A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 106 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 4)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 45)
Advances in Climate Change Research     Open Access   (Followers: 50)
Advances in Meteorology     Open Access   (Followers: 27)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 11)
Aeolian Research     Hybrid Journal   (Followers: 7)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 20)
American Journal of Climate Change     Open Access   (Followers: 37)
Atmósfera     Open Access   (Followers: 2)
Atmosphere     Open Access   (Followers: 33)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 16)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 13)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 43)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 15)
Atmospheric Environment     Hybrid Journal   (Followers: 72)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 73)
Atmospheric Science Letters     Open Access   (Followers: 40)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 32)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 5)
Bulletin of the American Meteorological Society     Open Access   (Followers: 63)
Carbon Balance and Management     Open Access   (Followers: 6)
Ciencia, Ambiente y Clima     Open Access   (Followers: 1)
Climate     Open Access   (Followers: 8)
Climate and Energy     Full-text available via subscription   (Followers: 6)
Climate Change Economics     Hybrid Journal   (Followers: 44)
Climate Change Responses     Open Access   (Followers: 23)
Climate Dynamics     Hybrid Journal   (Followers: 45)
Climate Law     Hybrid Journal   (Followers: 6)
Climate of the Past (CP)     Open Access   (Followers: 6)
Climate of the Past Discussions (CPD)     Open Access   (Followers: 1)
Climate Policy     Hybrid Journal   (Followers: 51)
Climate Research     Hybrid Journal   (Followers: 9)
Climate Resilience and Sustainability     Open Access   (Followers: 21)
Climate Risk Management     Open Access   (Followers: 10)
Climate Services     Open Access   (Followers: 4)
Climatic Change     Open Access   (Followers: 69)
Current Climate Change Reports     Hybrid Journal   (Followers: 17)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 6)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 19)
Earth Perspectives - Transdisciplinarity Enabled     Open Access   (Followers: 1)
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 13)
Energy & Environment     Hybrid Journal   (Followers: 25)
Environmental and Climate Technologies     Open Access   (Followers: 3)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 21)
Frontiers in Climate     Open Access   (Followers: 4)
GeoHazards     Open Access   (Followers: 2)
Global Meteorology     Open Access   (Followers: 20)
International Journal of Atmospheric Sciences     Open Access   (Followers: 25)
International Journal of Biometeorology     Hybrid Journal   (Followers: 3)
International Journal of Climate Change Strategies and Management     Hybrid Journal   (Followers: 29)
International Journal of Climatology     Hybrid Journal   (Followers: 28)
International Journal of Environment and Climate Change     Open Access   (Followers: 20)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 3)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 42)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 33)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 133)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 23)
Journal of Climate     Hybrid Journal   (Followers: 56)
Journal of Climate Change and Health     Open Access   (Followers: 4)
Journal of Climatology     Open Access   (Followers: 4)
Journal of Hydrology and Meteorology     Open Access   (Followers: 39)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 10)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 2)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 21)
Journal of Space Weather and Space Climate     Open Access   (Followers: 30)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 83)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 7)
Journal of Weather Modification     Full-text available via subscription   (Followers: 4)
Mediterranean Marine Science     Open Access   (Followers: 2)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Open Access   (Followers: 4)
Meteorological Monographs     Hybrid Journal   (Followers: 1)
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 4)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 29)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal   (Followers: 1)
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 13)
Monthly Weather Review     Hybrid Journal   (Followers: 30)
Nature Climate Change     Full-text available via subscription   (Followers: 145)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 40)
Nīvār     Open Access   (Followers: 1)
npj Climate and Atmospheric Science     Open Access   (Followers: 6)
Open Atmospheric Science Journal     Open Access   (Followers: 6)
Open Journal of Modern Hydrology     Open Access   (Followers: 5)
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access   (Followers: 1)
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 4)
Space Weather     Full-text available via subscription   (Followers: 27)
Studia Geophysica et Geodaetica     Hybrid Journal   (Followers: 1)
Tellus A     Open Access   (Followers: 21)
Tellus B     Open Access   (Followers: 20)
The Cryosphere (TC)     Open Access   (Followers: 8)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 32)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 14)
Tropical Cyclone Research and Review     Open Access   (Followers: 1)
Urban Climate     Hybrid Journal   (Followers: 5)
Weather     Hybrid Journal   (Followers: 20)
Weather and Climate Dynamics     Open Access   (Followers: 1)
Weather and Climate Extremes     Open Access   (Followers: 18)
Weather and Forecasting     Hybrid Journal   (Followers: 43)
Weatherwise     Hybrid Journal   (Followers: 18)
气候与环境研究     Full-text available via subscription   (Followers: 2)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Climate Dynamics
Journal Prestige (SJR): 2.445
Citation Impact (citeScore): 4
Number of Followers: 45  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1432-0894 - ISSN (Online) 0930-7575
Published by Springer-Verlag Homepage  [2469 journals]
  • What caused the increase of tropical cyclones in the western North Pacific
           during the period of 2011–2020'

    • Free pre-print version: Loading...

