Authors:Daiming Zhong et al. Abstract: Cell nucleus status decides the activities of corresponding cells, making its rapid and effective staining important for revealing the actual condition of biological environment in life science and related fields. In this study, fast staining of cell nucleus is realized by fluorescent carbon nanodots (CDs). The staining mechanism is due to the positively charged CD surface-induced cell membrane penetration, which facilitates the CD-nucleus binding via electrostatic attraction. The size of cell nucleus is easily measured with fluorescence imaging technique. In addition, the CD-based cell nucleus stain is applied for discriminating the normal and cancer cells by determining the cell-to-nucleus ratio with fluorescence images. PubDate: Mon, 10 Jun 2024 23:52:36 PDT
Authors:Alexander Gosslau et al. Abstract: We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed pro-inflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti- inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance. PubDate: Mon, 10 Jun 2024 23:52:29 PDT
Authors:Zheng-Yuan Su et al. Abstract: Citrus peels contain abundant polyphenols, particularly flavonoids, and have been shown to exert lipid accumulation decreasing ability. In this study, Citrus depressa peel applied to oven drying and extracted with ethanol extract as CDEE to analyze its flavonoids compositions and investigated its effects on a high-fat diet (HFD)-induced obese mice model. CDEE contained several flavonoids such as hesperidin, sinesentin, nobiletin, tangeretin, 5-demethylnobiletin, and 5-demethyltangeretin. The mice fed an HFD, and administration of 2% CDEE to could decrease weight gain, abdominal fat weight, inguinal fat weight, and the adipocyte size, and CDEE also reduced serum total cholesterol (TCHO), triacylglycerol (TG) compared with mice fed only on HFD. CDEE hindered lipid accumulation through a decreased fatty acid synthase (FAS) protein expression via upregulation of the protein expression of AMP-activated protein kinase α (AMPKα). Moreover, CDEE modulated gut microbiota that altered by HFD through an increased abundance of Lactobacillus reuteri compared with the HFD group. The results demonstrated that CDEE helps decrease lipid accumulation through the AMPK pathway, which also indicates a prebiotic-like effect on gut microbiota. PubDate: Mon, 10 Jun 2024 23:52:22 PDT
Authors:Serdar Demir et al. Abstract: Investigation of utilization possibilities of natural sources has been an important area for research. Tyrosinase inhibitory activity plays a key role in food and medicine industry. Strawberry tree (Arbutus unedo), a widely distributed plant among Mediterranean countries, possess fruits and leaves with rich bioactive phytochemicals, especially polyphenolic compounds. In this study, we aimed to investigate the antityrosinase activity of the fruit and leaf extracts of the plant, and to determine the phenolic compounds that contribute to the antityrosinase activity. In this regard, we evaluated the effect of solvent composition on the extraction of phenolic compounds from A. unedo and on its antityrosinase activity using a simplex centroid design approach, and used chromatographic and LC-MS/MS techniques. The leaf extracts prepared using EtOH:water (50:50) provided higher TPC (456.39 mg GAE/g extract) and acetone:EtOH:water (33:33:33) provided higher TFC (56.15 mg QE/g extract) values than of fruit extracts. LC-MS/MS analysis revealed 23 phenolic/flavonoid compounds in leaf extracts (L1-8), and major metabolites were detected as quercitrin, quinic acid, catechin, tannic acid, isoquercitrin, gallic acid, and ellagic acid. Among the leaf extracts, L3 (aceton:water, 50:50) exhibited 72.01% tyrosinase inhibition at 500 μg/mL. After fractionation studies guided by antityrosinase activity, its subfraction L3-Fr2 exhibited 40.06% inhibition at 50 μg/mL concentration (IC50: 146±7.75 μg/ml), and catechin (113.19 mg/g), tannic acid (53.14 mg/g), ellagic acid (22.14 mg/g), gallic acid (10.27 mg/g), and epicatechin gallate (8.65 mg/g) were determined as major metabolites. Its subfraction L3-Fr2-sub7 exhibited better antityrosinase activity (IC50: 206.23±9.87μg/mL), and quantitative analysis results revealed the presence of tannic acid (127.40 mg/g), gallic acid (13.96 mg/g), ellagic acid (7.66 mg/g), quercetin-3-O-glucuronide (5.06 mg/g), and quinic acid (3.2 mg/g) as major metabolites, and correlation analysis showed that ellagic acid and quinic acid were positively correlated with antityrosinase activity. PubDate: Mon, 10 Jun 2024 23:52:16 PDT
