A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> METEOROLOGY (Total: 106 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Boundary-Layer Meteorology
Journal Prestige (SJR): 1.262
Citation Impact (citeScore): 2
Number of Followers: 32  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1573-1472 - ISSN (Online) 0006-8314
Published by Springer-Verlag Homepage  [2468 journals]
  • Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using
           Machine Learning

    • Free pre-print version: Loading...

      Abstract: Abstract Turbulent exchanges between sea ice and the atmosphere are known to influence the melting rate of sea ice, the development of atmospheric circulation anomalies and, potentially, teleconnections between polar and non-polar regions. Large model errors remain in the parametrization of turbulent heat fluxes over sea ice in climate models, resulting in significant uncertainties in projections of future climate. Fluxes are typically calculated using bulk formulae, based on Monin-Obukhov similarity theory, which have shown particular limitations in polar regions. Parametrizations developed specifically for polar conditions (e.g. representing form drag from ridges or melt ponds on sea ice) rely on sparse observations and thus may not be universally applicable. In this study, new data-driven parametrizations have been developed for surface turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine learning has already been used outside the polar regions to provide accurate and computationally inexpensive estimates of surface turbulent fluxes. To investigate the feasibility of this approach in the Arctic, we have fitted neural-network models to a reference dataset (SHEBA). Predictive performance has been tested using data from other observational campaigns. For momentum and sensible heat, performance of the neural networks is found to be comparable to, and in some cases substantially better than, that of a state-of-the-art bulk formulation. These results offer an efficient alternative to the traditional bulk approach in cases where the latter fails, and can serve to inform further physically based developments.
      PubDate: 2024-02-21
       
  • Setting Up a Large-Eddy Simulation to Focus on the Atmospheric Surface
           Layer

    • Free pre-print version: Loading...

      Abstract: Abstract Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10–20% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments.
      PubDate: 2024-02-21
       
  • Uncertainties of Drag Coefficient Estimates Above Sea Ice from Field Data

    • Free pre-print version: Loading...

      Abstract: Abstract Surface turbulent exchanges play a key role on sea ice dynamics, on ocean and sea ice heat budgets and on the polar atmosphere. Uncertainties in parameterizations of surface turbulent fluxes are mostly held by the transfer coefficients and estimates of those transfer coefficients from field data are required for parameterization development. Measurement errors propagate through the computation of transfer coefficients and contribute to its total error together with the uncertainties in the empirical stability functions used to correct for stability effects. Here we propose a methodology to assess their contributions individually to each coefficient estimate as well as the total drag coefficient uncertainty and we apply this methodology on the example of the SHEBA campaign. We conclude that for most common drag coefficient values (between \(1.0\times 10^{-3}\) and \(2.5\times 10^{-3}\) ), the relative total uncertainty ranges from 25 and 50 \(\%\) . For stable or unstable conditions with a stability parameter \( \zeta >1\) on average, the total uncertainty in the neutral drag coefficient exceeds the neutral drag coefficient value itself, while for \( \zeta <1\) the total uncertainty is around 25 \(\%\) of the drag coefficient. For closer-to-neutral conditions, this uncertainty is dominated by measurement uncertainties in surface turbulent momentum fluxes which should therefore be the target of efforts in uncertainty reduction. We also propose an objective data-screening procedure for field data, which consists of retaining data for which the relative error on neutral drag coefficient does not exceed a given threshold. This method, in addition to the commonly used flux quality control procedure, allows for a reduction of the drag coefficient dispersion compared to other data-screening methods, which we take as an indication of better dataset quality.
      PubDate: 2024-02-14
       
  • A Novel Similarity Approach for Describing the Bulk Shear in the
           Atmospheric Surface Layer

    • Free pre-print version: Loading...

