A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 106 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 4)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 49)
Advances in Climate Change Research     Open Access   (Followers: 61)
Advances in Meteorology     Open Access   (Followers: 24)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 10)
Aeolian Research     Hybrid Journal   (Followers: 7)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 23)
American Journal of Climate Change     Open Access   (Followers: 41)
Atmósfera     Open Access   (Followers: 2)
Atmosphere     Open Access   (Followers: 33)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 16)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 9)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 43)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 16)
Atmospheric Environment     Hybrid Journal   (Followers: 71)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 71)
Atmospheric Science Letters     Open Access   (Followers: 40)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 32)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 5)
Bulletin of the American Meteorological Society     Open Access   (Followers: 64)
Carbon Balance and Management     Open Access   (Followers: 6)
Ciencia, Ambiente y Clima     Open Access   (Followers: 1)
Climate     Open Access   (Followers: 8)
Climate and Energy     Full-text available via subscription   (Followers: 11)
Climate Change Economics     Hybrid Journal   (Followers: 52)
Climate Change Responses     Open Access   (Followers: 29)
Climate Dynamics     Hybrid Journal   (Followers: 46)
Climate Law     Hybrid Journal   (Followers: 7)
Climate of the Past (CP)     Open Access   (Followers: 8)
Climate of the Past Discussions (CPD)     Open Access   (Followers: 1)
Climate Policy     Hybrid Journal   (Followers: 60)
Climate Research     Hybrid Journal   (Followers: 7)
Climate Resilience and Sustainability     Open Access   (Followers: 34)
Climate Risk Management     Open Access   (Followers: 11)
Climate Services     Open Access   (Followers: 6)
Climatic Change     Open Access   (Followers: 72)
Current Climate Change Reports     Hybrid Journal   (Followers: 26)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 8)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 20)
Earth Perspectives - Transdisciplinarity Enabled     Open Access   (Followers: 1)
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 18)
Energy & Environment     Hybrid Journal   (Followers: 25)
Environmental and Climate Technologies     Open Access   (Followers: 3)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 25)
Frontiers in Climate     Open Access   (Followers: 5)
GeoHazards     Open Access   (Followers: 2)
Global Meteorology     Open Access   (Followers: 17)
International Journal of Atmospheric Sciences     Open Access   (Followers: 26)
International Journal of Biometeorology     Hybrid Journal   (Followers: 4)
International Journal of Climate Change Strategies and Management     Hybrid Journal   (Followers: 32)
International Journal of Climatology     Hybrid Journal   (Followers: 29)
International Journal of Environment and Climate Change     Open Access   (Followers: 28)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 3)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 40)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 35)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 183)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 24)
Journal of Climate     Hybrid Journal   (Followers: 60)
Journal of Climate Change     Full-text available via subscription   (Followers: 29)
Journal of Climate Change and Health     Open Access   (Followers: 9)
Journal of Climatology     Open Access   (Followers: 4)
Journal of Economic Literature     Hybrid Journal   (Followers: 19)
Journal of Hydrology and Meteorology     Open Access   (Followers: 40)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 9)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 3)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 18)
Journal of Space Weather and Space Climate     Open Access   (Followers: 29)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 84)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 7)
Journal of Weather Modification     Full-text available via subscription   (Followers: 2)
Mediterranean Marine Science     Open Access   (Followers: 2)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Open Access   (Followers: 5)
Meteorological Monographs     Hybrid Journal   (Followers: 4)
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 5)
Meteorology     Open Access   (Followers: 19)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 31)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal   (Followers: 1)
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 15)
Monthly Weather Review     Hybrid Journal   (Followers: 30)
Nature Climate Change     Full-text available via subscription   (Followers: 198)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 41)
Nīvār     Open Access   (Followers: 1)
npj Climate and Atmospheric Science     Open Access   (Followers: 6)
Open Atmospheric Science Journal     Open Access   (Followers: 7)
Open Journal of Modern Hydrology     Open Access   (Followers: 6)
Oxford Open Climate Change     Open Access   (Followers: 8)
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access   (Followers: 1)
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Space Weather     Full-text available via subscription   (Followers: 28)
Studia Geophysica et Geodaetica     Hybrid Journal   (Followers: 1)
Tellus A     Open Access   (Followers: 20)
Tellus B     Open Access   (Followers: 20)
The Cryosphere (TC)     Open Access   (Followers: 13)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 32)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 13)
Tropical Cyclone Research and Review     Open Access   (Followers: 1)
Urban Climate     Hybrid Journal   (Followers: 4)
Weather and Climate Dynamics     Open Access   (Followers: 3)
Weather and Climate Extremes     Open Access   (Followers: 16)
Weather and Forecasting     Hybrid Journal   (Followers: 41)
Weatherwise     Hybrid Journal   (Followers: 18)
气候与环境研究     Full-text available via subscription   (Followers: 2)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Earth Perspectives - Transdisciplinarity Enabled
Number of Followers: 1  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2194-6434
Published by SpringerOpen Homepage  [229 journals]
  • Markov chain analysis of the rainfall patterns of five geographical
           locations in the south eastern coast of Ghana