Authors:Thin Thin Sein et al. Abstract: Aflatoxin B1, a major global food safety concern, is produced by toxigenic fungi during crop growing, drying, and storage, and shows increasing annual prevalence. This study aimed to detect aflatoxin B1 in chili samples using ATR–FTIR coupled with machine learning algorithms. We found that 83.6% of the chili powder samples were contaminated with Aspergillus and Penicillium species, with aflatoxin B1 levels ranging from 7.63 to 44.32 µg/kg. ATR–FTIR spectroscopy in the fingerprint region (1800−400 cm-1) showed peak intensity variation in the bands at 1587, 1393, and 1038 cm-1, which are mostly related to aflatoxin B1 structure. The PCA plots from samples with different trace amounts of aflatoxin B1 could not be separated. Vibrational spectroscopy combined with machine learning was applied to address this issue. The logistic regression model had the best F1 score with the highest %accuracy (73%), %sensitivity (73%), and %specificity (71%), followed by random forest and support vector machine models. Although the logistic regression model contributed significant findings, this study represents a laboratory research project. Because of the peculiarities of the ATR–FTIR spectral measurements, the spectra measured for several batches may differ, necessitating running the model on multiple spectral ranges and using increased sample sizes in subsequent applications. This proposed method has the potential to provide rapid and accurate results and may be valuable in future applications regarding toxin detection in foods when simple onsite testing is required. PubDate: Mon, 10 Jun 2024 23:52:09 PDT
Authors:Sonakshi Puri et al. Abstract: Nutraceuticals, that include food ingredients and bioactives from natural products, confer physiological health benefits and protection against chronic diseases. Annatto is a tropical shrub grown in Central and South America and parts of India. Its seeds are rich in the edible carotenoid-derived apocarotenoid pigment, bixin, which is used as a natural colorant in food, textiles, and cosmetics, and is now gaining attention for its potential health-promoting attributes. Here, we compared a green solvent (ethyl lactate) based extraction of bixin and associated metabolites in annatto seeds (crushed and seed coat) with two other conventional solvents (acetone and acid-base). Bixin was characterized in the extracts using UV-visible- and FTIR- spectroscopy and thin-layer chromatography. The bixin-containing solvent extracts were then profiled for other co-existing metabolites using GC-MS analysis, which were found to be sesquiterpenes, terpenes, terpenoids, phytosterols, and tocotrienols. Their bioactivity was evaluated based on antioxidant and wound-healing efficacies and compared with pure bixin, using NIH-3T3 fibroblast cells in-vitro. Pure bixin, as well as the annatto solvent extracts, showed strong antioxidant and wound healing properties, wherein pure bixin and green solvent extract (ethyl lactate coat) exhibited higher levels of antioxidant activity, achieving 46.00% and 44.60% reduction in MDA levels, respectively, as well as enhanced wound-healing activity, with 54.09% and 53.60% wound closure within 24 h. The green solvent extracts of annatto seeds revealed: (a) differential bioactive profiles in annatto seeds (crushed and seed coat) in comparison with other solvents, and (b) strong antioxidant and wound healing properties. Thus, ethyl lactate extraction shows strong potential for sustainable environmental friendly production of functional foods/nutraceuticals from annatto seeds. PubDate: Mon, 10 Jun 2024 23:52:02 PDT
