A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

              [Sort by number of followers]   [Restore default list]

  Subjects -> METEOROLOGY (Total: 106 journals)
Showing 1 - 36 of 36 Journals sorted alphabetically
Acta Meteorologica Sinica     Hybrid Journal   (Followers: 4)
Advances in Atmospheric Sciences     Hybrid Journal   (Followers: 48)
Advances in Climate Change Research     Open Access   (Followers: 62)
Advances in Meteorology     Open Access   (Followers: 25)
Advances in Statistical Climatology, Meteorology and Oceanography     Open Access   (Followers: 12)
Aeolian Research     Hybrid Journal   (Followers: 7)
Agricultural and Forest Meteorology     Hybrid Journal   (Followers: 21)
American Journal of Climate Change     Open Access   (Followers: 41)
Atmósfera     Open Access   (Followers: 2)
Atmosphere     Open Access   (Followers: 35)
Atmosphere-Ocean     Full-text available via subscription   (Followers: 16)
Atmospheric and Oceanic Science Letters     Open Access   (Followers: 9)
Atmospheric Chemistry and Physics (ACP)     Open Access   (Followers: 43)
Atmospheric Chemistry and Physics Discussions (ACPD)     Open Access   (Followers: 16)
Atmospheric Environment     Hybrid Journal   (Followers: 71)
Atmospheric Environment : X     Open Access   (Followers: 3)
Atmospheric Research     Hybrid Journal   (Followers: 71)
Atmospheric Science Letters     Open Access   (Followers: 41)
Boundary-Layer Meteorology     Hybrid Journal   (Followers: 30)
Bulletin of Atmospheric Science and Technology     Hybrid Journal   (Followers: 5)
Bulletin of the American Meteorological Society     Open Access   (Followers: 64)
Carbon Balance and Management     Open Access   (Followers: 6)
Ciencia, Ambiente y Clima     Open Access   (Followers: 1)
Climate     Open Access   (Followers: 7)
Climate and Energy     Full-text available via subscription   (Followers: 10)
Climate Change Economics     Hybrid Journal   (Followers: 52)
Climate Change Responses     Open Access   (Followers: 29)
Climate Dynamics     Hybrid Journal   (Followers: 46)
Climate Law     Hybrid Journal   (Followers: 7)
Climate of the Past (CP)     Open Access   (Followers: 8)
Climate of the Past Discussions (CPD)     Open Access   (Followers: 1)
Climate Policy     Hybrid Journal   (Followers: 60)
Climate Research     Hybrid Journal   (Followers: 7)
Climate Resilience and Sustainability     Open Access   (Followers: 34)
Climate Risk Management     Open Access   (Followers: 11)
Climate Services     Open Access   (Followers: 5)
Climatic Change     Open Access   (Followers: 72)
Current Climate Change Reports     Hybrid Journal   (Followers: 26)
Dynamics and Statistics of the Climate System     Open Access   (Followers: 7)
Dynamics of Atmospheres and Oceans     Hybrid Journal   (Followers: 19)
Earth Perspectives - Transdisciplinarity Enabled     Open Access   (Followers: 1)
Economics of Disasters and Climate Change     Hybrid Journal   (Followers: 18)
Energy & Environment     Hybrid Journal   (Followers: 26)
Environmental and Climate Technologies     Open Access   (Followers: 3)
Environmental Dynamics and Global Climate Change     Open Access   (Followers: 26)
Frontiers in Climate     Open Access   (Followers: 4)
GeoHazards     Open Access   (Followers: 2)
Global Meteorology     Open Access   (Followers: 17)
International Journal of Atmospheric Sciences     Open Access   (Followers: 27)
International Journal of Biometeorology     Hybrid Journal   (Followers: 4)
International Journal of Climate Change Strategies and Management     Hybrid Journal   (Followers: 32)
International Journal of Climatology     Hybrid Journal   (Followers: 29)
International Journal of Environment and Climate Change     Open Access   (Followers: 27)
International Journal of Image and Data Fusion     Hybrid Journal   (Followers: 3)