    • Abstract: Abstract This study develops an objective rainfall pattern assessment through Markov chain analysis using daily rainfall data from 1980 to 2010, a period of 30 years, for five cities or towns along the south eastern coastal belt of Ghana; Cape Coast, Accra, Akuse, Akatsi and Keta. Transition matrices were computed for each town and each month using the conditional probability of rain or no rain on a particular day given that it rained or did not rain on the previous day. The steady state transition matrices and the steady state probability vectors were also computed for each town and each month. It was found that, the rainy or dry season pattern observed using the monthly steady state rainfall vectors tended to reflect the monthly rainfall time series trajectory. Overall, the probability of rain on any day was low to average: Keta 0.227, Akuse 0.382, Accra 0.467, Cape Coast, 0.50 and Akatsi 0.50. In particular, for Accra, the rainy season was observed to be in the months of May to June and September to October. We also determined that the probability of rainfall generally tended to increase from east to west along the south eastern coast of Ghana.
      PubDate: 2017-08-18
  • Inventive processes in nature: from information origin in chemical
           evolution to technological exhaustion

    • Abstract: Abstract It has been ten years since the 2006 work of Abel and Trevors wherein the cybernetic path of life’s origin was proposed as an alternative to the widely held views of such origin being self-ordering and self-organisation. Cybernetic adaptation is now recognised as a cornerstone of biological and technological evolution and as well as of artificial intelligence (AI) and cognition. It is expected that chemical evolution, preceding biological evolution, will have a cybernetic explanation as well. Among all evolutions, only AI evolutionary computation and cognition are accessible via the scientific method. For biological and technological evolutions, we only have the example of one, while for chemical evolution we have no template at all. The aim of this essay is to look for commonalities in all evolutions and attempt to fill in the missing pieces of the chemical and technological evolutions with knowledge that can be obtained by observing evolutions with a complete record. Types of information – quantum, chemical and functional – are defined, and their roles explained. It is proposed that the temporal survivability of information should be considered as a factor of general evolutionary fitness for all evolutionary adaptations. This study further suggests that because all experimentation spaces are finite they may become exhausted due to convergence towards optimal configurations. Such exhaustion of important experimental areas might reflect the observed decay of technological innovation and economic growth.
      PubDate: 2017-08-15
  • A comparative analysis of reference evapotranspiration from the surface of
           rainfed grass in Yaounde, calculated by six empirical methods against the
           penman-monteith formula