      Abstract: Abstract The Monin–Obukhov Similarity Theory (MOST) is a cornerstone of boundary layer meteorology and the basis of most parameterizations of the atmospheric surface layer. Due to its significance for observations and modelling, we generalize the dimensional analysis of MOST by considering the bulk gradient directly, enabling the study of any sublayer of the atmospheric surface layer. This results in a family of similarity relations describing all gradients from the local gradient to the full-layer bulk gradient. By applying the profiles derived from the law-of-the-wall and MOST, we are able to derive analytic expressions for this family of similarity relations. Under stable conditions, we discover that the log-linear profile of Businger–Dyer generalizes from the local to the bulk shear where the slope is dependent on the choice of the layer. The simplicity of the general log-linear relation allows for estimating the influence of stability on the non-dimensional gradients. It is shown that bulk gradients are less sensitive to stability than the local gradient. By correctly filtering cases where the full-layer bulk gradient is influenced by stability, we demonstrate that MOST is compatible with the Hockey-Stick Transition. For unstable conditions, the Kader and Yaglom (J Fluid Mech 212(151):637-662, 1990) model represents the local gradient well but was not successful in representing the bulk gradient, demonstrating the need for further analysis of scaling relations for the unstable atmospheric surface layer.
      PubDate: 2024-02-04
       
  • Quantification of Approaching Wind Uncertainty in Flow over Realistic
           Plant Canopies

    • Free pre-print version: Loading...

      Abstract: Abstract Numerical simulations and in-situ measurements represent two important and synergistic pillars for the study of flow and transport in plant canopies. Due to model limitations and parameter uncertainty, the alignment of model predictions with actual observations is challenging in practice. The present work proposes a Bayesian uncertainty quantification (UQ) framework that estimates the approaching wind angle parameter for large-eddy simulation (LES) of flow in plant canopies by assimilating data from in-situ measurements. The framework is applied to LES of flow within and above realistic plant canopy, with plant area density derived from light detection and ranging measurements. Uncertainty on approaching wind direction is characterized via a Markov chain Monte Carlo procedure, and propagated through Monte Carlo sampling to wind speed and resolved Reynolds stresses. Given the substantial computational cost of LES, a surrogate model based on an exiguous number of LESs is used for flow simulations within the UQ framework. As a result of the analysis, the UQ solution is given by probability density functions of selected flow statistics at different heights. Profiles of mean ± standard deviation for the considered flow statistics exhibit excellent agreement with corresponding observations, proving that the proposed approach is able to calibrate the approaching wind angle parameter, and that the quantified uncertainty captures discrepancies between observations and model results. Overall, the present work highlights the potential of UQ to enhance predictions of exchange processes between vegetation canopy and atmosphere.
      PubDate: 2024-01-27
       
  • Assessing the Internal Variability of Large-Eddy Simulations for
           Microscale Pollutant Dispersion Prediction in an Idealized Urban
           Environment

    • Free pre-print version: Loading...

      Abstract: Abstract This study aims at estimating the inherent variability of microscale boundary-layer flows and its impact on air pollutant dispersion in urban environments. For this purpose, we present a methodology combining high-fidelity large-eddy simulation (LES) and a stationary bootstrap algorithm, to estimate the internal variability of time-averaged quantities over a given analysis period thanks to sub-average samples. A detailed validation of an LES microscale air pollutant dispersion model in the framework of the Mock Urban Setting Test (MUST) field-scale experiment is performed. We show that the LES results are in overall good agreement with the experimental measurements of wind velocity and tracer concentration, especially in terms of fluctuations and peaks of concentrations. We also show that both LES estimates and the MUST experimental measurements are subject to significant internal variability, which is therefore essential to take into account in the model validation. Moreover, we demonstrate that the LES model can accurately reproduce the observed internal variability.
      PubDate: 2024-01-27
       
  • Influence of Street Trees on Turbulent Fluctuations and Transport
           Processes in an Urban Canyon: A Wind Tunnel Study

    • Free pre-print version: Loading...

      Abstract: Abstract The presence of vegetation within urban canyons leads to non-trivial patterns of the concentration of airborne pollutants, as a result of the complex structure of the velocity field. To investigate the relationship between concentration, velocity fields and vegetation density, we have performed wind-tunnel experiments in a reduced-scale street canyon, oriented perpendicular to the external wind flow, within which we placed a steady ground-level line source of a passive tracer. The aerodynamic behavior of vegetation was reproduced by inserting plastic miniatures of trees along the two long sides of the canyon, according to three different densities. The canyon ventilation was investigated by acquiring one-point simultaneous statistics of concentration and velocity over a dense grid of points within the canyon. The results show that the presence of trees hinders the upward mean vertical velocity at the rooftop, causes a reduction of the turbulent kinetic energy inside the canyon, and reduces the energy content of the large scales. The scalar concentration is conversely characterized by an enhanced level of turbulent fluctuations, whose magnitude is not dampened increasing the tree density. Within the canyon, high tree density inhibits turbulent mass fluxes, which are instead enhanced at roof level, where the mean component of the scalar flux is however hindered. A statistical analysis of concentration time series reveals that the lognormal distribution is suitable to model concentration fluctuations and extreme events, in dispersing plumes emitted by a linear source.
      PubDate: 2024-01-22
       