      Abstract: Based on satellite data after 1979, we find that the tropical cyclone (TC) variations in the Western North Pacific (WNP) can be divided into three-periods: a high-frequency period from 1979 to 1997 (P1), a low-frequency period from 1998 to 2010 (P2), and a high-frequency period from 2011 to 2020 (P3). Previous studies have focused on WNP TC activity during P1 and P2. Here we use observational data to study the WNP TC variation and its possible mechanisms during P3. Compared with P2, more TCs during P3 are due to the large-scale atmospheric favorable conditions of vertical velocity, relative vorticity and relative humidity. Warm sea surface temperature (SST) anomalies are found during P3 and migrate from east to west, which is also favorable for TC genesis. The correlation between the WNP TC frequency and SST shows a significant positive correlation around the equator and a significant negative correlation around 36°N, which is similar to the warm phase of the Pacific Decadal Oscillation (PDO). The correlation coefficient between the PDO and TC frequency is 0.71, above the 95% confidence level. The results indicate that the increase of the WNP TC frequency during 2011–2020 is associated with the PDO and warm SST anomalies.
      PubDate: 2022-05-19
       
  • The predictability study of the two flavors of ENSO in the CESM model from
           1881 to 2017

    • Free pre-print version: Loading...

      Abstract: In this study, we evaluated the predictability of the two flavors of the El Niño Southern Oscillation (ENSO) based on a long-term retrospective prediction from 1881 to 2017 with the Community Earth System Model. Specifically, the Central-Pacific (CP) ENSO has a more obvious Spring Predictability Barrier and lower deterministic prediction skill than the Eastern-Pacific (EP) ENSO. The potential predictability declines with lead time for both the two flavors of ENSO, and the EP ENSO has a higher upper limit of the prediction skill as compared with the CP ENSO. The predictability of the two flavors of ENSO shows distinct interdecadal variation for both actual skill and potential predictability; however, their trends in the predictability are not synchronized. The signal component controls the seasonal and interdecadal variations of predictability for the two flavors of ENSO, and has larger contribution to the CP ENSO than the EP ENSO. There is significant scope for improvement in predicting the two flavors of ENSO, especially for the CP ENSO.
      PubDate: 2022-05-16
       
  • Impacts of mid-latitude circulation on winter temperature variability in
           the Arabian Peninsula: the explicit role of NAO

    • Free pre-print version: Loading...

      Abstract: We investigated the impacts of mid-latitude circulation on winter temperature variability in the Arabian Peninsula by using NCEP reanalysis data and a historical Coupled Model Intercomparison Project phase-6 (CMIP6) simulation performed with the MPI-ESM1-2-HR coupled global climate model. Special emphasis is given to the North Atlantic Oscillation (NAO), an important mode of winter climate variability in the northern hemisphere. We first decomposed the winter temperature into dominant modes by applying an Empirical Orthogonal Function (EOF) analysis. The leading first and second EOF modes explaining 28.6% and 21.0% of the total variance of the winter temperature, reveal positive anomalies in the northern and negative anomalies in the southern Arabian Peninsula. The principal components associated with leading EOF modes reveal significant correlations with upper level circulation in the mid-latitude and display a Circumglobal wave-like pattern (CGT) extending from the North Atlantic to the East Asia region. We further defined winter temperature indices for the northern (hereafter WTNAP) and southern (hereafter WTSAP) Arabian Peninsula. The correlation maps between WTNAP and upper-level circulation exhibits a wave-like pattern in mid-latitudes similar to the CGT. At lower levels, the WTNAP reveals significant correlations with sea surface temperature and mean sea level pressure over the North Atlantic Ocean, depicting an NAO-like pattern. We further carried out an inverse analysis using the winter NAO index. The NAO impacts the winter temperature over the Arabian Peninsula via mid-latitude circulation. At lower levels, the positive (negative) NAO phases are associated with anomalous anticyclonic (cyclonic) circulation over Mediterranean. The anomalous circulation associated with NAO favors cold (warm) temperature advection to the Arabian Peninsula and hence modulates the winter temperature. The ERA5 reanalysis and a historical CMIP6 model simulation performed with the global climate model MPI-ESM1-2-HR also underlines the proposed findings and mechanism.
      PubDate: 2022-05-14
       
  • Future projections of heatwave characteristics and dynamics over India
           using a high-resolution regional earth system model

    • Free pre-print version: Loading...