    • Abstract: Abstract Six reference evapotranspiration (ETo) methods including: Papadakis (1966), Turc (1961), Blaney and Criddle (1950), Blaney and Criddle modified by Shih et al. (1977), Penman modified by Frere and Popov (1979) and Stephens and Stewart (1963) modified by Jansen and Haise, were compared with the FAO-56 Penman-Monteith formula using rain-fed grass data within the period of 15 years (1967 to 1982) in Yaoundé, extracted from the records of climatological observations from meteorological stations published by the National Meteorological Center of Cameroon. The methods compared daily ETo using linear regression and statistical indices of a quantitative approach to model performance evaluation. The average FAO-56 PM ETo was 3.16 mm/day, but Penman modified by Frere and Popov (1979) overestimated ETo by 25% (12.72 mm/day) and Papadakis (1966) underestimated ETo by 8% (0.28 mm/day). In general, the Stephens and Stewart (1963) modified by Jansen and Haise method produced best statistics result (R2 = 0.96, RMSE = 0.072, MBE = -1.260, RMSEs = 0.980 and RMSEu = 0.693) and generated ETo results of 2.76 mm/day (2% underestimate), closest to that of FAO-56 PM method. The results of statistical comparisons delivered a confident statistical justification for the ranking of the compared methods based on performance indices.
      PubDate: 2017-06-28
  • Framework for the optimization of operation and design of systems with
           different alternative water sources

    • Abstract: Abstract Water security has become an increasing concern for many water system managers due to climate change and increased population. In order to improve the security of supply, alternative sources such as harvested stormwater, recycled wastewater and desalination are becoming more commonly used. This brings about the need for tools to analyze and optimize systems that use such sources, which are generally more complex than traditional water systems. Previous methodologies have been limited in their scope and cannot be applied to all types of water sources and systems. The framework presented in this paper has been developed for holistic analysis and optimization of water supply and distribution systems that use alternative water sources. It includes both design and operational decision variables, water and energy infrastructure, simulation of systems, analysis of constraints and objectives, as well as policies and regulations which may affect any of these factors. This framework will allow users to develop a comprehensive analysis and/or optimization of their water supply system, taking into account multiple types of water sources and consumers, the effect of their own design and operational decisions, and the impact of government policies and different energy supply options. Two case study systems illustrate the application of the framework; the first case study is a harvested stormwater system that is used to demonstrate the importance of simulation and analysis prior to optimization, the second utilizes four different water sources to increase security of supply and was optimized to reduce pump energy use.
      PubDate: 2017-04-12
  • Protected area management and local access to natural resources: a change
           analysis of the villages neighboring a world heritage site, the Keoladeo
           National Park, India

    • Abstract: Abstract A network of Protected Areas (PAs) has been the main strategy adopted in India for conservation of biodiversity and wildlife. Thus, more than 600 PAs are established; however, pressures from the human settlements in the proximity have been a serious concern for their management. To appreciate the interplay of governance of PAs and human settlements around them, we selected Keoladeo National Park (KNP), a Ramsar and world heritage site in India, as a model. We compared the socio-economic state of the inhabitants in the 13 villages and their dependency on KNP for resources two decades ago with that of the present. Information on socio-economic indicators was collected from the villagers using a customized questionnaire. Data was also collected from concerned government departments. Significant changes in human population, literacy, households, fuel use, water level, agriculture, occupations and irrigation techniques were seen. Much of the traditional agricultural fields are now open for other uses. The changes reflect reconciliation by the neighborhood community with the governance strategy and a shift in their resource utilization. The major local driver for the changes was an abrupt change in conservation praxis in the KNP.
      PubDate: 2017-04-07
  • Selection of a representative subset of global climate models that
           captures the profile of regional changes for integrated climate impacts

    • Abstract: Abstract We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.
      PubDate: 2017-03-04
  • Stakeholder perceptions of water systems and hydro-climate information in
           Guanacaste, Costa Rica

    • Abstract: Abstract In the face of changing environmental and socio-economic drivers, access to, understanding of, and the use of probabilistic climate forecasts and other sources of scientific hydro-climate information are important for informed decision making in the water sector. This paper characterizes and compares local perceptions of the water system and hydro-climate information in the seasonally dry province of Guanacaste, Costa Rica. Semi-structured interviews were conducted with a total of 40 participants from 7 water-related groups. Interview results were used to compare mental models of the drivers of water systems and water scarcity mitigation/adaptation options, and relate them to stakeholder information needs, accuracy ratings, and use. Our results suggest that: 1) while there appear to be similar perceptions of the drivers of rainfall and groundwater, there is a gap between groups in the use of forecasts, the awareness of management options, and the level of detailed understanding of how the water system works; 2) there are potential mismatches between the information presented in rainfall forecasts and the stated and/or salient information needs of some stakeholders, specifically in the case of groundwater resources; 3) there appear to be different perceptions of forecasts even among groups that rate the accuracy of such forecasts the same; and 4) there appears to be a relationship between the use of forecasts and certain types of management actions such as long-term planning. Our findings warrant further investigation and confirmation and may contribute to the development of communications that help stakeholders make informed decisions about freshwater management in semi-arid regions.
      PubDate: 2016-07-04
  • Reliability and usability of tourism climate indices