Authors:Hsiao-Yang Hsi et al. Abstract: In this study, a marine medicinal brown alga Sargassum cristaefolium-derived fungal strain Xylaria acuta SC1019 was isolated and identified. Column chromatography of the extracts from liquid- and solid-fermented products of the fungal strain was carried out, and led to the isolation of twenty-one compounds. Their structures were characterized by spectroscopic analysis, and the absolute configurations were further established by single X-ray diffraction analysis or modified Mosher’s method as nine previously undescribed compounds, namely xylarilactones A–C (1–3), ent-gedebic acid 8-O-α-D-glucopyranoside (4), 5R-hydroxylmethylmellein 11-O-α-D-glucopyranoside (5), ent-hymatoxin E 16-O-α-D-mannopyranoside (6), 19,20-epoxycytochalasin S (7), 19,20-epoxycytochalasin T (8), and (2R)-butylitaconic acid (9), along with twelve known compounds 10–21. All the isolates were subjected to anti-inflammatory and anti-angiogenic assays. Compounds 1, 5, 7, 10, and 17 showed moderate nitric oxide production inhibitory activities in lipopolysaccharide-activated BV-2 microglial cells with IC50 values of 19.55 ± 0.35, 16.10 ± 0.57, 15.20 ± 0.87, 11.76 ± 0.49, and 11.30 ± 0.32 μM, respectively, as compared to curcumin (IC50 = 2.69 ± 0.34 μM) without any significant cytotoxicity. Compounds 7, 8, and 21 displayed potent anti-angiogenic activities by suppressing the growth of human endothelial progenitor cells with IC50 values of 0.44 ± 0.01, 0.47 ± 0.03, and 0.53 ± 0.01 μM, respectively, as compared to sorafenib (IC50 = 5.50 ± 1.50 μM). PubDate: Mon, 10 Jun 2024 23:51:55 PDT
Authors:Jiahua Peng et al. Abstract: As cancer continues to rise globally, there is growing interest in discovering novel methods for prevention and treatment. Due to the limitations of traditional cancer therapies, there has been a growing emphasis on investigating herbal remedies and exploring their potential synergistic effects when combined with chemotherapy drugs. Cinnamaldehyde, derived from cinnamon, has gained significant attention for its potential role in cancer prevention and treatment. Extensive research has demonstrated that cinnamaldehyde exhibits promising anticancer properties by modulating various cellular processes involved in tumor growth and progression. However, challenges and unanswered questions remain regarding the precise mechanisms for its effective use as an anticancer agent. This article aims to explore the multifaceted effects of cinnamaldehyde on cancer cells and shed light on these existing issues. Cinnamaldehyde has diverse anti-cancer mechanisms, including inducing apoptosis by activating caspases and damaging mitochondrial function, inhibiting tumor angiogenesis, anti-proliferation, anti-inflammatory and antioxidant. In addition, cinnamaldehyde also acts as a reactive oxygen species scavenger, reducing oxidative stress and preventing DNA damage and genomic instability. This article emphasizes the promising therapeutic potential of cinnamaldehyde in cancer treatment and underscores the need for future research to unlock novel mechanisms and strategies for combating cancer. By providing valuable insights into the role and mechanism of cinnamaldehyde in cancer, this comprehensive understanding paves the way for its potential as a novel therapeutic agent. Overall, cinnamaldehyde holds great promise as an anticancer agent, and its comprehensive exploration in this article highlights its potential as a valuable addition to cancer treatment options. PubDate: Mon, 10 Jun 2024 23:51:48 PDT
Authors:Jarunee Intrasook et al. Abstract: Globally, the demand for functional foods and beverages has significantly increased due to socioeconomic changes, particularly in health consciousness to enhance their functionality. Functional ingredients derived from botanicals are widely used because of their phytochemical properties with health benefits. This study aims to (1) review the capabilities and challenges of botanical addition in functional foods, (2) review current policies and regulations for functional foods containing botanicals in the European Union (EU), Canada, Japan, the Republic of Korea, and Thailand, and (3) provide recommendations on effective food safety control measures for better consumer trust and trade facilitation. This critical review was