A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> METEOROLOGY (Total: 106 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
International Journal of Atmospheric Sciences
Number of Followers: 26  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2314-4122 - ISSN (Online) 2314-4130
Published by Hindawi Homepage  [340 journals]
  • Radiation Transfer Calculations and Assessment of Global Warming by CO2

    • Abstract: We present detailed line-by-line radiation transfer calculations, which were performed under different atmospheric conditions for the most important greenhouse gases water vapor, carbon dioxide, methane, and ozone. Particularly cloud effects, surface temperature variations, and humidity changes as well as molecular lineshape effects are investigated to examine their specific influence on some basic climatologic parameters like the radiative forcing, the long wave absorptivity, and back-radiation as a function of an increasing CO2 concentration in the atmosphere. These calculations are used to assess the CO2 global warming by means of an advanced two-layer climate model and to disclose some larger discrepancies in calculating the climate sensitivity. Including solar and cloud effects as well as all relevant feedback processes our simulations give an equilibrium climate sensitivity of = 0.7°C (temperature increase at doubled CO2) and a solar sensitivity of = 0.17°C (at 0.1% increase of the total solar irradiance). Then CO2 contributes 40% and the Sun 60% to global warming over the last century.
      PubDate: Mon, 20 Mar 2017 00:00:00 +000
  • Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa

    • Abstract: The IPCC climate models predict, for the Maghreb countries, lower rainfall and increased aridity. Current observations in the three countries of central Maghreb (Morocco, Algeria, and Tunisia) are not consistent with these predictions. To demonstrate this new trend, a detailed regional analysis of rainfall evolution is conducted. This investigation is based on the calculation of the reduced centered index and the chronological graphical method of processing information (MGCTI) of “Bertin matrix” type. The results show extreme variability of this parameter and the severe past drought (more intense for Morocco, in which the drastic conditions from the seventies are observed). The results also show the beginning of a gradual return to wetter conditions since the early 2000s in Algeria and Tunisia and from 2008 for Morocco (this trend is confirmed by recent agricultural production data in 2011/2012 and 2012/2013).
      PubDate: Sun, 30 Oct 2016 11:55:13 +000
  • A Significant Population Signal in Iranian Temperature Records

    • Abstract: We assembled daily maximum and minimum temperature records for 31 stations throughout Iran over the period 1961–2010. As with many other areas of the world, we found that both the maximum and minimum temperatures were increasing overall with the minimum temperatures increasing twice as fast as the maximum temperatures. We gathered population data for the stations near the beginning and end of the temperature records and found in all seasons and for both the maximum and minimum temperatures the magnitude of population growth positively influenced the temperature trends. However, unlike so many other studies, we found the strongest population growth signal in the winter for the maximum temperatures. We found evidence that this winter-season population-temperature signal is related snow cover. Our results illustrate that any number of processes are involved in explaining trends in historical maximum and minimum temperature records.
      PubDate: Tue, 30 Aug 2016 11:32:36 +000
  • Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

    • Abstract: The observed slow-down in the global-mean surface temperature (GST) warming from 1998 to 2012 has been called a “warming hiatus.” Certain climate models, operating under experiments which simulate warming by increasing radiative forcing, have been shown to reproduce periods which resemble the observed hiatus. The present study provides a comprehensive analysis of 38 CMIP5 climate models to provide further evidence that models produce warming hiatus periods during warming experiments. GST rates are simulated in each model for the 21st century using two experiments: a moderate warming scenario (RCP4.5) and high-end scenario (RCP8.5). Warming hiatus periods are identified in model simulations by detecting (1) ≥15-year periods lacking a statistically meaningful trend and (2) rapid changes in the GST rate which resemble the observed 1998–2012 hiatus. Under the RCP4.5 experiment, all tested models produce warming hiatus periods. However, once radiative forcing exceeds 5 W/m2—about 2°C GST increase—as simulated in the RCP8.5 experiment after 2050, nearly all models produce only positive warming trends. All models show evidence of rapid changes in the GST rate resembling the observed hiatus, showing that the climate variations associated with warming hiatus periods are still evident in the models, even under accelerated warming conditions.
      PubDate: Tue, 12 Jul 2016 14:17:37 +000
  • Fire-Risk Assessment in Northern Greece Using a Modified Fosberg
           Fire-Weather Index That Includes Forest Coverage