Journal of Agricultural Meteorology     Open Access  
Journal of Applied Meteorology and Climatology     Hybrid Journal   (Followers: 42)
Journal of Atmospheric and Oceanic Technology     Hybrid Journal   (Followers: 35)
Journal of Atmospheric and Solar-Terrestrial Physics     Hybrid Journal   (Followers: 178)
Journal of Atmospheric Chemistry     Hybrid Journal   (Followers: 24)
Journal of Climate     Hybrid Journal   (Followers: 60)
Journal of Climate Change     Full-text available via subscription   (Followers: 28)
Journal of Climate Change and Health     Open Access   (Followers: 7)
Journal of Climatology     Open Access   (Followers: 4)
Journal of Economic Literature     Hybrid Journal   (Followers: 20)
Journal of Hydrology and Meteorology     Open Access   (Followers: 39)
Journal of Hydrometeorology     Hybrid Journal   (Followers: 9)
Journal of Integrative Environmental Sciences     Hybrid Journal   (Followers: 4)
Journal of Meteorological Research     Full-text available via subscription   (Followers: 3)
Journal of Meteorology and Climate Science     Full-text available via subscription   (Followers: 19)
Journal of Space Weather and Space Climate     Open Access   (Followers: 30)
Journal of the Atmospheric Sciences     Hybrid Journal   (Followers: 85)
Journal of the Meteorological Society of Japan     Partially Free   (Followers: 7)
Journal of Weather Modification     Full-text available via subscription   (Followers: 3)
Mediterranean Marine Science     Open Access   (Followers: 2)
Meteorologica     Open Access   (Followers: 2)
Meteorological Applications     Open Access   (Followers: 5)
Meteorological Monographs     Hybrid Journal   (Followers: 1)
Meteorologische Zeitschrift     Full-text available via subscription   (Followers: 5)
Meteorology     Open Access   (Followers: 12)
Meteorology and Atmospheric Physics     Hybrid Journal   (Followers: 30)
Mètode Science Studies Journal : Annual Review     Open Access  
Michigan Journal of Sustainability     Open Access   (Followers: 1)
Modeling Earth Systems and Environment     Hybrid Journal   (Followers: 1)
Monthly Notices of the Royal Astronomical Society     Hybrid Journal   (Followers: 15)
Monthly Weather Review     Hybrid Journal   (Followers: 31)
Nature Climate Change     Full-text available via subscription   (Followers: 189)
Nature Reports Climate Change     Full-text available via subscription   (Followers: 41)
Nīvār     Open Access   (Followers: 1)
npj Climate and Atmospheric Science     Open Access   (Followers: 7)
Open Atmospheric Science Journal     Open Access   (Followers: 7)
Open Journal of Modern Hydrology     Open Access   (Followers: 6)
Oxford Open Climate Change     Open Access   (Followers: 7)
Revista Iberoamericana de Bioeconomía y Cambio Climático     Open Access   (Followers: 1)
Russian Meteorology and Hydrology     Hybrid Journal   (Followers: 3)
Space Weather     Full-text available via subscription   (Followers: 28)
Studia Geophysica et Geodaetica     Hybrid Journal   (Followers: 1)
Tellus A     Open Access   (Followers: 20)
Tellus B     Open Access   (Followers: 20)
The Cryosphere (TC)     Open Access   (Followers: 12)
The Quarterly Journal of the Royal Meteorological Society     Hybrid Journal   (Followers: 32)
Theoretical and Applied Climatology     Hybrid Journal   (Followers: 13)
Tropical Cyclone Research and Review     Open Access   (Followers: 1)
Urban Climate     Hybrid Journal   (Followers: 4)
Weather and Climate Dynamics     Open Access   (Followers: 3)
Weather and Climate Extremes     Open Access   (Followers: 17)
Weather and Forecasting     Hybrid Journal   (Followers: 42)
Weatherwise     Hybrid Journal   (Followers: 18)
气候与环境研究     Full-text available via subscription   (Followers: 2)