  • Turbulence in the Strongly Heterogeneous Near-Surface Boundary Layer over
           Patchy Snow

    • Free pre-print version: Loading...

      Abstract: Abstract The near-surface boundary layer above patchy snow cover in mountainous terrain is characterized by a highly complex interplay of various flows on multiple scales. In this study, we present data from a comprehensive field campaign that cover a period of 21 days of the ablation season in an alpine valley, from continuous snow cover until complete melt out. We recorded near-surface eddy covariance data at different heights and investigated spectral decompositions. The topographic setting led to the categorisation of flows into up and down valley flows, with a down valley Föhn event in the middle of the observation period. Our findings reveal that the snow cover fraction is a major driver for the structure and dynamics of the atmospheric layer adjacent to the snow surface. With bare ground emerging, stable internal boundary layers (SIBL) developed over the snow. As the snow coverage decreased, the depth of the SIBL decreased below 1 m and spectra of air temperature variance showed a transition towards turbulent time scales, which were caused by the intermittent advection of shallow plumes of warm air over the snow surface. The intermittent advection could also be observed visually with high spatio-temporal resolution measurements using a thermal infrared camera. While the shallow advection only affected the lowest measurement level at 0.3 m, the measurements above at 1 m, 2 m, and 3 m indicate that the distribution of eddy size and, thus, the turbulence structure, did not distinctly change with height.
      PubDate: 2024-01-22
       
  • Effect of Urban Morphology and an Upstream Tall Building on the Scale
           Interaction Between the Overlying Boundary Layer and a Street Canyon

    • Free pre-print version: Loading...

      Abstract: Abstract The interaction of large- and small-scale velocity fluctuations between a street canyon flow and the overlying boundary layer, under the influence of a local morphological model and a single upstream tall building, is investigated. The experiments are conducted in a wind tunnel, using Stereoscopic Particle Image Velocimetry (S-PIV) and Hot-Wire Anemometry (HWA). The Proper Orthogonal Decomposition-Linear Stochastic Estimation (POD-LSE) method is applied to decompose the velocity fluctuation scales and estimate the large-scale fluctuations at a high frequency. The amplitude modulation mechanism, which was found to exist for both smooth and homogeneous rough wall boundary layers in previous studies, still applies to the more complex morphological model with a single upstream building having a relative low height, but with some modification. When the upstream building is much higher than the surrounding buildings, the large eddies shed from the tall building may predominate the scale interaction.
      PubDate: 2024-01-19
       
  • A Study of Intermittent Turbulence in Stable Arctic Boundary Layers

    • Free pre-print version: Loading...

      Abstract: Abstract Polar boundary layers are difficult to model due to the existence of intermittent turbulence within stable layers. Here we present a case study evaluation of coherent structures in a stable boundary layer observed during a series of flights with an uncrewed aircraft system (DataHawk2) on 19 October 2016 at Oliktok Point, Alaska as part of the ERASMUS (Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems) field campaign. During a sequence of five flights over a nine-hour period, 57 profiles of atmospheric properties (0–400 m a.g.l) were collected. Turbulence was identified using derived Richardson Number, temperature structure function parameter, and turbulence kinetic energy dissipation. Throughout all flights on this strongly stable day, intermittent turbulence was observed. These turbulent layers showed well-mixed potential temperature profiles embedded within otherwise stable potential temperature profiles; often resulting in a characteristic staircase pattern. Turbulent layers ranged from 1 to 30 m deep, with most individual layers being 1–2 m deep. Vertical propagation velocities of layers in the lower atmosphere were on the order of a few cm s−1, typical of non-convective environments. In different regions of the profile, turbulence was driven by a different balance of buoyancy and shear forces, with turbulence in the near surface environment driven by strong shear forces overcoming strong resistance to buoyancy, while turbulence in elevated layers characterized by weaker shear forces overcoming weaker resistance to buoyancy. We discuss the potential of such datasets for improving subgrid parameterizations of small-scale turbulence embedded within stable boundary layers.
      PubDate: 2024-01-12
       
  • Effect of Small-Scale Topographical Variations and Fetch from Roughness
           Elements on the Stable Boundary Layer Turbulence Statistics

    • Free pre-print version: Loading...