      Abstract: This study using a high resolution (~ 25 km) regional coupled earth system model ROM (REMO-OASIS-MPIOM), addresses the future projections of heatwave characteristics (frequency, duration, and severity) and associated dynamics over India for the AMJ (April–May–June) season. The near-surface maximum temperature (Tmax) is used to identify the prominent regions of large fluctuations using rotated empirical orthogonal function analysis. The averaged heatwave characteristics simulated by ROM is compared against the Indian Meteorological Department (IMD) Tmax observational data for the historical period 1980–2005. The ROM simulated heatwave characteristics largely agree with observations though few deviations are also noticed. The typical synoptic features associated with the heatwave days for the identified regions show the presence of elevated geopotential height (thickness; Z) with an anomalous anticyclonic structure which forms an atmospheric blocking over each region except south east coast. The daily evolution of potential vorticity and Z suggests eastward propagation of blocks that remain persistent during heatwave days. ROM is able to simulate these features with systematic higher magnitude and minor location changes. The future projections (RCP 8.5) of heatwave characteristics show a gradual increase for different time-slices during 2020–2099. The projected frequency will be doubled, and the average duration will increase by 8–12 days per season at the end of the century. The severity will also increase by 2°–3 °C. Similarly, future dynamical features will be associated with an increase in geopotential height (thickness) in the future along with a gradual decrease in potential vorticity. The future patterns of anomalous potential vorticity indicate the presence of omega block in all-time slices with a decrease in negative magnitude.
      PubDate: 2022-05-14
       
  • Convection-permitting simulations of historical and possible future
           climate over the contiguous United States

    • Free pre-print version: Loading...

      Abstract: This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.
      PubDate: 2022-05-12
       
  • Properties, sensitivity, and stability of the Southern Hemisphere salinity
           minimum layer in the UKESM1 model

    • Free pre-print version: Loading...

      Abstract: Antarctic Intermediate Water (AAIW) is a water mass originating in the Southern Ocean characterised by its low salinity. The properties of the salinity minimum layer that characterise AAIW in the CMIP6 UKESM1 model and its response to different climate change scenarios are investigated. In UKESM1, the depth of the salinity minimum shoals by 116 m in the SSP5-8.5 run compared to the control run by 2080–2100. The salinity minimum also gets warmer (+ 1.9 °C) and lighter (− 0.4 kg/m3) and surface properties where the salinity minimum outcrops warm, freshen and lighten in all scenarios. In spite of these expected changes in properties, the location where the salinity minimum outcrops does not change in any of the future scenarios. The stability of the outcrop location of the salinity minimum is linked to the relative stability of the position of the Antarctic Circumpolar Current (ACC) in UKESM1. The position of the ACC does not follow the maximum wind stress trend, which intensifies and shifts poleward under radiative forcing. Changes in surface buoyancy fluxes in the region are consistent with the changes in hydrographic properties observed at depth on the salinity minimum mentioned above. However, transformation rates at the density corresponding to the salinity minimum outcrop remain constant in all scenarios. Stability in transformation rates at that density is due to the haline and thermal contributions counteracting one another. This analysis identifies two features (outcrop location, transformation rate) associated with the salinity minimum defining AAIW that show remarkable stability in an otherwise changing world. The effect of model resolution and other parameterisations on these findings have yet to be evaluated.
      PubDate: 2022-05-12
       
  • 21st Century alpine climate change

    • Free pre-print version: Loading...