              [Sort by number of followers]   [Restore default list]

Similar Journals
Journal Cover
Advances in Meteorology
Journal Prestige (SJR): 0.48
Citation Impact (citeScore): 1
Number of Followers: 25  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-9309 - ISSN (Online) 1687-9317
Published by Hindawi Homepage  [339 journals]
  • The Interannual Relationship between the Diabatic Heating over the South
           Asia and the Snow Depth over the Southern Tibetan Plateau in Late Spring
           to Early Summer: Roles of the Air Temperature

    • Abstract: The southern Tibetan Plateau (TP) is snow covered during cold season but exhibits faster snow melting in early summer. Using in situ observations and improved satellite-derived data, the present study indicates that the snow depth (SD) over the southern TP exhibits distinction characteristics between late spring (i.e., P1: April 16th–May 15th) and early summer (i.e., P2: May 16th–June 14th). In terms of climate states, the snow melting rate over the southern TP in P2 is faster than that in P1. The acceleration of snow melting during P2 is mainly found over high elevation areas caused by the increase of local air temperature. Diagnoses of the thermodynamic equation further demonstrate that the warming over the southern TP during the two periods is mainly attributed to the meridional temperature advection and diabatic heating in situ. On the interannual time scale, the SD over the southern TP is closely related to diabatic heating over South Asia. During P1, the diabatic cooling from the southern Bay of Bengal eastward to the western South China Sea suppresses convection over the Bay of Bengal and southern TP and has resulted in an upper-level anomalous cyclone and cold temperature anomalies from the surface to 200 hPa over the southern TP, favoring the above-normal SD over the southern TP. On the other hand, SD over the southern TP in P2 is closely related to diabatic cooling over the northern Indochina Peninsula and diabatic heating over the southern China. But we could not prove that these diabatic heating anomalies can affect the SD over the southern TP by modulating local surface air temperature. This may be limited by the quality of the data and the simulation capability of the simple model.
      PubDate: Fri, 02 Jun 2023 15:35:01 +000
       
  • Evaluation of Satellite Precipitation Products for Estimation of Floods in
           Data-Scarce Environment

    • Abstract: Utilization of satellite precipitation products (SPPs) for reliable flood modeling has become a necessity due to the scarcity of conventional gauging systems. Three high-resolution SPPs, i.e., Integrated Multi-satellite Retrieval for GPM (IMERG), Global Satellite Mapping of Precipitation (GSMaP), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), data were assessed statistically and hydrologically in the sparsely gauged Chenab River basin of Pakistan. The consistency of rain gauge data was assessed by the double mass curve (DMC). The statistical metrics applied were probability of detection (POD), critical success index (CSI), false alarm ratio (FAR), correlation coefficient (CC), root mean square error (RMSE), and bias (B). The hydrologic evaluation was conducted with calibration and validation scenarios for the monsoon flooding season using the Integrated Flood Analysis System (IFAS) and flow duration curve (FDC). Sensitivity analysis was conducted using ±20% calibrating parameters. The rain gauge data have been found to be consistent with the higher coefficient of determination (R2). The mean skill scores of GSMaP were superior to those of CHIRPS and IMERG. More bias was observed during the monsoon than during western disturbances. The most sensitive parameter was the base flow coefficient (AGD), with a high mean absolute sensitivity index value. During model calibration, good values of performance indicators, i.e., R2, Nash−Sutcliffe efficiency (NSE), and percentage bias (PBIAS), were found for the used SPPs. For validation, GSMaP performed better with comparatively higher values of R2 and NSE and a lower value of PBIAS. The FDC exhibited SPPs’ excellent performance during 20% to 40% exceedance time.
      PubDate: Wed, 03 May 2023 15:05:00 +000
       
  • Accuracy Evaluation of Standardized Precipitation Index (SPI) Estimation
           under Conventional Assumption in Yeşilırmak, Kızılırmak, and Konya
           Closed Basins, Turkey

    • Abstract: The doubt in the calculation algorithm of the standardized precipitation index (SPI), which is widely preferred in the evaluation and monitoring of drought, still remains up-to-date because its calculation process is performed in the form of standardization or normalization with a default probability distribution. Therefore, the success of this index is directly affected by the choice of the probability distribution model. This study is based on the effect of three different parameter estimation methods on the calculation process, as well as the comparison of the SPI results calculated based on the default Gamma distribution and the distribution with the best ability to represent the 3-and 12-month consecutive summed rainfall data among the 15 candidate distributions namely Gamma (GAM), Generalized Extreme Value (GEV), Pearson Type III (P III), Log Pearson Type III (LP III), two-parameter Lognormal (LN2), three-parameter Lognormal (LN3), Generalized Logistic (GLOG), Extreme Value Type I (EVI), Generalized Pareto (GPAR), Weilbul (W), Normal (N), Exponential (EXP), Logistic (LOG), four-parameter Wakeby (WK4), and five-parameter Wakeby (WK5) distributions. Approximately 68.4% and 18.4% of the 3-month data considered had the best fit to the Weibull and Pearson III distribution, while approximately 24% and 18% of the 12-month data had the best fit to the Weibull and Logistic distribution. On the other hand, it was found that the default Gamma distribution calculated the extreme drought categories significantly more than the best-fit distribution model. In terms of parameter estimation methods, L-moments for 3-month series and maximum likelihood approaches for 12-month series were most dominant.
      PubDate: Mon, 17 Apr 2023 11:05:01 +000
       