    • Abstract: The spatial distribution of the monthly mean values for various climatological parameters in Northern Greece is derived. The corresponding data come from measurements at several meteorological stations located in Central Macedonia, Eastern Macedonia, and Thrace (CM/EMT) area in the period 1975–1997. The collected data concern high temperature and low relative humidity, as well as local forest coverage, and are utilized for the calculation of a modified Fosberg Fire-Weather Index in order to estimate the fire risk over Northern Greece due to the local weather under critical conditions. As a result, monthly fire-risk maps of the CM/EMT area for the months of May to October are derived for the first time by applying sophisticated analytical geospatial tools and methods. Furthermore, fire events corresponding to the same region and period are added to the derived maps for comparison and for a better evaluation of the method. The resulting correspondence of the predicted fire risk to the local wind-speed behavior and forest abundance demonstrates the need of the necessary precaution measures to limit the future danger levels from fire events.
      PubDate: Wed, 18 May 2016 08:57:12 +000
  • A Quantitative Assessment of Surface Urban Heat Islands Using Satellite
           Multitemporal Data over Abeokuta, Nigeria

    • Abstract: The fast urban expansion has led to the transformation of the natural landscape into anthropogenic surfaces. The city of Abeokuta, for instance, is located in a region experiencing rapid urbanization, which has produced a remarkable effect on the surface thermal response. This effect significantly influences urban internal microclimatology on a regional scale. In this study, the surface temperatures and land cover types retrieved from Landsat TM and ETM+ images of Abeokuta city for 1984, 2003, and 2014 were analyzed. A quantitative approach was used to assess surface urban heat islands through the relationships among surface temperature and land cover types. Results showed that impervious surface areas were found to be correlated positively with high temperatures. Conversely, vegetated areas and bare surfaces correlated positively with mid temperature zones. This study found that areas with increasing impervious surfaces will accelerate LST rise and consequently lead to increasing effect of surface urban heat islands. These findings pose a major challenge to urban planners. However, the study would help to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.
      PubDate: Tue, 03 May 2016 08:22:02 +000
  • Chemical Characteristics of Rainwater in Sumatera, Indonesia, during

    • Abstract: The chemical composition of acid deposition shows that ammonium and chloride concentrations as the indicators of forest fires were higher than sulfate and nitrate in Sumatera areas such as Medan, Lampung, Palembang, and Kototabang. Chloride had higher concentration than sodium (Na+ sea originated) with the ratio value of Cl−/Na+ > 1.16 found in Medan and Palembang. Ionic compositions from the lowest to the highest concentration in Kototabang were H+ > Cl− > Na+ > > nss-Ca2+ > K+ > > nss- > Mg2+ > ss- > ss-Ca2+. Acid rain takes place if the acid compounds such as sulfates, nitrates, and chlorides dominate. If the ratio value of /(nss- + ) < 0.5 then it indicates that nss- is higher than . Between 2001 and 2010 it was found that the frequency value of /(nss- + ) < 0.5 was 97% from annual mean of 34 pieces of data in Medan, Kototabang, Lampung, and Palembang. Forest fires influence was more dominant than anthropogenic activities in Kototabang, Palembang and Lampung, except in Medan. It showed that ammonium was higher than content if the ratio value of /( + ) < 0.5 was 74%. For the period 2001–2010 the frequency value of /( + ) < 0.5 was 74% from total 34 annual mean pieces of data in four locations, that is, Medan, Kototabang, Palembang, and Lampung.
      PubDate: Thu, 21 Apr 2016 13:40:57 +000
  • The Role of Kenya Meteorological Service in Weather Early Warning in Kenya

    • Abstract: Early warning in weather forecasting entails provision of timely and effective weather information that allows individuals, organisations, or communities exposed to likely weather hazards to take action that avoids or reduces their exposure to risks. Various sectors have developed different ways to mitigate the effects of climate anomalies. The study reviews the existing monitoring and response structures, and communications flow channels of weather data at different levels, focusing on the role of Kenya Meteorological Service (KMS). The methodology employed was literature review of various documents. The study argues that early warning and weather information communication are essential elements for effective governance of weather risks through a well-developed warning system. At the end, the study recommends strengthening the existing structures with respect to weather monitoring, processing, and dissemination of weather products to end users.
      PubDate: Thu, 12 Mar 2015 10:35:23 +000
  • Characteristics of Summer Precipitation around the Western Ghats and the
           Myanmar West Coast