analyzed from online publications and available guidelines, regulations, and control measures published by food industries and governments in the selected countries. The result confirmed that potentialities of botanicals arise from numerous bioactive compounds with varieties of sources. However, the usage may potentially raise health risks through hazardous substances in different species or plant parts, contaminants from environments and uncontrolled processes. Inadequate knowledge of botanical formulation and the maximum limit for daily consumption may elevate health risks through food-drug interaction or adverse effect incidents. Current policies and regulations show that varieties of measures are implemented influencing both economic growth and consumer awareness. The novel finding is that countries that provide a comprehensive national food control system influence not only the growth of the functional food subsectors but also build trust in food safety among trade partners and consumers. PubDate: Mon, 10 Jun 2024 23:51:41 PDT
Authors:Chung-Ping Yu et al. Abstract: Magnoliae Officinalis Cortex (MOC), an herbal drug, contains polyphenolic lignans mainly magnolol (MN) and honokiol (HK). Methotrexate (MTX), a critical drug for cancers and autoimmune deseases, is a substrate of multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). This study investigated the effect of coadministration of MOC on the pharmacokinetics of MTX and relevant mechanisms. Sprague-Dawley rats were orally administered MTX alone and with single dose (2.0 and 4.0 g/kg) and repeated seven doses of MOC (2.0 g/kg thrice daily for 2 days, the 7th dose given at 0.5 h before MTX). The serum concentrations of MTX were determined by a fluorescence polarization immunoassay. The results showed that a single dose of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 352% and 308%, and a single dose at 4.0 g/kg significantly enhanced the AUC0-t and MRT by 362% and 291%, respectively. Likewise, repeated seven doses of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT of MTX by 461% and 334%, respectively. Mechanism studies indicated that the function of MRP2 was significantly inhibited by MN, HK and the serum metabolites of MOC (MOCM), whereas BCRP was not inhibited by MOCM. In conclusion, coadministration of MOC markedly enhanced the systemic exposure and mean residence time of MTX through inhibiting the MRP2-mediated excretion of MTX. PubDate: Fri, 15 Mar 2024 04:12:19 PDT
Authors:Hai-yang Chen et al. Abstract: Guhong injection (GHI) has been applied in the therapy of cardio-cerebrovascular disease in clinic, but there is no report about the pharmacokinetic/pharmacodynamic (PK/PD) research on GHI treating myocardial ischemia/reperfusion (MI/R) injury in rats. In this study, eight compounds of GHI in plasma, including N-acetyl-L-glutamine (NAG), chlorogenic acid (CGA), hydroxysafflor yellow A (HSYA), p-coumaric acid (pCA), rutin, hyperoside, kaempferol-3-O-rutinoside, and kaempferol-3-O-glucoside, were quantified by LC-MS/MS. We discovered that the values of t1/2β, k12, V2, and CL2 were larger than those of t1/2α, k21, V1, and CL1 for all compounds. The levels of four biomarkers, creatine kinase-MB (CK-MB), cardiac troponin I (cTn I), ischemia-modified albumin (IMA), and alpha-hydroxybutyrate dehydrogenase (α-HBDH) in plasma were determined by ELISA. The elevated level of these biomarkers induced by MI/R was declined to different degrees via administrating GHI and verapamil hydrochloride (positive control). The weighted regression coefficients of NAG, HSYA, CGA, and pCA in PLSR equations generated from The Unscrambler X software (version 11) were mostly minus, suggesting these four ingredients were positively correlated to the diminution of the level of four biomarkers. Emax and ED50, two parameters in PK/PD equations that were obtained by adopting Drug and Statistics software (version 3.2.6), were almost enlarged with the rise of GHI dosage. Obviously, all analytes were dominantly distributed and eliminated in the peripheral compartment with features of rapid distribution and slow elimination. With the enhancement of GHI dosage, the ingredients only filled in the central compartment if the peripheral compartment was replete. Meanwhile, high-dose of GHI generated the optimum intrinsic activity, but the affinity of compounds with receptors was the worst, which may be caused by the saturation of receptors. Among the eight analytes, NAG, HSYA, CGA, and pCA exhibited superior cardioprotection, which probably served as the pharmacodynamic substance basis of GHI in treating MI/R injury. PubDate: Fri, 15 Mar 2024 04:12:12 PDT