  • Orographic Effect and the Opposite Trend of Rainfall in Central Vietnam

    • Abstract: Central Vietnam is characterized by severe flooding associated with heavy rainfall events caused by interactions between multiscale atmospheric circulations and the complex local terrain. Previous studies believed rainfall in central Vietnam is closely related to the cold surge; however, it fails to explain the cause of the early rainfall occurrence in August in the subregion. For the first time, this study investigates the detailed atmospheric mechanisms associated with rainfall variations in central Vietnam using the empirical orthogonal function (EOF) applied to the recently developed high-resolution Vietnam gridded precipitation (VnGP) dataset. Reanalysis data NCEP/NCAR is used to associate the rainfall changes with respective atmospheric mechanisms. EOF analysis detected two dominant rainfall modes. The primary mode explains the rainfall variation from October to November over the central and is directly related to the interaction of cold surges and tropical disturbances. The second mode accounts for rainfall occurring in north central from September to mid-October, which is attributed to the westerly summer monsoon activities. Also, we revealed that, while the first mode exhibits a significant correlation with El Niño-southern oscillation, the second depends highly on the contrast of sea surface temperature in the northern and southern Hemispheres. This different oceanic forcing and the local topological effect of Truong Son mountain range reasonably explain the opposite rainfall pattern in central Vietnam in early fall.
      PubDate: Sat, 11 Mar 2023 06:35:01 +000
       
  • Spatiotemporal Variability of Extreme Rainfall in Southern Benin in the
           Context of Global Warming

    • Abstract: Changes in the frequency and timing of extreme precipitation in southern Benin are assessed in the context of global warming. The peak-over-threshold (POT) is used for this purpose, with the six (06) year return period daily rainfall as the threshold over seventeen (17) weather stations between 1960 and 2018. The results show that the South Benin experienced extreme rainfall on many occasions between 1960 and 2018 with a nonuniform spatiotemporal distribution of this category of rainfall. No statistically significant trend in the frequency and variation of extreme rainfall intensities is revealed over the study period. Despite the low rate of extreme rainfall, the monthly trend is consistent with the bimodal rainfall regime in southern Benin. The global warming highlighted in its last decades in southern Benin is accompanied by a slightly upward trend in extreme rainfall compared to the period before 1990.
      PubDate: Wed, 08 Mar 2023 14:35:01 +000
       
  • Study on the Impact of Future Climate Change on Extreme Meteorological and
           Hydrological Elements in the Upper Reaches of the Minjiang River

    • Abstract: Global warming increases global average precipitation and evaporation, causing extreme climate and hydrological events to occur frequently. Future changes in temperature, precipitation, and runoff from 2021 to 2050 in the upper reaches of the Minjiang River were analyzed using a distributed hydrological model, the SWAT (Soil and Water Assessment Tool), under a future climate scenario. Simultaneously, future variation characteristics of extreme climate hydrological elements in the upper reaches of the Minjiang River were analyzed using extreme climate and runoff indicators. The research shows that the frequency and intensity of the extreme temperature warming index will increase, while those of the extreme temperature cooling index will increase and then weaken in the upper reaches of the Minjiang River under a future climate scenario. The duration of precipitation, the intensity of continuous heavy precipitation, and the frequency of heavy precipitation will increase, whereas the intensity of short-term heavy precipitation and the frequency of heavy precipitation will decrease. However, spatial distribution of flood in the upper reaches is different, and thus flood risk in the upstream source area will still tend to increase. Particular attention should be given to the increase in autumn flood risk in the upper reaches of the Minjiang River.
      PubDate: Thu, 09 Feb 2023 15:50:01 +000
       