    • Abstract: Abstract Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective.
      PubDate: 2016-04-18
  • Sharing skills and needs between providers and users of climate
           information to create climate services: lessons from the Northern Adriatic
           case study

    • Abstract: Abstract The need to cope with the expected impacts of climate change on socio-ecological systems calls for a closer dialogue between climate scientists and the community of climate information users. We describe an interactive process designed to bridge this gap by establishing a two-way communication, based on mutual learning. We analyse the need of climate information for the integrated assessment of climate change impacts on the coastal zone of the Northern Adriatic Sea, which is considered to be particularly vulnerable to several climate-related phenomena, e.g. heavy rainfall events, pluvial flood, and sea level rise, causing potentially high damage to coastal ecosystems and urban areas (e.g. acqua alta in the Venice Lagoon). A participatory process was designed engaging representatives from both the scientific and local stakeholders communities, and facilitated by a boundary organization, embodied by the Euro-Mediterranean Center on Climate Change. End-users of climate information (e.g. decision makers belonging to public institutions) were selected among representatives of those public institutions having a specific mandate for Integrated Coastal Zone Management, and engaged to identify their needs. During the early stages of the interaction process, several priorities were identified, including: (1) data to support land-use planning, (2) data with greater resolution and longer time series, (3) data on climate impacts and risks, (4) precipitation patterns to improve irrigation, (5) sea level rise and tides, (6) climate variations and extreme events, (7) seasonal trend for tidal waves, and (8) hydraulic risk. Three climate products were developed to address these needs: (1) short-term projections of sea level rise; (2) seasonal predictions of extreme rainfall events; (3) long-term regional projections of climate extremes (including heat waves, dry spells and heavy rainfall events). Additionally, two risk products were developed: 4) sea level rise inundation risk maps for the low-lying coastal areas of Veneto and Friuli-Venezia Giulia regions; and 5) pluvial flood risk maps for the urban territory of the municipality of Venice.
      PubDate: 2016-03-15
  • Exploring the ability of current climate information to facilitate local
           climate services for the water sector

    • Abstract: Abstract Local climate services become increasingly necessary in making adaptation to our changing climate more understandable and manageable. The ability of current climate information to develop and support local climate services for water resources management in close collaboration with local users of the water sector from the island of Crete is being explored. Climate modeling output ranging from event scale to decadal and centennial experiments, at hourly to monthly temporal scales and at high resolution (2 Km) to GCM spatial scales (100–250 km), are used to assess climate change impacts on water resources availability and extremes. A robust signal of temperature increase and precipitation decrease is projected for all future periods, in parallel to an increase in magnitude of extreme precipitation. Several messages could be extracted from the provider – user interaction such as the communication of basic concepts and uncertainties, user skepticism and feedback. The frequent personal contact, the communication in layman’s terms of the limitations of the climate impact modeling and the corresponding uncertainties, is the key to successful provisions of suitable information.
      PubDate: 2015-11-24
  • A farmer-based analysis of climate change adaptation options of
           agriculture in the Bărăgan Plain, Romania