Authors:Qi-Yue Xie et al. Abstract: Aristolochic acid nephropathy (AAN) has drawn increasing public attention. Organic anion transporters (OATs) are considered to be responsible for mediating nephrotoxicity of aristolochic acids (AAs), as AAs are typical OAT1 substrates that exhibit anionic properties and contain one hydrophobic domain. Inspired by the OAT1 three-dimensional structure or substrate/protein interactions involved in transport, we designed a magnetic polymeric hybrid, mimicking the effect of basic and aromatic residues of OAT1, for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in Traditional Chinese patent medicines (TCPM). N, N-dimethylaminopropyl acrylamide (DMAPAm) was used as a cationic monomer and copolymerized with divinylbenzene (DVB) onto the surface of monodisperse magnetic nanoparticles (denoted as MNs@SiO2T-DvbDam). The magnetic polymer hybrid demonstrated high selectivity and capacity for AAs, which was mainly attributed to (1) electrostatic interactions from the cationic or basic moiety of DMAPAm and (2) the hydrophobic and π-π stacking interactions from the aromatic ring of DVB. Additionally, the surface of the hybrid exhibited amphiphilic property according to the ionization of DMAPAm, thus improving the compatibility of the adsorbent with the aqueous sample matrix. This strategy was proven to be robust in the analysis of real drug samples, which was characterized by a good linearity, high recovery and satisfactory reusability. This work confirmed that the proposed tool could be a promising candidate for enhancing the extraction selectivity of AAs in Traditional Chinese medicines (TCM). PubDate: Fri, 15 Mar 2024 04:12:05 PDT
Authors:Sheng-Yi Chen et al. Abstract: Increased leptin resistance and methylglyoxal (MG) levels are observed in obese patients. However, whether MG deposits contribute to leptin resistance, oxidative stress, and inflammation in peripheral tissues remains unclear. In addition, the edible fruit of Indian gooseberry (Phyllanthus emblica L.) contains abundant bioactive components such asvitamin C, β-glucogallin (β-glu), gallic acid (GA), and ellagic acid (EA). Water extract of Indian gooseberry fruit (WEIG) and GA has been shown to improve cognitive decline by suppressing brain MG-induced insulin resistance in rats administered a high-fat diet (HFD). Accordingly, this study investigated the functions of WEIG and GA in inhibiting MG-induced leptin resistance, oxidative stress, and inflammation in the peripheral tissues of HFD-fed rats. The results showed that MG, advanced glycation end products (AGEs), and leptin resistance accumulation in the liver, kidney, and perinephric fat were effectively restored by elevated glyoxalase-1 (Glo-1) activity after WEIG and GA administration comparable to that of alagebrium chloride (positive control) treatment in HFD-fed rats. Furthermore, WEIG and GA supplementation increased adiponectin and antioxidant enzymes (glutathione peroxidase, superoxide dismutase, cata-lase) and decreased inflammatory cytokines (IL-6, IL-1β, TNF-α) in the peripheral tissues of HFD-fed rats. In conclusion,these findings demonstrated that MG may trigger leptin resistance, oxidative stress, and inflammation in peripheral tissues, which could be abolished by WEIG and GA treatment. These results show the potential of P. emblica for functional food development and improving obesity-associated metabolic disorders. PubDate: Fri, 15 Mar 2024 04:11:58 PDT