      Abstract: A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8.5). The core simulation ensemble has been subject to a dedicated evaluation exercise carried out in the frame of the CH2018 Climate Scenarios for Switzerland. Results reveal that the entire Alpine region will face a warmer climate in the course of the twenty-first century for all emission scenarios considered. Strongest warming is projected for the summer season, for regions south of the main Alpine ridge and for the high-end RCP 8.5 scenario. Depending on the season, medium to high elevations might experience an amplified warming. Model uncertainty can be considerable, but the major warming patterns are consistent across the ensemble. For precipitation, a seasonal shift of precipitation amounts from summer to winter over most parts of the domain is projected. However, model uncertainty is high and individual simulations can show change signals of opposite sign. Daily precipitation intensity is projected to increase in all seasons and all sub-domains, while the wet-day frequency will decrease in the summer season. The projected temperature change in summer is negatively correlated with the precipitation change, i.e. simulations and/or regions with a strong seasonal mean warming typically show a stronger precipitation decrease. By contrast, a positive correlation between temperature change and precipitation change is found for winter. Among other indicators, snow cover will be strongly affected by the projected climatic changes and will be subject to a widespread decrease except for very high elevation settings. In general and for all indicators, the magnitude of the change signals increases with the assumed greenhouse gas forcing, i.e., is smallest for RCP 2.6 and largest for RCP 8.5 with RCP 4.5 being located in between. These results largely agree with previous works based on older generations of RCM ensembles but, due to the comparatively large ensemble size and the high spatial resolution, allow for a more decent assessment of inherent projection uncertainties and of spatial details of future Alpine climate change.
      PubDate: 2022-05-10
       
  • The impact of air–sea coupling on the simulation of the hydroclimatic
           change over Peninsular Florida

    • Free pre-print version: Loading...

      Abstract: This study analyzes from a pair of downscaled climate projections over Peninsular Florida (PF) at 10 km grid spacing. One of the downscaled projections corresponds to atmospheric downscaling only with a regional atmospheric model (called the Regional Spectral Model [RSM]). The other projection is related to the coupled ocean–atmosphere Regional Spectral Model-Regional Ocean Model (RSM-ROMS), which downscales both the atmospheric and the oceanic components of the global model simultaneously. The RSM-ROMS shows a better verification of the current climate than the corresponding RSM simulation for some atmospheric variables (precipitation and precipitable water) both over PF and the surrounding oceans. The moisture budget differences between the RSM-ROMS and the RSM simulations for both the current and the future climate show that the differences are larger over the surrounding oceans than over PF. However, RSM-ROMS shows a stronger projected drying over PF than RSM in the mid-twenty-first century. The RSM-ROMS displays a smaller deficit of freshwater over the oceans than RSM because of differences between the simulations in the advection of moisture, divergence of moisture, and moisture flux divergence from transient eddies. The differences in the moisture budget between the simulations over PF are small because of compensatory differences between the divergence of moisture from changes in divergent circulation and the divergence of fluxes from the transient eddies. Our analysis indicates that the air–sea coupling in RSM-ROMS affects the mean gradient of the moisture, the mean divergence, and the transients, which then modulate the advection of moisture, the divergence of moisture, and the convergence of moisture flux, respectively, setting it apart from the RSM simulation.
      PubDate: 2022-05-07
       
  • Relative contributions to ENSO of the seasonal footprinting and trade wind
           charging mechanisms associated with the Victoria mode

    • Free pre-print version: Loading...

      Abstract: The Victoria mode (VM), as a basin-scale sea surface temperature (SST) pattern over the North Pacific, is suggested to facilitate subsequent development of El Niño–Southern Oscillation (ENSO) through both the seasonal footprinting mechanism (SFM) and the trade wind charging (TWC) mechanism. The present study aims at investigating the distinct roles and relative contributions to ENSO of the SFM and the TWC mechanism associated with the VM using atmospheric and oceanic reanalysis data as well as modeling simulations. Our results reveal that the positive SST anomalies (SSTAs) over the subtropical northeast Pacific (SNP) related to the VM effectively trigger the initiation of ENSO via the SFM, which emphasizes an air–sea surface thermodynamic-coupling process. In contrast, the negative SSTAs over the western North Pacific (WNP) associated with the VM primarily induce ENSO via a thermocline–SST feedback process, known as the TWC mechanism. Further analysis indicates that the SFM related to the VM may play a relatively independent role in affecting ENSO and is more closely linked to ENSO than is the TWC mechanism related to the VM, which is shown to be reasonably reproduced by the Community Earth System Model. Additionally, the SFM associated with the positive (negative) SNP SSTAs may induce fewer El Niño events (more La Niña events) than the TWC mechanism related to the positive (negative) WNP SSTAs. Our findings suggest that the SFM and the TWC mechanism associated with the VM both contribute to enhanced predictive skill for ENSO.
      PubDate: 2022-05-06
       
  • Distinct influences of cold vortex over Northeast China on local
           precipitation in early summer and midsummer

    • Free pre-print version: Loading...

