Abstract: This literature review explores various aspects of using probiotics as a dietary practice to mitigate the effects of toxic compounds. The discussion highlights the importance of considering factors such as timing and composition of probiotic consumption for maximum benefits. Studies have demonstrated the potential of probiotics to inhibit Deoxyribonucleic Acid (DNA) damage and reduce the occurrence of aberrant crypts in animal models when administered before exposure to toxicants. Furthermore, probiotics have been found to metabolize genotoxic compounds into inactive forms, indicating their potential role in detoxification processes. The binding activity of probiotics against toxicants has been widely studied, but there is a need for further research on the metabolites produced during these interactions. Additionally, the presence of other compounds in the food matrix and their competitive effects on probiotic binding should be investigated to understand the full picture. The strain-dependent nature of the probiotic activity and the variability of their antimutagenic properties for different mutagens further highlight the complexity of their functionality. Considering these findings, it is recommended to conduct a careful risk assessment to evaluate the safety of probiotics and their metabolites, taking into account the potential risks and benefits associated with their use. This will help ensure the responsible application of probiotics in food safety and human health initiatives. PubDate: 27 Jun, 2023
Abstract: Tea and ascorbic acid have antioxidative and anti-inflammatory effects, and vitamin D and zinc have immunomodulatory effects. This study investigated the effect of a nutraceutical prescription combining these four nutrients on the blood biochemical markers and the modified C19-YRS questionnaires in patients who had recovered from COVID-19 disease for four months. Analysis of six markers associated with long COVID symptoms, i.e., INR, d-dimer, hs-CRP, NT-ProBNP, IL-6 and IgA, indicated that the nutraceutical could positively affect the values, especially for the inflammatory markers. The physician’s clinical observation and questionnaire analysis reported significant improvements in post-exertional malaise, sleep quality and overall health of the patients. These results suggested that formulated nutraceutical could not only reduces or eliminates the symptom of long COVID, but potentially also prevents reinfection. PubDate: 03 May, 2023
Abstract: The intestinal microbiota is an ecosystem where bacteria, archaea, viruses, and protists, are entangled, but not alone. We take microbiota as the bacterial community because, in many historical papers, the probes to detect other organisms in the intestine were rarely used. But in addition, unicellular fungi or yeasts do exist in microbiota, their assembly is called the mycome or fungiome, and it can reach the size and number of our human cells. The bacteria are far more numerous. For a long time, the whole was taken for a nest of pathogens, but in fact, yeasts adapted and evolved as symbiotic cells helping not only our digestion, but also angiogenesis, tissue growth, vitamin synthesis, and our nervous, endocrine, immune systems and even our detoxification system. Much of what we swallow is or will become fermented, like bread, cheese, or wine. Since the beginning of agriculture, our food is eaten lightly by microbiota including yeasts first in plants not treated by pesticides. Natural yeasts still unknown are in hundreds of types or species at the very least, bringing in particular during their work of fermentation a multiplicity of aromas that play a role in the famous detoxification; but the usual diet only provides a few strains of these yeasts. In yeasts like in all cells, ubiquitous cytochrome P450 detoxifying enzymes form a vast family also involved in cell respiration, which is stimulated to some extent by the aromas and other signals secreted. Yeasts could attract and coordinate bacteria to eliminate in part chemical pollutants. PubDate: 02 May, 2023