      Abstract: Abstract Understanding the influence of roughness and terrain slope on stable boundary layer turbulence is challenging. This is investigated using observations collected from October to November of 2018 during the Stable Atmospheric Variability ANd Transport (SAVANT) field campaign conducted in a shallow sloping Midwestern field. We analyze the turbulence velocity scale and its variation with the mean wind speed using observations up to 10–20 m on four meteorological towers located along a shallow gully. The roughness length for momentum over this complex terrain varied with wind direction from 0.0049 m to a maximum of 0.12 m for winds coming through deciduous trees present in the field. The variation of the turbulence velocity with wind speed shows a transition from a weak wind regime to a stronger wind regime, as reported by past studies. This transition is not observed for winds coming from the tree area, where turbulence is enhanced even for weak wind speeds. For weak stratification and stronger winds, the turbulent velocity scale increased with an increase in roughness while the terrain slope is seen to have a weak influence. The sizes of the dominant turbulent eddies seen from the vertical velocity power spectra are observed to be larger for winds coming through the tree area. The turbulence enhancement by the trees is found to be strong within a fetch distance of 7 times the tree height and not observable at 16 times of the tree height.
      PubDate: 2024-01-12
       
  • Impact of Uncertainties in the Atmospheric Boundary Layer Height on the
           Numerical Simulation of Chemical Species

    • Free pre-print version: Loading...

      Abstract: Abstract Uncertainties in the atmospheric boundary layer height (ABL-H) are associated either with the uncertainties in meteorological fields or the definition of the ABL-H. When the ABL-H is involved in ABL parameterization schemes these uncertainties can have impacts on numerical simulation of chemical species. The impacts are examined numerically by employing a 1-D diffusion model with the K-profile scheme and 3-D air quality forecast model with the turbulent kinetic energy (TKE)-based scheme. The dependency on the ABL-H in the two schemes is very different. Sensitivity tests with the 1-D model show that the over-estimated/under-estimated ABL-H leads to the decrease/increase of concentration of tracers under both stable and unstable conditions due to the increase/decrease of the volume of tracers within the ABL. Under unstable conditions, the over-estimated/under-estimated ABL-H also enhances/weakens the vertical diffusivity, and leads to the decrease/increase of the concentration of tracers for the negative/positive vertical gradient of tracer. These impacts result in a little change with height within the ABL. The impacts of the ABL-H through the counter-gradient term and entrainment flux are much smaller than the impact through changing the volume of the ABL and vertical diffusivity in the ABL. Sensitivity tests with the 3-D numerical model with the TKE scheme show that over urban areas the over-estimated/under-estimated ABL-H leads to the increase/decrease of TKE in the whole ABL but does not always lead to stronger/weaker diffusivity and lower/higher concentrations of chemical species.
      PubDate: 2024-01-12
       
  • A Model for Low-Frequency, Anisotropic Wind Fluctuations and Coherences in
           the Marine Atmosphere

    • Free pre-print version: Loading...

      Abstract: Abstract To assess dynamic loads, large offshore wind turbines need detailed and reliable statistical information on the inflow turbulence. We present a model that includes low frequencies down to \(\sim 1\) hr \(^{-1}\) using the observed \(S(f) \propto f^{-5/3}\) in that range. The presented model contains a parameter representing the anisotropy of the two-dimensional, incompressible turbulence, and it assumes the low-frequency fluctuations to be homogeneous in the vertical direction. Combined with a three-dimensional model for the smaller scales, the model can predict correlations between different points. We have validated the model against two offshore wind data sets: a nacelle-mounted, forward-looking Doppler lidar with four beams at the Hywind Scotland offshore wind farm and sonic anemometer measurements at the FINO1 research platform in the North Sea. One-point auto spectra and two-point cross spectra were calculated after splitting the data into different atmospheric stability classes. The relative strength of the 2D low-frequency fluctuations to the 3D fluctuations was higher under stable conditions. The combined 2D+3D model was able to fit the measured spectra with good accuracy and could then predict the two-point cross spectra, co-coherences, and phase angles between wind fluctuations at different lateral and vertical separations. Good agreement was found between the measured and predicted values, albeit with exceptions. The model can generate stochastic wind fields for investigating wake meandering in wind farms or dynamic loads on floating wind turbines.
      PubDate: 2024-01-11
       