    • Abstract: Characteristics of summer (June–August) precipitation over two coastal mountain regions in South Asia (Western Ghats: WG and Myanmar West Coast: MWC) with a focus on topographic impact are analyzed using the 13-year (1998–2010) high spatial resolution (0.05° × 0.05°) version 6 data obtained from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). A relationship between precipitation patterns and topography was observed in the coastal mountains. In both the WG and MWC, maximum rainfall along a tight line on the upwind side of the coastal mountains is primarily attributed to rain frequency. However, intense precipitation was observed over the offshore regions. Compared with the WG, deeper and large-scale precipitation systems develop over the MWC, producing more intense rainfall. It is suggested that insufficient humidity deters large-scale convection over the WG, and the atmosphere is sufficiently moist over the MWC.
      PubDate: Wed, 04 Mar 2015 14:19:43 +000
  • Simulation of Severe Local Storm by Mesoscale Model MM5 and Validation
           Using Data from Different Platforms

    • Abstract: During premonsoon season (March to May) convective developments in various forms are common phenomena over the Gangetic West Bengal, India. In the present work, simulation of wind squall on three different dates has been attempted with the help of mesoscale model MM5. The combination of various physical schemes in MM5 is taken as that found in a previous work done to simulate severe local storms over the Gangetic West Bengal. In the present study the model successfully simulates wind squall showing pressure rise, wind shift, wind surge, temperature drop, and heavy rainfall, in all cases. Convective cloud development and rainfall simulation by the model has been validated by the corresponding product from Doppler Weather Radar located at Kolkata and TRMM satellite product 3B42 (V6), respectively. It is found that the model is capable of capturing heavy rainfall pattern with up to three-hour time gap existing between simulation and observation of peak rainfall occurrence. In all simulations there is spatial as well as temporal shift from observation.
      PubDate: Sun, 22 Feb 2015 10:15:06 +000
  • Recent Changes of Some Observed Climate Extreme Events in Kano

    • Abstract: Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.
      PubDate: Mon, 02 Feb 2015 06:45:08 +000
  • Drought and Grain Crop Yields over the East European Plain under Influence
           of Quasibiennial Oscillation of Global Atmospheric Processes

    • Abstract: Monthly precipitation and the 3-month Standardized Precipitation Index (SPI) were used to reveal the patterns of rainfall and severe drought frequency over the East European Plain in the period 1953–2011 in the opposite phases of the quasibiennial oscillation (QBO). Differences of precipitation and severe drought frequency in May and in June in the westward and eastward phases of the QBO phases are explained by circulation variations. The analysis indicates less frequent severe drought events over Ukraine and at the center of the European part of Russia in May in the westward QBO phase due to the intensification of the storm track over the East European Plain. The weather conditions in May and in June in the years of the westward QBO phase were more favorable for the yield. The difference of spring wheat yield in the westward and eastward QBO phase exceeds the same difference of winter wheat yield in the Central Black Earth region and in the south regions. Ukraine and the region to the east of the Sea of Azov are the most vulnerable areas of increased risk of severe drought during the active growing season at the end of the 20th and beginning of the 21st century.
      PubDate: Tue, 13 Jan 2015 09:32:18 +000
  • Analysis of Droughts in the Central Region of South Africa and Their
           Association with SST Anomalies