Authors:Xiaowei Chen et al. Abstract: Pomelo sponge layer (PSL) had been considered as a potential source of soluble dietary fiber (SDF), while they were mostly disposed of as waste. To promote high-value utilization of pomelo wastes, this study extracted SDF from PSL of six varieties of pomelo, and their physicochemical, structural and functional properties were investigated. Results indicated that all PSL-SDFs showed good physicochemical and functional properties. Among them, PSL-SDF from grapefruit (GRSDF) showed better water holding capacity and swelling capacity, whereas Shatian pomelo PSL-SDF and Guanxi pomelo PSL-SDF had the highest thermal stability and oil holding capacity, respectively. Furthermore, compared with other PSL-SDFs, GRSDF displayed the lowest hydrolysis degree coupled with the best antioxidant and probiotic growth-promoting abilities. Finally, the correlation analysis showed that multiple beneficial effects of PSL-SDFs were markedly associated with their molecular weight and the concentrations of total phenolic, total flavonoids, rhamnose, galacturonic acid, glucose and arabinose. Collectively, these findings contributed to a better understanding of the physicochemical and functional properties of SDFs extracted from different PSLs, which provided a scientific basis for the development of PSL-SDFs into functional foods. PubDate: Fri, 15 Mar 2024 04:11:51 PDT
Authors:Wen-Chin Tu et al. Abstract: In Taiwan, the number of applications for inspecting imported food has grown annually and noncompliant products must be accurately detected in these border sampling inspections. Previously, border management has used an automated border inspection system (import food inspection (IFI) system) to select batches via a random sampling method to manage the risk levels of various food products complying with regulatory inspection procedures. Several countries have implemented artificial intelligence (AI) technology to improve domestic governmental processes, social service, and public feedback. AI technologies are applied in border inspection by the Taiwan Food and Drug Administration (TFDA). Risk management of border inspections is conducted using the Border Prediction Intelligent (BPI) system. The risk levels are analyzed on based on the noncompliance records of imported food, the country of origin, and international food safety alerts. The subjects of this study were frozen fish products, which have been under surveillance by the BPI system. The purpose of this study was to investigate the relevance between the noncompliant trend of frozen fish products using the adoption of the BPI system and the results of postmarket sampling inspections. The border inspection and postmarket sampling data were divided into two groups: IFI and BPI groups (corresponding to before and after the adoption of the BPI system, respectively). The Chi-square test was employed to analyze the noncompliant differences in products between before and after the BPI system adoption. Despite the number of noncompliance batches being statistically insignificant after the adoption of the BPI system, the noncompliance rate of frozen fish products at the border increased from 3.0% to 4.7%. Meanwhile, the noncompliance rate in the postmarket decreased from 2.1% to 1.9%. The results indicate that the BPI system improves the effectiveness of interception of noncompliant products at the border, thereby preventing the entrance of noncompliant products to the postmarket. The variables were further classified and organized according to the scope of this study and product characteristics. Furthermore, ordinal logistic regression (OLR) was employed to determine the correlations among border, postmarket, and major influencing factors. Based on the analysis of major influencing factors, small fish and fish internal organ products exhibited significantly high risk for fish body type and product type, respectively. The BPI system effectively utilizes the large amount of data accumulated from border inspections over the years. Additionally, real-time information on bilateral data obtained from the border and postmarket should be bidirectionally shared for effectively intercepting noncompliance products and used for improving the border management efficiency. PubDate: Fri, 15 Mar 2024 04:11:43 PDT