  • The Arctic Fjord Breeze: Characteristics of a Combined Sea Breeze and
           Valley Wind in a Svalbard Fjord Valley

    • Free pre-print version: Loading...

      Abstract: Abstract Thermally-driven circulations are a frequent meteorological phenomenon in complex Arctic terrain, but the Arctic fjord breeze, a combined sea-breeze and up-valley wind, has received little attention. A field campaign was conducted in the valley Adventdalen in Svalbard in summer 2022 using a Scanning Doppler Lidar and automatic weather stations. It is shown that a local up-valley circulation occurred frequently in this valley, and that it was driven by the temperature and pressure gradient between valley and fjord, i.e., a fjord breeze. The fjord breeze existed in both large-scale up-valley and down-valley winds. Its strength, extent and depth varied due to the diurnal cycle of solar irradiation as well as the interaction with large-scale winds. In contrast to typical lower-latitude breezes, the Arctic fjord breeze could persist over several days. The breeze was found to be relatively strong even under small horizontal temperature contrasts and opposing large-scale winds, possibly due to an increase in the thermal pressure gradient by the surrounding topography.
      PubDate: 2023-12-08
       
  • The Performance of GRAMM-SCI and WRF in Simulating the Surface-Energy
           Budget and Thermally Driven Winds in an Alpine Valley

    • Free pre-print version: Loading...

      Abstract: Abstract Using WRF as a benchmark, GRAMM-SCI simulations are performed for a case study of thermally driven valley- and slope winds in the Inn Valley, Austria. A clear-sky, synoptically undisturbed day was selected when large spatial heterogeneities occur in the components of the surface-energy budget driven by local terrain and land-use characteristics. The models are evaluated mainly against observations from four eddy-covariance stations in the valley. While both models are able to capture the main characteristics of the surface-energy budget and the locally driven wind field, a few overall deficiencies are identified: (i) Since the surface-energy budget is closed in the models, whereas large residuals are observed, the models generally tend to overestimate the daytime sensible and latent heat fluxes. (ii) The partitioning of the available energy into sensible and latent heat fluxes remains relatively constant in the simulations, whereas the observed Bowen ratio decreases continuously throughout the day because of a temporal shift between the maxima in sensible and latent heat fluxes, which is not captured by the models. (iii) The comparison between model results and observations is hampered by differences between the real land use and the vegetation type in the model. Recent modifications of the land-surface scheme in GRAMM-SCI improve the representation of nighttime katabatic winds over forested areas, reducing the modeled wind speeds to more realistic values.
      PubDate: 2023-11-10
      DOI: 10.1007/s10546-023-00835-9
       
  • Impact of Local Terrain Features on Urban Airflow

    • Free pre-print version: Loading...

      Abstract: Abstract Past work has shown that coupling can exist between atmospheric air flows at street scale (O(0.1 km)) and city scale (O(10 km)). It is generally impractical at present to develop high-fidelity urban simulations capable of capturing such effects. This limitation imposes a need to develop better parameterisations for meso-scale models but an information gap exists in that past work has generally focused on simplified urban geometries and assumed the buildings to be on flat ground. This study aimed to begin to address this gap in a systematic way by using the large eddy simulation method with synthetic turbulence inflow boundary conditions to simulate atmospheric air flows over the University of Southampton campus. Both flat and realistic terrains were simulated, including significant local terrain features, such as two valleys with a width about 50 m and a depth about average building height, and a step change of urban roughness height. The numerical data were processed to obtain averaged vertical profiles of time-averaged velocities and second order turbulence statistics. The flat terrain simulation was validated against high resolution particle image velocimetry data, and the impact of uncertainty in defining the turbulence intensity in the synthetic inflow method was assessed. The ratio between realistic and flat terrains of time-mean streamwise velocity at the same ground level height over a terrain crest location can be >2, while over a valley trough it can be <0.5. Further data analysis conclusively showed that the realistic terrain can have a considerable effect on global quantities, such as the depth of the spanwise-averaged internal boundary layer and spatially-averaged turbulent kinetic energy. These highlight the potential impact that local terrain features (O(0.1 km)) may have on near-field dispersion and the urban micro-climate.
      PubDate: 2023-10-13
      DOI: 10.1007/s10546-023-00831-z
       