    • Abstract: The objective of this study was to characterise meteorological droughts in the Central Region of South Africa using Standardised Precipitation Evapotranspiration Index (SPEI) and to examine if there is a relationship between drought and El Niño events. The SPEI was used to quantify the precipitation deficit over time and space across the catchment for the time-scales that are important for planning and management of water resources. Based on 12-month time-scale, the total number of drought events identified in the area using SPEI ranged between 13 and 20 during the period of analysis (1952–1999). Considering the effects of event magnitude and duration as severity parameters, the most severe drought event was identified during 1973 followed by 1995 based on 12-month time-scale. Moreover, it was also found that the number of moderate, severe, and extreme drought events identified by SPEI follows increasing trend with decade during the period of analysis. Results of Spearman’s rank correlation test revealed that the trends exhibited by mild (SPEI-3 and SPEI-6), moderate (SPEI-12), severe (SPEI-12), and extreme (SPEI-3) drought categories are statistically significant at 5% significance level. The study also revealed that drought events in the central region of South Africa are preceded by El Niño events in the tropical Pacific (Nino 3.4) with an average lag time of 8 months between the onsets of the two events. It was found that hydrological drought events in the study area lag behind meteorological drought events with an average lag time of 7.4 months. Findings of this study can be used to forecast drought events in the area for the proper planning and management of water resources.
      PubDate: Thu, 25 Dec 2014 07:09:13 +000
  • Temporal Variation and Concentration Weighted Trajectory Analysis of Lead
           in PM10 Aerosols at a Site in Central Delhi, India

    • Abstract: Ambient levels of lead (Pb) in PM10 were studied at a site in Central Delhi for the period of one year during day and night. The annual mean concentration of lead has been observed as 625 and 1051 ng/m3 during day and night time, respectively. The seasonal averaged concentrations of Pb have followed the order winter > postmonsoon > summer > monsoon. Highest levels of lead have been observed in winter with 31% samples exceeding the CPCB-NAAQS value as 1000 ng/m3. Lead levels during winter have been found to be 5.7 times higher than in monsoon, which might be attributed to prevailing meteorological conditions and more biomass burning. The low levels of Pb during summer might be attributed to its higher dispersion in the atmosphere. A sharp rise of Pb during postmonsoon might be linked to the local nonpoint sources, more biomass burning, and shifting of boundary layer. However, the higher concentrations of lead were observed during night time in all the seasons of the year as compared to those of the day time. To identify the potential source regions of Pb, Concentration Weighted Trajectories (CWT) have been plotted which showed higher influence of local sources during winter and postmonsoon while showing distant sources during summer.
      PubDate: Mon, 08 Dec 2014 10:30:03 +000
  • Neural Network Based Retrieval of Atmospheric Temperature Profile Using
           AMSU-A Observations

    • Abstract: The present study describes artificial neural network (ANN) based approach for the retrieval of atmospheric temperature profiles from AMSU-A microwave temperature sounder. The nonlinear relationship between the temperature profiles and satellite brightness temperatures dictates the use of ANN, which is inherently nonlinear in nature. Since latitudinal variation of temperature is dominant one in the Earth’s atmosphere, separate network configurations have been established for different latitudinal belts, namely, tropics, mid-latitudes, and polar regions. Moreover, as surface emissivity in the microwave region of electromagnetic spectrum significantly influences the radiance (or equivalently the brightness temperature) at the satellite altitude, separate algorithms have been developed for land and ocean for training the networks. Temperature profiles from National Center for Environmental Prediction (NCEP) analysis and brightness temperature observations of AMSU-A onboard NOAA-19 for the year 2010 have been used for training of the networks. Further, the algorithm has been tested on the independent dataset comprising several months of 2012 AMSU-A observations. Finally, an error analysis has been performed by comparing retrieved profiles with collocated temperature profiles from NCEP. Errors in the tropical region are found to be less than those in the mid-latitude and polar regions. Also, in each region the errors over ocean are less than the corresponding ones over land.
      PubDate: Wed, 05 Nov 2014 11:16:51 +000
  • A Multisensor Analysis of the Life Cycle of Bow Echo over Indian Region

    • Abstract: This study deals with the life cycle of bow echo events on October 24 and 26-27, 2006, from Doppler weather radar (DWR) observations supported by Radiosonde and National Centers for Environmental Prediction (NCEP). The cell bow echo (CBE) on October 24 evolved from two small isolated cells with radar reflectivity ≥40 dBZ. The vertical structure consists of one single mature cell with 20 dBZ echoes reaching up to 10 km while 40 dBZ echoes extended uniformly from ground to ∼5 km height. The radial velocity shows a high value >−15 m/s towards the radar at the upper height (about 6 to 11 km); the lower height is predominant with velocity away from the radar (about 5 to 15 m/s). The squall line bow echo on October 26 and 27 has its origin over ocean and moved towards the radar site and decayed thereafter. The radar reflectivity pattern for this squall line showed it to be a trailing stratiform type squall line with length of ∼200 km. The echo top height was more than 12 km in height. Strong inflow cases were observed from both radiosonde and radar.
      PubDate: Wed, 29 Oct 2014 12:28:10 +000
  • Tracking the Ionospheric Response to the Solar Eclipse of November 03,

