Abstract: Introduction:Changes in climate have impacts on natural and human systems on all continents and across the oceans. Most countries, including the UAE, are expected to experience a huge impact of climate change, due to the undergoing rapid growth and huge urban developments.Materials & Methods:Representative Concentration Pathways, or RCPs, represent the latest generation of scenarios that are used as potential inputs into climate models to show imposed greenhouse-gas concentration pathways during the 21 century. Four emission scenarios have been used for climate research;
Abstract: Background:Estimation of tropospheric radio refractivity is significant in the planning and design of terrestrial communication links.Methods:In this study, the monthly average daily atmospheric pressure, relative humidity and temperature data obtained from the National Aeronautics and Space Administration (NASA) during the period of twenty two years (July 1983 - June 2005) for Osogbo (Latitude 7.47 N, Longitude 4.29 E, and 302.0 m above sea level) were used to estimate the monthly tropospheric radio refractivity. The monthly average daily global solar radiation with other meteorological parameters was used to developed one, two, three and four variable correlation(s) tropospheric radio refractivity models for the location. The accuracy of the proposed models are validated using statistical indicator of coefficient of determination (R), Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), Nash - Sutcliffe Equation (NSE) and Index of Agreement (IA).Results:In each case one empirical model was recommended based on their exceptional performances after ranking, except for the two variation correlations with two empirical models. The recommended models were further subjected to ranking from which the three variable correlations model that relates the radio refractivity with the absolute temperature, relative humidity and global solar radiation was found more suitable for estimating tropospheric radio refractivity for Osogbo with R = 100.0%, MBE = -0.2913 N-units, RMSE = 0.3869 N-units, MPE = 0.0811%, NSE = 99.9999% and IA = 100.00%.Conclusion:The newly developed recommended models (Equations 16c, 17d, 17f, 18d and 19) can be used for estimating daily and monthly values of tropospheric radio refractivity with higher accuracy and has good compliance to highly varying climatic conditions for Osogbo and regions of similar climatic information.
Abstract: Background:The mesoscale circulation over Kuwait is an important influence on changes in surface temperatures and soil temperatures.Introduction:This paper presents two common summertime atmospheric features over Kuwait linking wind circulation to soil temperatures.Methods:In this study, we use the European Centre for Medium-range Weather Forecasts ECMWF reanalysis ERA-Interim dataset to investigate effects of the synoptic scale and mesoscale circulations.Results:The results show that a large-scale pressure gradient in summer typically leads to northerly winds over Kuwait, while a weak synoptic-scale pressure gradient leads to light easterly humid winds from the Persian Gulf, consistent with a mesoscale circulation.Conclusions:The results demonstrate the significance of wind circulations in driving the Soil Temperature (SOILT). Using the Era-Interim/Land reanalysis dataset for August 2015 over Kuwait, the average SOILT on days of sea breeze is higher than the average SOILT on days dominated by a synoptic-scale pressure gradient.
Abstract: Introduction:Some weather extremes are the result of atmospheric blocking, which can be responsible for the stagnation of weather patterns. These large-scale quasi-stationary mid-latitude flow regimes can result in significant temperature and precipitation anomalies over the regions that the blocking event impacts or in the upstream and downstream regions.Methods:The ability to predict periods of anomalous weather conditions due to atmospheric blocking is a major problem for medium-range forecasting. Analyzing the National Centers for Environmental Prediction (NCEP) Ensemble 500-hPa pressure level heights (240 hrs.) ten-day forecasts, and using the University of Missouri blocking archive to identify blocking events, the forecasted onset, duration, and intensity of model blocking events are compared to observed blocks.Results and Discussion:The observed blocking events were identified using the University of Missouri blocking archive. Comparing these differences using four Northern Hemisphere case studies occurring over a one-year period across the Northern Hemisphere has shown the continued need for improvement in the duration and intensity of blocking events. Additionally, a comparison of the block intensity to a diagnostic known as the Integrated Regional Enstrophy (IRE) was performed in order to determine if there is a correlation between IRE and these quantities.Conclusion:Having a better understanding of block persistence and their associated anomalies can help society prepare for the damage they can cause.
Abstract: Objective:The diurnal variations of several ionospheric characteristics during the Space Weather Events of 4-10 September 2017, for Chilean latitudes, will be reported.Materials and Methods:Observations were made using a recently installed ionosonde at the Universidad de La Serena field station (29°52'S; 71°15’W). Also, reported is the total electron content determined using the upgraded Chilean network of dual-frequency Global Navigation Satellite Systems (GNSS) receivers.Results:Sudden ionospheric disturbances are described in terms of the minimum reflection frequency determined from ionosonde records. An attempt to derive the extent of the effect on high frequency propagation paths in the region is made using simultaneous ionosonde observations at other locations.The geomagnetic storm ionospheric effects are discussed in detail using the observed diurnal variation of maximum electron concentration (NmF2), virtual height of the F-region (h’F/F2) and Total Electron Content (TEC). These are complemented with the time-latitude variation of TEC for the 70°W meridian.Conclusion:It is found that large increases of NmF2, h’F/F2 and TEC observed during 8 September 2017 storm are well described in terms of the evolution of the Equatorial Ionospheric Anomaly (EIA) over the same time interval. Known physical mechanisms are suggested to explain most of the observations.