    • Abstract: Abstract The paper has in view the assessment of the impact of climate change on agriculture in the main agricultural region of Romania (Bărăgan Plain), by understanding the contextual socio-economic factors of agriculture in the area as a key step towards climate adaptation, but also through identifying the user needs, awareness and requirements in terms of climate information. A special attention was given to the analysis of the changes in the socio-economic and political context of Romania since 1989, the post-communist period, marked by fundamental transformations in agriculture, with collective and state property being replaced by private property. The poor development of the productive services in agriculture resulted in the degradation of land’s productive potential and the intensification the adverse effects of extreme climatic phenomena, proving a strong dependency of crop yields and productivity on climate. The mid-term (2021–2050) and long-term (2071–2100) climate variability and change of some key variables affecting crop development (air temperature, precipitation, evapotranspiration), under different scenarios have been investigated in relation to the potential impacts on main crops. A set of relevant climate extreme and agro-meteorological indices was further used to estimate the potential climate change impacts on agriculture. The study was focused on the interaction with farmers, the main actors of the climate adaptation process in the area, aiming to evaluate their perception and response to climate change. The research approach was mainly done through face-to-face interviews, as farmers did not respond positively to organised meetings. An important difference was noticed in terms of adaptive capacity between the large farms with a high adaptive capacity and low subsistence farms (family-run farms), the most vulnerable category to both socio-economic and climate change. The main climate adaptation measure considered crucial by the farmers is the rehabilitation/construction of irrigation systems. The study provides useful scientific insights which could improve the understanding of farmers and decision-makers on the potential impacts of the future climate change on crops, but also to mainstream climate adaptation actions in the agriculture policy.
      PubDate: 2015-07-02
  • The sensitivity of present-time electricity demand on past climate change:
           a case study for Italy

    • Abstract: Abstract A methodology for estimating secular daily minimum, mean and maximum (Tn, Tm and Tx) temperature records for any urbanised point of a 30-arc-second-resolution grid covering Italy is presented. It is based on the superimposition of 1961–1990 climatologies and departures from them (anomalies). The anomalies are obtained by applying inverse distance weighting to 143 Italian high-quality records, whereas the climatologies are based on a larger dataset and on the application of local weighted linear regression of temperature versus elevation. The grid-point Tn, Tm and Tx records are then used to set up secular records (period 1801–2013) of temperature-derived variables that influence Italy present-time national electricity demand. They are national averages over Italian urbanised areas of cooling degree-days (CDD), heating degree-days (HDD) and solar radiation deficit with respect to a defined threshold (S), with solar radiation estimated using daily temperature range as a proxy. The monthly and yearly sums of the daily CDD, HDD and S records are then used, alongside with a model allowing to link these variables to present-time Italy electricity demand, in order to understand the impact of climate variability and change on present-time Italian electricity demand. We find that temperature changes as the ones observed in the last two centuries are capable of altering significantly the present-time monthly profile of the electricity demand, raising (lowering) summer (winter) months contributions. The impact is higher in summer months where it exceeds 5 % of present-time Italy average monthly electricity demand, whereas the decrease of the winter demand is rather low because of a very limited use of electricity for heating. The summer and winter opposite-sign changes result globally in an increase of the yearly demand of about 5 TWh, corresponding to about 1.5-2.0 % of present-time Italy yearly electricity demand.
      PubDate: 2015-06-14
  • Climate services for marine applications in Europe

    • Abstract: Abstract The term “climate services” is commonly used to refer to the generation of climate information, their transformation according to user needs and the subsequent use of the information in decision making processes. More generally, the concept also involves contextualization of information and knowledge. In the following a series of examples from the marine sector is described covering the generation, transformation and the use of climate information in decision making processes while contextualization is not considered. Examples comprise applications from naval architecture, offshore wind and more generally renewable energies, shipping emissions, and tidal basin water exchange and eutrophication levels. Moreover effects of climate change on coastal flood damages and the need for coastal protection are considered. Based on the analysis of these examples it is concluded that reliable climate information in data sparse regions is urgently needed, that for many applications historical climate information may be as or even more important as future long-term projections, and that the specific needs of different sectors substantially depend on their planning horizons.
      PubDate: 2015-03-18
  • Role of engineering in sustainable water management