    • Abstract: The ionospheric dynamics is highly influenced by the solar radiation. During a solar eclipse, the moon occults the solar radiation from reaching the ionosphere, which may drastically affect the variability of the ionosphere. The variability of total electron content (TEC) observed by dual frequency Global Positioning System (GPS) receivers has made it possible to study effects of solar eclipse on the ionosphere. Total eclipse occurred on November 03, 2013, and the maximum amplitude was visible at Owiny in northern Uganda. Ionospheric behavior during this eclipse was analysed by using TEC data archived at Mbarara (MBAR), Malindi (MAL2), Eldoret (MOIU), and Kigali University (NURK) International GPS Satellite (IGS) stations. TEC variations of four consecutive days were used to study instantaneous changes of TEC during the eclipse event. The results generally show TEC decrease at the four stations. However, a maximum perturbation amplitude of ≥20 TECU was observed at MAL2 (18:00–20:00 UT) which is further south of the equator than the other stations. TEC enhancement and depletion were observed during the totality of the eclipse at MOIU, MBAR, NURK, and MAL2 (13:00–15:00 UT). This study found out that the ionospheric TEC over East Africa was modified by wave-like energy and momentum transport and obscuration of the solar disc due to the total solar eclipse.
      PubDate: Thu, 23 Oct 2014 00:00:00 +000
  • Airborne Measurement in the Ash Plume from Mount Sakurajima: Analysis of
           Gravitational Effects on Dispersion and Fallout

    • Abstract: Volcanic ash concentrations in the plume from Sakurajima volcano in Japan are observed from airplanes equipped with optical particle counters and GPS tracking devices. The volcano emits several puffs a day. The puffs are also recorded by the Sakurajima Volcanological Observatory. High concentrations are observed in the puffs and fallout driven by vertical air current, called streak fallout. Puffs dispersion is analyzed by the classical diffusion-advection method and a new gravitational dispersion method. The fluid mechanic of the gravitational dispersion, streak fallout, and classical diffusion-advection theory is described in three separate appendices together with methods to find the time gravitational dispersion constant and the diffusion coefficient from satellite photos. The diffusion-advection equation may be used to scale volcanic eruptions so the same eruption plumes can be scaled to constant flux and wind conditions or two eruptions can be scaled to each other. The dispersion analyses show that dispersion of volcanic plumes does not follow either theories completely. It is most likely diffusion in the interface of the plume and the ambient air, together with gravitational flattening of the plumes core. This means larger boundary concentration gradients and smaller diffusion coefficients than state of the art methods can predict.
      PubDate: Sun, 19 Oct 2014 09:49:36 +000
  • Statistical Analysis of Rainfall Trend for Volta Region in Ghana

    • Abstract: Climate change is global in nature, but potential changes are not expected to be globally uniform; rather, there may be dramatic regional differences. Considerable effort should be invested to understand climate change at the regional level. The study was conducted to establish the rainfall trends in Volta Region and also to provide the evidence of climate change by analyzing available rainfall record for 30-year period of 1981 to 2011. Records of monthly and yearly rainfall were obtained from the headquarters of Ghana Meteorological Department, Accra, for analysis. The region was grouped into three zones characteristic of the whole country, namely, coastal zone, middle zone, and northern zone, respectively. Graphs were constructed to illustrate the changing trends within the months and years of the zones. Statistical analysis (i.e., LSD, ANOVA) was performed to assess any significant difference among the three zones and within the months and years under study. Significant differences were observed among the three zones. Northern zone recorded the highest precipitation followed by the middle zone and lastly the coastal zone. However the rainfall trends within the aforementioned zones were oscillatory. The highest annual mean rainfall was 202.6 mm and the lowest was 29.9 mm. Linear regression analysis revealed upward and downward trend in the data in some months and years in the mentioned zones but statistically insignificant.
      PubDate: Sun, 19 Oct 2014 09:26:02 +000
  • A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban

