. The personalized risk assessment is based on national hazard and building standards, and on personal input regarding structure characteristics. The risk and preparedness evaluations enhance awareness and provide immediate feedback to help users improve familial preparedness. The spatial analysis of the data collected is used to form high-resolution maps that expose specific challenges for emergency responses. A study conducted in the town of Mitzpe Ramon exposed neighborhoods with a relatively high risk of damage and low preparedness. Integrating these results with seasonal stress-factors such as peak tourism and extreme weather, provides new and important insights into the ability of the local community and emergency forces to cope with multihazard situations. An analysis of the heterogeneous distribution of expected hardship within a community should be implemented worldwide to improve risk mitigation.
      Citation: GeoHazards
      PubDate: 2021-06-04
      DOI: 10.3390/geohazards2020007
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 137-152: A Quantitative Approach to Assess
           Seismic Vulnerability of Touristic Accommodations: Case Study in Montreal,

    • Authors: Thomas Candela, Philippe Rosset, Luc Chouinard
      First page: 137
      Abstract: In many places of the world, the interruption of touristic activities in the aftermath of a catastrophic earthquake is often neglected in the evaluation of seismic risks; however, these activities can account for a significant proportion of short-term and long-term economic impacts for these regions. In the last decade, several rapid visual screening techniques have been developed to define the typology of buildings and to estimate their seismic vulnerability and potential for damage. We adapted the existing screening procedures that have been developed for generic buildings to specific circumstances that are most common for tourist accommodations. The proposed approach considered six criteria related to structural and nonstructural elements of buildings, as well as local soil conditions. A score was assigned to each criterion as a function of the capacity of the elements to resist ground shaking. A vulnerability index in four levels of building vulnerability was developed combining the scores of the six criteria. The approach was tested in a pilot area of Montreal to a set of 70 typical buildings grouped in four categories based on their accommodation capacity. In Montreal, tourism is an important source of income for the city where 351,000 room-nights were booked with total stay expenditures of CAD 4.9 billion in 2019. The results indicated potential significant disruptions in activities related to tourism; 46% of the buildings investigated have a high to very high vulnerability index. Among them, 4/5 are located in the old city and 1/5 in the downtown area of the pilot zone.
      Citation: GeoHazards
      PubDate: 2021-06-16
      DOI: 10.3390/geohazards2020008
      Issue No: Vol. 2, No. 2 (2021)
  • GeoHazards, Vol. 2, Pages 1-16: Towards a Semi-Quantitative Approach for
           Assessing Evacuation Scenarios in the Context of Popocatépetl Volcano,
           México—The Case of San Pedro Tlalmimilulpan

    • Authors: Rafael Ramírez Eudave, Tiago Miguel Ferreira
      First page: 1
      Abstract: Volcanic exposure implies multiple hazards for human settlements. The identification of the potential hazards that volcanic activity can entail is a challenge requiring assessing the specific situations that a determined place would face. Popocatépetl, a volcano in the centre of México, represents a significant hazard source, and it is located within a densely populated region with more than 20 million people. Despite the existence of a colour-based volcano alert level system for the current activity of the volcano, it is relevant to assess which local scenarios are more likely depending on numerous variables, namely, related to the distance from the volcano. A semi-quantitative analysis was carried out based on existing hazard maps and considering the probability of occurrence of volcanic explosivity, taking the settlement of San Pedro Tlalmimilulpan as a case study. This analysis led to a hierarchised rank of hazards, providing a basis for analysing multiple scenarios through failure mode and event analysis, failure tree analysis and event tree analysis. This process facilitates the contextualisation of the multiple challenges and potential chains of events that emergency actions, namely, emergency evacuations, would face. The analysis of the critical paths can help to identify critical aspects that could hinder the post-event response.
      Citation: GeoHazards
      PubDate: 2021-01-25
      DOI: 10.3390/geohazards2010001
      Issue No: Vol. 2, No. 1 (2021)
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-