    • Abstract: Abstract The recognition of the limits of resources is almost as old as the realization that our planet is a sphere leading to concerns about sustainable resources management. Water resources in particular receive growing attention given its uneven distribution in many parts of the world. Engineering solutions to address water management challenges played significant roles in the past in areas such as access to clean water and sanitation, providing water for irrigation, offering protection against floods, allowing power generation, etc. Despite their proven benefits, engineering solutions are receiving increasing criticism due to their negative environmental and societal impacts and the high cost of their implementation and operation. More reliance on ecosystem services as an alternative is often advocated as a means to achieve more sustainable water management solutions. This paper examines key water services that human societies rely on and the feasible roles that ecosystems can play in lieu of engineering solutions. The paper applies the “balanced triangle” of the planetary (abiotic), ecosystems (biotic) and human societal (anthropic) resources and assets as a basis for evaluating different water management strategies. The ultimate goal of the paper is to offer guidance for finding a better balance in deploying ecosystem-based and engineering solutions together with satisfying the needs of human societies while minimizing the impacts on the ecosystems.
      PubDate: 2015-02-12
  • What is the role for carbon cycle science in the proposed EPA power plant

    • Abstract: Abstract On June 2, 2014, the United States Environmental Protection Agency proposed goals and guidelines aimed at lowering carbon dioxide (CO2) emissions from existing power plants in the United States. Should it be successfully implemented, US power plant CO2 emissions would be reduced approximately 30 percent below 2005 levels by the year 2030. Rather than a single national reduction goal, the proposed rule specifies reduction targets unique to each US state but leaves the means by which states meet those targets, flexible to individual state conditions. Regardless of the policy mixture adopted in each US state, quantification of CO2 emissions at the level of individual power plants will be a critical need. Recent research examining power plant CO2 emissions has noted potentially large uncertainties at the individual facility level, uncertainty that remains poorly understood. At the same time, carbon scientists working on aspects of monitoring, reporting and verification of anthropogenic CO2 emissions have developed a mixture of measurement and modeling capabilities as part of the development of a “carbon monitoring system”, that could assist in assessing how well independent emissions quantification is performing currently and identify a path towards improved monitoring. Equally important is an assessment of uncertainty at the various space and time scales the EPA proposed rule implies. Application of these recent scientific capabilities to the needs of the EPA’s proposed rule could offer a cogent, near-term example of how scientific research can directly enable better decision-making. This paper provides a review of the proposed rule and what role scientific research could play in the evolution of the rulemaking and its application in the future.
      PubDate: 2015-01-29
  • Seasonal and spatial factors related to longitudinal patterns of child
           growth in Bwamanda, DR Congo

    • Abstract: Background Studying the influence of geographical factors on child growth is important, especially given the increasing interest in climate change and health in resource-poor settings and the recognized importance of growth faltering as a general marker of population health. We describe patterns in children’s weight and length velocity and relate them to seasonal and spatial factors in rural DR Congo. The study setting is a food-insecure area with a majority dependent on rain-fed subsistence farming and expected to be one of the regions most affected by climate change. Methods We studied the effect of selected geographical factors, i.e. season, village size and distances to hospital, health center, forest, fishing grounds and market on growth of children under two years old. We calculated individual growth velocity Z-scores according to the WHO-2009 growth velocity standards for up to five successive 3-month growth periods. Associations with geographical factors were examined in multivariate mixed effects regression models. Results For the study population of 2223 children is characterized by low nutritional status. Age and season were the only independent predictors of growth velocity in the multivariate regression analysis. Mean velocity Z-scores were already low in children aged 0-6 months for weight [-1.34 (95% CI: -1.45, -1.22)] and for length [-0.99 (95% CI: -1.13, -0.84)]. They increased with age, while Z-scores of attained growth gradually decreased. Mean growth velocities were lowest before the main harvest season with a mean improvement of 1.2 and 2.3 Z-scores for weight and length velocity thereafter. A seasonal pattern was not seen in attained growth. No relation to spatial factors was found. Conclusions In this rural subsistence economy area, geographical factors relating to distances to food sources and health services are less important determinants than harvest season, which is the major underlying determinant of child growth in these settings.
      PubDate: 2014-11-18
  • Erratum to: Editorial

    • PubDate: 2014-08-18
  • Global health and natural disaster alerts: preparing mobile phones to
           endure the unthinkable