    • Abstract: This paper reviews some recent studies (after 2000) pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation). Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes), leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major portion of the research reviewed here consists of natural convection flows occurring along mountain slopes, with a few studies devoted to flows along building walls. The studies discussed here primarily include field measurements and computational fluid dynamics (CFD) models. This review shows that for densely populated cities with high pollution levels, natural convection flows (mountain slope or building walls) can significantly aid the dispersion of pollutants. Additional studies in this area using CFD and water channel measurements can explain the physical processes involved in such flows and help improve CFD modelling. Future research should focus on a complete understanding of the mechanisms of buoyancy flows in nature and developing design guidelines for better planning of cities.
      PubDate: Thu, 25 Sep 2014 05:47:23 +000
  • A Review of Water Isotopes in Atmospheric General Circulation Models:
           Recent Advances and Future Prospects

    • Abstract: Stable water isotopologues, mainly 1H2O, 1H2HO (HDO), and , are useful tracers for processes in the global hydrological cycle. The incorporation of water isotopes into Atmospheric General Circulation Models (AGCMs) since 1984 has helped scientists gain substantial new insights into our present and past climate. In recent years, there have been several significant advances in water isotopes modeling in AGCMs. This paper reviews and synthesizes key advances accomplished in modeling (1) surface evaporation, (2) condensation, (3) supersaturation, (4) postcondensation processes, (5) vertical distribution of water isotopes, and (6) spatial δ18O-temperature slope and utilizing (1) spectral nudging technique, (2) higher model resolutions, and (3) coupled atmosphere-ocean models. It also reviews model validation through comparisons of model outputs and ground-based and spaceborne measurements. In the end, it identifies knowledge gaps and discusses future prospects of modeling and model validation.
      PubDate: Wed, 24 Sep 2014 00:00:00 +000
  • Modelling Agro-Met Station Observations Using Genetic Algorithm

    • Abstract: The present work discusses the development of a nonlinear data-fitting technique based on genetic algorithm (GA) for the prediction of routine weather parameters using observations from Agro-Met Stations (AMS). The algorithm produces the equations that best describe the temporal evolutions of daily minimum and maximum near-surface (at 2.5-meter height) air temperature and relative humidity and daily averaged wind speed (at 10-meter height) at selected AMS locations. These enable the forecasts of these weather parameters, which could have possible use in crop forecast models. The forecast equations developed in the present study use only the past observations of the above-mentioned parameters. This approach, unlike other prediction methods, provides explicit analytical forecast equation for each parameter. The predictions up to 3 days in advance have been validated using independent datasets, unknown to the training algorithm, with impressive results. The power of the algorithm has also been demonstrated by its superiority over persistence forecast used as a benchmark.
      PubDate: Tue, 23 Sep 2014 08:16:13 +000
  • Impact of Climate Change on the Characteristics of Indian Summer Monsoon

    • Abstract: A high resolution regional climate modeling system, known as PRECIS (Providing REgional Climate for Impact Studies), developed by Hadley Centre for Climate Prediction and Research, UK, is applied for Indian subcontinent to assess the impact of climate change on the summer monsoon onset characteristics. The present day simulation (1961–1990) with PRECIS is evaluated for the characteristics of onset over Kerala, southernmost part of India, where the monsoon sets in over Indian landmass. The meteorological parameters like precipitation, outgoing long wave radiation (OLR), and low level winds are analysed to study the monsoon onset over Kerala. The model is able to capture the sudden and sharp increase of rainfall associated with the onset. The rapid built-up of convective activity over the southeastern Arabian Sea and Bay of Bengal is well represented by the model. PRECIS simulations, under scenarios of increasing greenhouse gas concentrations and sulphate aerosols, are analysed to study the likely changes in the onset characteristics in future, towards the end of present century (2071–2100). The analysis does not indicate significant difference in the mean onset dates in A2 and B2 scenarios. However, the variability of onset date is likely to be more towards the end of the 21st century especially in A2 scenario.
      PubDate: Sun, 14 Sep 2014 10:48:38 +000
  • A Regional Climate Simulation Study Using WRF-ARW Model over Europe and
           Evaluation for Extreme Temperature Weather Events