  • Climatology Definition of the Myanmar Southwest Monsoon (MSwM): Change
           Point Index (CPI)

    • Abstract: Myanmar’s climate is heavily influenced by its geographic location and relief. Located between the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM), Myanmar’s climate is distinguished by the alternation of seasons known as the monsoon. The north-south direction of peaks and valleys creates a pattern of alternate zones of heavy and scanty precipitation during both the northeast and southwest monsoons. The majority of the rainfall has come from Myanmar’s southwest monsoon (MSwM), which is Myanmar’s rainy season (summer in global terms, June–September). This study explained both threshold-based and nonthreshold-based objective definitions of the onset and withdrawal of large-scale MSwM. The seasonal transitions in MSwM circulation and precipitation are convincingly represented by the new index, which is based on change point detection of the atmospheric moisture flow converging in the MSwM region (10–28 N, 92–102 E). A transition in vertically integrated moisture transport (VIMT), the reversal of surface winds, and an increase in precipitation may also be considered when defining MSwM onset objectively. We also define a change point of the MSwM (CPI) index for MSwM onset and withdrawal dates. The climatological mean onset of MSwM is day 135 (May 14), withdrawal is day 278 (October 4), and the total season length is 144 days. We are investigating spatial patterns of rainfall progression at and after the start of the monsoon, rather than transitions within a single region of the MSwM. The local southwest monsoon duration is well correlated with the CPI duration on interannual timescales, particularly in the peak rainfall regions, with a delay (advance) in large-scale onset or withdrawal associated with a delay (advance) of onset or withdrawal by local index. Hence, the next phase of this research is to study the maintenance and break of the monsoon to understand the underlying physical processes governing the monsoon circulation. The results of this study provide a possibility to reconstruct Myanmar’s monsoon climate dynamics, and the findings of this study can help unravel many remaining questions regarding the greater Asian monsoon system’s variability.
      PubDate: Wed, 25 Jan 2023 12:05:00 +000
       
  • Potential Impacts of Future Climate Changes on Crop Productivity of
           Cereals and Legumes in Tamil Nadu, India: A Mid-Century Time Slice
           Approach

    • Abstract: Climate change is a terrible global concern and one of the greatest future threats to societal development as a whole. The accelerating pace of climate change is becoming a major challenge for agricultural production and food security everywhere. The present study uses the midcentury climate derived from the ensemble of 29 general circulation models (GCMs) on a spatial grid to quantify the anticipated climate change impacts on rice, maize, black gram, and red gram productivity over Tamil Nadu state in India under RCP 4.5 and RCP 8.5 scenarios. The future climate projections show an unequivocal increase of annual maximum temperature varying from 0.9 to 2.2°C for RCP 4.5 and 1.4 to 2.7°C in RCP 8.5 scenario by midcentury, centered around 2055 compared to baseline (1981–2020). The projected rise in minimum temperature ranges from 1.0 to 2.2°C with RCP 4.5 and 1.8 to 2.7°C under RCP 8.5 scenario. Among the monsoons, the southwest monsoon (SWM) is expected to be warmer than the northeast monsoon (NEM). Annual rainfall is predicted to increase up to 20% under RCP 4.5 scenario in two-third of the area over Tamil Nadu. Similarly, RCP 8.5 scenario indicates the possibility of an increase in rainfall in the midcentury with higher magnitude than RCP 4.5. Both SWM and NEM seasons are expected to receive higher rainfall during midcentury under RCP 4.5 and RCP 8.5 than the baseline. In the midcentury, climate change is likely to pose a negative impact on the productivity of rice, maize, black gram, and red gram with both RCP 4.5 and RCP 8.5 scenarios in most places of Tamil Nadu. The magnitude of the decline in yield of all four crops would be more with RCP 8.5 over RCP 4.5 scenario in Tamil Nadu. Future climate projections made through multi-climate model ensemble could increase the plausibility of future climate change impact assessment on crop productivity. The adverse effects of climate change on cereal and legume crop productivity entail the potential adaptation options to ensure food security.
      PubDate: Mon, 16 Jan 2023 02:50:01 +000
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 18.207.240.77
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-