  • The Relaxed Eddy Accumulation Method Over the Amazon Forest: The
           Importance of Flux Strength on Individual and Aggregated Flux Estimates

    • Free pre-print version: Loading...

      Abstract: Abstract The ability of the relaxed eddy accumulation (REA) method to estimate the kinematic fluxes of temperature, water vapor and carbon dioxide was assessed for the dry season (3 months) at the ATTO (Amazon Tall Tower Observatory) site from turbulence measurements. The measurements were performed at 50 m above ground within the roughness sublayer. Non-conformity with inertial sublayer conditions was confirmed one more time by analyzing dimensionless scalar standard deviations. Over the scale of the whole dry season, REA and EC (eddy covariance) estimates are essentially equal. Recently found results that the REA method outperforms Monin–Obukhov-based approaches are confirmed. However, we also verify that such results fail to reveal significant variability and scatter of the REA estimates when the fluxes are of small magnitude. On the basis of previous studies, we conjecture that this is caused by a likely imbalance between scalar gradient production and molecular dissipation. Confirmation of our results to trace gases, therefore, requires further study.
      PubDate: 2023-10-04
      DOI: 10.1007/s10546-023-00829-7
       
  • Celebrating the Career of Evgeni Fedorovich: Explorer of the
           Boundary-Layer Realm and Ambassador for the Community

    • Free pre-print version: Loading...

      PubDate: 2023-09-11
      DOI: 10.1007/s10546-023-00828-8
       
  • Understanding Thermally Driven Slope Winds: Recent Advances and Open
           Questions

    • Free pre-print version: Loading...

      Abstract: Abstract The paper reviews recent advances in our understanding about the dynamics of thermally driven winds over sloping terrain. Major progress from recent experiments, both in the field and in the laboratory, are outlined. Achievements from numerical modelling efforts, including both parameterized turbulence and large eddy simulation approaches, up to direct numerical simulations, are also reviewed. Finally, theoretical insights on the nature of turbulence in such winds are analyzed along with applications which benefit from progress in understanding of these flows. Open questions to be faced for further investigations are finally highlighted.
      PubDate: 2023-09-09
      DOI: 10.1007/s10546-023-00821-1
       
  • Atmospheric Small-Scale Turbulence from Three-Dimensional Hot-film Data

    • Free pre-print version: Loading...

      Abstract: Abstract The behavior of small-scale atmospheric turbulence is investigated using the three-dimensional Canopy Horizontal Array Turbulence Study hot-film data. The analysis relies on an in situ calibration versus simultaneous sonic anemometer measurements. The calibration is based on King’s law and geometric relationships between the individual hot-film sensors, and is able to account for the errors associated with sensors’ misalignment and the high turbulence intensity. The details of the calibration are provided, and its performance is validated by comparing results of spectra and structure functions with standard wind-tunnel data and model spectra. A single 3 h block of data was selected, containing 33 subblocks of 2 min data without error gaps, whose statistics were averaged to provide smooth results. These data were measured above canopy under stable conditions, and correspond to a Taylor Reynolds number \(Re_\lambda \approx 1550\) . The agreement with wind tunnel results for a similar \(Re_\lambda \) and with model predictions provides a validation for the in situ calibration method applied. Furthermore, the results indicate a presence of the bottleneck effect in the lateral and vertical spectra, in addition to a lack of inertial range in the second-order structure function due to the low Reynolds number. An additional analysis of the effect of Reynolds number on the inertial range is provided using atmospheric data from the literature.
      PubDate: 2023-09-07
      DOI: 10.1007/s10546-023-00826-w
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.20.240
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> METEOROLOGY (Total: 106 journals)
The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.192.20.240
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-