    • Abstract: In this study regional climate simulations of Europe over the 60-year period (1950–2010) made using a 25 km resolution WRF model with NCEP 2.5 degree analysis for initial/boundary conditions are presented for air temperature and extreme events of heat and cold waves. The E-OBS 25 km analysis data sets are used for model validation. Results suggest that WRF could simulate the temperature trends (mean, maximum, minimum, seasonal maximum, and minimum) over most parts of Europe except over Iberian Peninsula, Mediterranean, and coastal regions. Model could simulate the slight fall of temperatures from 1950 to 1970 as well as steady rise in temperatures from 1970 to 2010 over Europe. Simulations show occurrence of about 80% of the total heat waves in the period 1970–2010 with maximum number of heat/cold wave episodes over Eastern and Central Europe in good agreement with observations. Relatively poor correlations and high bias are found for heat/cold wave episodes over the complex topographic areas of Iberia and Mediterranean regions where land surface processes play important role in local climate. The poor simulation of temperatures over the above regions could be due to deficiencies in representation of topography and surface physics which need further sensitivity studies.
      PubDate: Tue, 02 Sep 2014 14:15:13 +000
  • Atmospheric Volatile Organic Compounds and Ozone Creation Potential in an
           Urban Center of Southern Nigeria

    • Abstract: The relative contribution of individual volatile organic compounds (VOC) species to photochemical ozone formation depends on their atmospheric concentrations and their oxidation mechanism. In an attempt to evaluate the ozone creation potential of ambient VOCs captured in an urban settlement of Benin City, Nigeria, the VOCs concentrations data collected in field studies at nine measurement sites of different air quality in the city and a background site were analysed. Air samples were collected at human breathing height of 1.5 meters from ground level at each site. Active sampling method using the low volume sampling pump (Acuro, Drager, Lubeck, Germany) was used to drawn the air into the tube; the absorbent was Chromosorb 106. The sampling periods were between May 2010 and June 2011; the period covered both dry and wet seasons. The adsorbed gases were desorbed using solvent extraction method with carbon disulphide as solvent. The extracted solutions were analyzed with gas chromatography and mass spectrometer. The observed concentrations of individual VOCs were determined and maximum incremental reactivity (MIR) coefficient along with rate constants of VOC-OH reactions were applied to assess the ozone formation potential of individual VOC in the ambient atmosphere. Sixteen VOC species were observed at various sites with mixing height in decreasing order: toluene (5.82), mp-xylene (3.58), ethylbenzene (3.46), benzene (2.29), and n-butane (0.84). The ozone formation potential study revealed that, ranking by propyl-equivalent, the alkanes included in this study account for 58% of the total propyl-equivalent concentration. The total ozone creation potential in the atmosphere of the Benin City was calculated to be 281.1 µg/m3. A comparison of total ozone formation potential (OFP) in our study with results obtained from other cities of the world revealed that the total concentration of ozone production in our study is threefold lower than the values reported in China city of Foshan. It is suggested that the sources of this pollutant need to be monitored in the area as a way of curtailing the impact of ozone in this city.
      PubDate: Thu, 21 Aug 2014 07:11:52 +000
  • Physical and Chemical Components of Cuba’s Rain: Effects on Air

    • Abstract: The objective of this study was to analyze the influence of the physical and chemical components of rain affecting air quality in Cuba. Samples were obtained from pollution monitoring stations throughout Cuba. Different chemical analyses including elements and ions were conducted. Meteorological data was also included for the analysis. Results show that the pH was slightly basic for most stations, except those of the eastern region which exhibit pH values below 5.6. The major anthropogenic sources of ions are the burning of fossil fuel by power plants, cement factories, and nickel-processing industries and the burning of biomass through poor agricultural practices. The western region exhibited increased concentrations of and during the dry season, most likely due to the long-range transport of pollutants from the northeastern United States as well as local pollutants. Marine aerosols clearly influence Cuba’s rain. Only a small fraction of the potentially acidic ions contributes to the free acidity of Cuba’s rainwater, mainly due to the neutralizing capacity of some ions such as Cl-, Na+, Ca+2, and . The implementation of abatement techniques for SO2 and NOX and some elements emissions from major stationary sources will be an effective measure to improve air quality in Cuba.
      PubDate: Tue, 12 Aug 2014 07:11:59 +000
  • Retrieval of Layer Averaged Relative Humidity Profiles from MHS
           Observations over Tropical Region