    • Abstract: Abstract Despite the increasingly positive role of portable communication technologies for socioeconomic development and their growing use in global health and other emergency contexts, several challenges still hinder exploring the full potential of mobile phones as effective mitigation tools in natural disasters, public health emergencies and in the aftermath of extreme disruptive events. Mobile devices are designed and advertised to withstand predominantly the demands of normal daily situations, being fraught with fragilities that limit their utility for effective communication and coordination of help in emergency situations. We discuss ways to overcome some of these limitations in the future by the incorporation of features to increase their resilience and effectiveness as aid tools at relatively low cost. Improvements in autonomous energy generation and use, based on existing and rapidly emerging technologies, as well as further improvements in physical durability and off-line operability are encouraged. We also identify the possibility to combine capabilities from other devices, such as space-based telecommunication systems and traditional two-way radios, to enhance the utility of mobile devices for these applications. The solutions we propose can help millions of citizens around the world to manage the risks and impacts of natural and health-related hazards. They should also promote further resilience to avoiding and recovering from such events, especially in vulnerable regions with limited infrastructure.
      PubDate: 2014-07-04
  • Climate risk management for water in semi–arid regions

    • Abstract: Background New sources of hydroclimate information based on forecast models and observational data have the potential to greatly improve the management of water resources in semi-arid regions prone to drought. Better management of climate-related risks and opportunities requires both new methods to develop forecasts of drought indicators and river flow, as well as better strategies to incorporate these forecasts into drought, river or reservoir management systems. In each case the existing institutional and policy context is key, making a collaborative approach involving stakeholders essential. Methods This paper describes work done at the IRI over the past decade to develop statistical hydrologic forecast and water allocation models for the semi arid regions of NE Brazil (the “Nordeste”) and central northern Chile based on seasonal climate forecasts. Results In both locations, downscaled precipitation forecasts based on lagged SST predictors or GCM precipitation forecasts exhibit quite high skill. Spring-summer melt flow in Chile is shown to be highly predictable based on estimates of previous winter precipitation, and moderately predictable up to 6 months in advance using climate forecasts. Retrospective streamflow forecasts here are quite effective in predicting reductions in water rights during dry years. For the multi-use Oros reservoir in NE Brazil, streamflow forecasts have the most potential to optimize water allocations during multi-year low-flow periods, while the potential is higher for smaller reservoirs, relative to demand. Conclusions This work demonstrates the potential value of seasonal climate forecasting as an integral part of drought early warning and for water allocation decision support systems in semi-arid regions. As human demands for water rise over time this potential is certain to rise in the future.
      PubDate: 2014-06-17
  • The International Research Institute for Climate & Society: why,
           what and how

    • Abstract: Abstract A climate-informed and climate-ready world is possible. Large investments are being made toward adaptation and resilience to climate change, but many of those investments are separated from the more immediate climate-related vulnerabilities and opportunities that society faces. Information is increasingly available that could be used to guide action; however, information alone is not sufficient. Research at the International Research Institute for Climate and Society (IRI) since 1996 has led to the identification of the several guiding principles to scope and address climate-related challenges to decision- and policy-makers at local-to-regional scale. These include climate-related information, such as assessment of the main vulnerabilities to climate variability and change in countries or regions, and the provision of climate information, products and tools to support decisions, including financial tools that are appropriate to the climate-related risk and that can mediate residual risk. The guiding principles also include identifying the technologies and practices that optimize results in coming years, demonstration of the usefulness of climate information to support climate-related decisions, training and capacity building, and partnerships for research and implementation. This essay introduces the evolution of the IRI and its work that is then elaborated through a series of articles that constitute a special issue of Earth Perspectives: Transdisciplinarity Enabled. The collection of articles provides insight into the science and process that lead to better climate-informed choices. Part of the collection of articles in the special issue covers specific stories of local-to-regional engagement with partners to address climate-related problems. Other articles represent how we do what we do, in particular highlighting the research, the climate forecast effort, and the IRI Data Library. Finally, there are two papers offered from partners that have long-time engagement with the IRI.
      PubDate: 2014-06-17
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-