      Abstract: The station observations and reanalysis dataset are utilized to identify the cold vertex over Northeast China (NECV) in early summer (ES) and midsummer (MS) respectively. In this study, we focus on the characteristics of NECV and their distinct influences on local precipitations in ES and MS. The underpinning mechanisms are further inspected in terms of thermodynamic and dynamic processes. Results suggest that in ES (MS) the NECV is mainly located over Northern China-Southeastern Russia (Mongolia) and significantly correlated to the precipitations over the eastern (mid-western) regions of Northeast China. In the strong cases of precipitation, NECV displays northward shift and intensification in ES and MS respectively. Meanwhile, the upper-level wind anomalies suggest a northward displacement of polar front jet and a weakened subtropical jet in ES, and an enhanced polar front jet and a southward shift of subtropical jet in MS. The wind anomalies induced by meridional temperature gradients and the Rossby wave activities transported to Northeast China favor the development of atmospheric circulation vorticity and then promote the variations of NECV. Furthermore, the vorticity and temperature advections are favorable for the enhancement of ascending motion under quasigeostrophic approximation, which is combined with the sufficient water vapor transported from oceanic regions, triggering the regional precipitation. Intriguingly, the pathways of water vapor transport and disturbance energy propagation caused by the diverse external forcings are different in ES and MS, which sheds some fresh light on the insight into the subseasonal variations of NECV and the distinctive contributions to local precipitation.
      PubDate: 2022-05-06
       
  • Simulation and projection of the sudden stratospheric warming events in
           different scenarios by CESM2-WACCM

    • Free pre-print version: Loading...

      Abstract: Using different scenario experiments by the CESM2-WACCM model, the simulation and projection of the SSW and its impact on the near surface are explored as compared with the ERA5 and NCEP/NCAR reanalyses. The SSW frequency ranges from 4 to 7 per decade in CESM2-WACCM experiments (piControl, AMIP, historical, 1pctCO2, abrupt-4xCO2, SSP245, SSP585), comparable to ERA5 (6 per decade). Projected relative change in the displacement and split SSWs is much more uncertain due to the underestimation of the SSW frequency in the model and uncertainty in the greenhouse gas emission pathways. In all CO2 increase experiments, the downward propagation of annular stratospheric signals at short lags associated with displacement SSWs likely reinforces, whereas the downward coupling is projected to change little at long lags for displacements and at all lags for splits. CESM2-WACCM also projects a weakening of the wavenumber-2 forcing for split SSW in the future. Enhanced tropospheric negative annular mode response is projected at short lags for displacements in all future scenarios, and there is no significant enhancement of the negative NAO-like response to displacements at long lags. In contrast, the projected change in the tropospheric response to splits is zonally heterogenous at short lags, resembling a wave train pattern with the East Asian trough deepening, but the NAO-like response to splits at long lags is not projected to change significantly. The cold pattern over North Eurasia following displacement SSWs might expand further equatorward in the future projections, whereas cold anomalies over North America following splits might enhance in the future.
      PubDate: 2022-05-06
       
  • Revisiting the impact of Asian large-scale orography on the summer
           precipitation in Northwest China and surrounding arid and semi-arid
           regions

    • Free pre-print version: Loading...

      Abstract: How the summer precipitation in Northwest China (NWC) changes with the Asian large-scale orographic condition is a hot research topic. In this study, the influence of the Tibetan–Iranian Plateau (TIP) is investigated based on the modeling data from the Global Monsoons Model Intercomparison Project (GMMIP) endorsed in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two models, FGOALS-f3-L and FIO-ESM v2.0, which can well replicate the observed climatic conditions in the Eurasian continent, are analyzed. After removing the TIP, the change in the summer precipitation in NWC and its adjacent arid and semi-arid regions exhibits an asymmetric pattern, characterized by a drying tendency over the southern portion in contradiction to a wetting one over the north. This dipole pattern indicates an inhomogeneous influence of the TIP. With the flattened TIP, significantly negative heat anomalies arise over the original orographic regions. As a result, the meridional land–ocean thermal contrast is reduced, which consequently weakens the South Asian summer monsoon, with less water vapor transported from tropical oceans into NWC through the southern boundary. On the other hand, a large-scale anomalous anticyclone surrounding the flattened orography is formed in the lower troposphere, and westerlies in the northern portion of the anomalous anticyclone are intensified, which enhance the mid-latitude moisture transport into NWC through the western and northern boundaries. Collocated with the anomalous descending motion related to the weakened elevated heating in the flattened TIP, a drying tendency occurs in southern NWC. However, compensating upward motions coupled with positive incoming water vapor lead to more precipitation to the north. This study highlights a meridional asymmetric pattern in precipitation response to the flattened TIP through both the thermodynamic and dynamic processes, which helps us understand the physical mechanism of precipitation formation in NWC more comprehensively.
      PubDate: 2022-05-05
       
  • Uncertainty in the projected changes of Sahel summer rainfall under global
           warming in CMIP5 and CMIP6 multi-model ensembles

    • Free pre-print version: Loading...