    • Abstract: The present paper deals with the retrieval of the atmospheric layer averaged relative humidity profiles using data from the Microwave Humidity Sounder (MHS) onboard the MetOp satellite. The retrieval has been innovatively performed by firstly retrieving humidity for pairs of thick overlapping layers (TOLs) used subsequently to derive humidity for associated thin isolated layer (TIL). A water vapour dependent (WVD) algorithm has been developed and applied to infer the humidity of TOLs. Thus, the retrieved profiles have been finally compared with standard algorithm (NORM). These algorithms have been developed based on radiative transfer simulations and study of sensitivities of MHS channels on humidity of various types of layers (TOL, TIL). The algorithm has been tested with MHS data and validated using concurrent radiosonde as well as NCEP reanalysis data indicating profile errors of ~15% and ~19%, respectively.
      PubDate: Thu, 17 Jul 2014 10:20:27 +000
  • Predictive Ability of Improved Neural Network Models to Simulate Pollutant

    • Abstract: This paper describes the ability of artificial neural network (ANN) models to simulate the pollutant dispersion characteristics in varying urban atmospheres at different regions. ANN models are developed based on twelve meteorological (including rainfall/precipitation) and six traffic parameters/variables that have significant influence on emission/pollutant dispersion. The models are trained to predict concentration of carbon monoxide and particulate matters in urban atmospheres using field meteorological and traffic data. Training, validation, and testing of ANN models are conducted using data from the Dhaka city of Bangladesh. The models are used to simulate concentration of pollutants as well as the effect of rainfall on emission dispersion throughout the year and inversion condition during the night. The predicting ability and robustness of the models are then determined by using data of the coastal cities of Chittagong and Dhaka. ANN models based on both meteorological and traffic variables exhibit the best performance and are capable of resolving patterns of pollutant dispersion to the atmosphere for different cities.
      PubDate: Thu, 26 Jun 2014 12:08:06 +000
  • An Advanced Review of the Relationships between Sahel Precipitation and
           Climate Indices: A Wavelet Approach

    • Abstract: The interannual and decadal to multidecadal variability of precipitation in western Sahel region was examined using wavelet transform and coherency analysis. The aim was to identify the major climate index that has a robust relationship with Sahel precipitation (drought). The results show that ENSO, North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and Indian Ocean Dipole (IOD) all have some relationship with precipitation at different time scales which is in agreement with recent studies. There is an antiphase relationship between Sahel precipitation and ENSO at the 3-4-year band localized around 1982/83 El Niño episode. This indicates a cause and effect relationship between the droughts of 1983 and 1982/83 El Niño. In addition, wavelet transform coherence analysis also revealed a relatively antiphase relationship between AMO and precipitation signifying cause and effect. The wavelet analyses indicate that IOD control on rainfall variability in Sahel is limited to the east (15°E–35°E). Advancing this understanding of variability in rainfall and climate forcing could improve the accuracy of rainfall forecast.
      PubDate: Mon, 28 Apr 2014 12:21:17 +000
  • Evaluation of Parameterization Schemes in the WRF Model for Estimation of
           Mixing Height

    • Abstract: This paper deals with the evaluation of parameterization schemes in the WRF model for estimation of mixing height. Numerical experiments were performed using various combinations of parameterization schemes and the results were compared with the mixing height estimated using the radiosonde observations taken by the India Meteorological Department (IMD) at Mangalore site for selected days of the warm and cold season in the years 2004–2007. The results indicate that there is a large variation in the mixing heights estimated by the model using various combinations of parameterization schemes. It was seen that the physics option consisting of Mellor Yamada Janjic (Eta) as the PBL scheme, Monin Obukhov Janjic (Eta) as the surface layer scheme, and Noah land surface model performs reasonably well in reproducing the observed mixing height at this site for both the seasons as compared to the other combinations tested. This study also showed that the choice of the land surface model can have a significant impact on the simulation of mixing height by a prognostic model.
      PubDate: Wed, 26 Feb 2014 13:07:23 +000
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> METEOROLOGY (Total: 106 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762

Your IP address:
Home (Search)
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-