Authors:Ya-Ru Kuo et al. Abstract: Liver fibrosis occurs due to injury or inflammation, which results in the excessive production of collagen and the formation of fibrotic scar tissue that impairs liver function. Despite the limited treatment options available, freshwater clams may hold promise in the treatment of liver fibrosis. In this study, we demonstrated the effects of ethanol extract of freshwater clam (FCE), ethyl acetate extract of FCE (EA-FCE), and trans-2-nonadecyl-4-(hydroxymethyl)-1,3-dioxolane (TNHD) on liver fibrosis induced by dimethylnitrosamine (DMN). Administration of FCE and TNHD alleviated liver injury, including tissue damage, necrosis, inflammation scores, fibrosis scores, serum enzymes, and triglyceride levels. Furthermore, we analyzed the expression of fibrosis-related proteins, such as α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-β), as well as the hydroxyproline content, which decreased after treatment with FCE and TNHD. Animal experiments revealed that FCE and TNHD can reduce liver fibrosis by inhibiting cytokines that activate stellate cells and decreasing extracellular matrix (ECM) secretion. Cell experiments have shown that TNHD inhibits the MAPK/Smad signaling pathway and TGF-β1 activation, resulting in a reduction in the expression of fibrosis-related proteins. Therefore, freshwater clam extracts, particularly TNHD, may have potential therapeutic and preventive effects for the amelioration of liver fibrosis. PubDate: Fri, 15 Mar 2024 04:11:36 PDT
Authors:Fang-Ju Lin et al. Abstract: The U.S. Food and Drug Administration’s Sentinel System is a leading distributed data network for drug safety surveillance in the world. The National Health Insurance Research Database (NHIRD) in Taiwan was converted into the Taiwan Sentinel Data Model (TSDM) based on the Sentinel Common Data Model (SCDM) version 6.0.2. The goal of this study was to investigate the feasibility of applying the same study designs, analytic choices, and analytic tools as used by the U.S. Sentinel System to examine the same drug-outcome associations in the TSDM-formatted NHIRD. Four known drug-outcome associations previously examined by the U.S. Sentinel System were selected as the use cases: (1) use of angiotensin-converting enzyme inhibitors (ACEIs) and risk of angioedema, (2) use of warfarin and risk of gastrointestinal bleeding, (3) use of oral clindamycin and risk of Clostridioides difficile infection (CDI), and (4) use of glyburide and risk of serious hypoglycemia. We followed the same study designs and analytic choices used by the U.S. Sentinel System and applied the Sentinel Routine Querying Tools to answer the same study questions within the TSDM-formatted NHIRD. The results showed that ACEIs were associated with a non-significant increase in risk of angioedema compared to beta-blockers (hazard ratio [HR]: 1.21; 95% confidence interval [CI]: 0.89-1.64); warfarin was associated with a higher risk of gastrointestinal bleeding compared to statins (HR: 1.72; 1.50-1.98); glyburide was associated with an increased risk of hypoglycemia compared to glipizide (HR: 1.61, 1.30-2.00). We were unable to evaluate the association between oral clindamycin and risk of CDI due to the low event number. Our study demonstrated that it was feasible to directly apply the publicly available Sentinel Routine Querying Tools within the TSDM-formatted NHIRD. However, sources of heterogeneity other than design and analytic differences should be carefully considered when comparing the results between the two systems. PubDate: Fri, 15 Dec 2023 03:32:27 PST
Authors:Ching-Yi Lu et al. Abstract: Boehmeria formosana, with its related species, demonstrates anti-glycemic effect, inhibition of HBV production, anti-cancer activities, etc. Some indolizidine alkaloids from the same genus are bioactive but sensitive to light. To overcome this problem and obtain more phenanthroindolizidine alkaloids, isolation was performed in darkness, yielding 10 new indolizidine alkaloids and 17 known compounds. Among them, seven enhanced glucagon-like receptor 1 (GLP-1) activity at 50 mM, especially 14 and 6 (3.5- and 2.3-fold than the negative control). This procedure yielded bioactive indolizidine alkaloids with novel structures. PubDate: Fri, 15 Dec 2023 03:32:23 PST