      Abstract: Abstract The Sahel summer rainfall is of great significance to the local social, economic, and cultural environment. In the context of a long Sahel megadrought in the last thirty years of the twentieth century, the future change of Sahel summer rainfall under global warming has aroused wide attention. Based on the historical simulations and high emission scenario experiments from 20 Coupled Model Intercomparison Project phase-5 (CMIP5) models and 22 CMIP6 models, this study investigates the future projections of Sahel summer rainfall under global warming. The results show that the multi-model ensemble (MME) mean projects a slight increase (1–2%/℃) of summer rainfall over the Sahel in the future which seems to be due to the thermodynamic changes and opposed by the dynamic changes, but that the inter-model spread is due to the latter. We find that, in particular, the inter-model spreads in the extratropical northern and tropical Atlantic sea surface temperature (SST) changes are two important sources of the uncertainty in the Sahel summer rainfall projections via two different atmospheric teleconnection processes. On the one hand, a warmer northern Atlantic SST would induce an anomalous large-scale cyclone over North Africa and Europe, and the southern branch would strengthen the western African monsoonal circulation, leading to a wetter Sahel. On the other hand, a warmer tropical Atlantic SST would weaken the regional circulation, resulting in a drier Sahel. Our results suggest that an improved projection of the future Atlantic warming, especially the differential warming between the northern and tropical Atlantic, is a priority for the reliable future projection of Sahel summer rainfall.
      PubDate: 2022-05-03
       
  • Evaluation of AMIP models from CMIP6 in simulating winter surface air
           temperature trends over Eurasia during 1998–2012 based on dynamical
           adjustment

    • Free pre-print version: Loading...

      Abstract: Abstract The relationship between winter cooling in Eurasia and Arctic amplification during the period 1998–2012 under global warming has received increasing attention in recent years. This relationship is controversial and is often studied using model simulations. However, the process of evaluating these models is challenging as a result of the different internal variability among models and between the models and observations. We applied a dynamical adjustment method based on constructed circulation analogs to the model simulations and observations to remove the effects of the internal variability of the atmosphere and then evaluated the performance of the models in simulating the winter surface air temperature (SAT) trends over Eurasia from 1998 to 2012 based on 11 models of the Atmospheric Model Intercomparison Project (AMIP) from phase 6 of the Coupled Model Intercomparison Project. Our results show that the overall performance of all the model ensemble simulations was poor, but was much improved after applying dynamical adjustment, with the median values of the 11 AMIP ensemble simulations fairly close to the observed winter SAT trends averaged over Eurasia. When considering both the model-simulated SAT trends averaged over Eurasia and the skill scores of the trend pattern, the HadGEM3-GC31-LL simulation gave the best performance among the models with multiple runs. This method allows a more objective evaluation of the performance of models and provides an alternative way to evaluate the ability of models to simulate the “warm Arctic and cold Eurasia” trend pattern. The cold Eurasia, especially central Eurasia, in the observations is found to be mainly induced by the contribution from the internal variability of the atmosphere.
      PubDate: 2022-05-03
       
  • Correction to: Evaluation of intraseasonal wind rectification on recent
           Indian Ocean dipole events using LICOM

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Correction to: Evaluation of convective parameters derived from pressure
           level and native ERA5 data and different resolution WRF climate
           simulations over Central Europe

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Correction to: Trends, variability and predictive skill of the ocean heat
           content in North Atlantic: an analysis with the EC-Earth3 model

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Correction to: Correction of GRACE measurements of the Earth’s
           moment of inertia (MOI)

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Correction to: Improvement of summer precipitation simulation by
           correcting biases of spring soil moisture in the seasonal frozen-thawing
           zone over the Northern Hemisphere

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
  • Correction to: Tree-ring cellulose δ18O records similar large-scale
           climate influences as precipitation δ18O in the Northwest Territories of
           Canada

    • Free pre-print version: Loading...

      PubDate: 2022-05-01
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.25.51
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-