Subjects -> PHYSICS (Total: 857 journals)
    - ELECTRICITY AND MAGNETISM (10 journals)
    - MECHANICS (22 journals)
    - NUCLEAR PHYSICS (53 journals)
    - OPTICS (92 journals)
    - PHYSICS (625 journals)
    - SOUND (25 journals)
    - THERMODYNAMICS (30 journals)

PHYSICS (625 journals)                  1 2 3 4 | Last

Showing 1 - 200 of 741 Journals sorted alphabetically
Acta Acustica     Open Access   (Followers: 4)
Acta Mechanica     Hybrid Journal   (Followers: 22)
Acta Scientifica Naturalis     Open Access   (Followers: 2)
Advanced Composite Materials     Hybrid Journal   (Followers: 75)
Advanced Electronic Materials     Hybrid Journal   (Followers: 7)
Advanced Functional Materials     Hybrid Journal   (Followers: 71)
Advanced Materials     Hybrid Journal   (Followers: 255)
Advanced Quantum Technologies     Hybrid Journal   (Followers: 3)
Advanced Science Focus     Free   (Followers: 6)
Advanced Structural and Chemical Imaging     Open Access   (Followers: 2)
Advanced Theory and Simulations     Hybrid Journal   (Followers: 2)
Advances in Clinical Radiology     Full-text available via subscription   (Followers: 4)
Advances in Condensed Matter Physics     Open Access   (Followers: 5)
Advances in Geophysics     Full-text available via subscription   (Followers: 7)
Advances in High Energy Physics     Open Access   (Followers: 23)
Advances in Imaging and Electron Physics     Full-text available via subscription   (Followers: 4)
Advances in Materials Physics and Chemistry     Open Access   (Followers: 33)
Advances in Natural Sciences : Nanoscience and Nanotechnology     Open Access   (Followers: 28)
Advances in OptoElectronics     Open Access   (Followers: 6)
Advances In Physics     Hybrid Journal   (Followers: 29)
Advances in Physics : X     Open Access   (Followers: 4)
Advances in Physics Theories and Applications     Open Access   (Followers: 12)
Advances in Remote Sensing     Open Access   (Followers: 59)
Aggregate     Open Access   (Followers: 1)
AIP Advances     Open Access   (Followers: 7)
AIP Conference Proceedings     Full-text available via subscription   (Followers: 2)
American Journal of Condensed Matter Physics     Open Access   (Followers: 7)
American Journal of Signal Processing     Open Access   (Followers: 14)
Anales (Asociación Física Argentina)     Open Access  
Analysis and Mathematical Physics     Hybrid Journal   (Followers: 9)
Annalen der Physik     Hybrid Journal   (Followers: 5)
Annales Geophysicae (ANGEO)     Open Access   (Followers: 21)
Annales Henri Poincaré     Hybrid Journal   (Followers: 2)
Annals of Nuclear Medicine     Hybrid Journal   (Followers: 6)
Annals of Physics     Hybrid Journal   (Followers: 7)
Annals of West University of Timisoara - Physics     Open Access   (Followers: 1)
Annual Reports on NMR Spectroscopy     Full-text available via subscription   (Followers: 4)
Annual Review of Analytical Chemistry     Full-text available via subscription   (Followers: 12)
Annual Review of Condensed Matter Physics     Full-text available via subscription   (Followers: 3)
Annual Review of Materials Research     Full-text available via subscription   (Followers: 8)
APL Materials     Open Access   (Followers: 12)
Applied Composite Materials     Hybrid Journal   (Followers: 54)
Applied Mathematics and Physics     Open Access   (Followers: 2)
Applied Physics A     Hybrid Journal   (Followers: 15)
Applied Physics Frontier     Open Access   (Followers: 2)
Applied Physics Letters     Hybrid Journal   (Followers: 44)
Applied Physics Research     Open Access   (Followers: 5)
Applied Physics Reviews     Hybrid Journal   (Followers: 11)
Applied Radiation and Isotopes     Hybrid Journal   (Followers: 4)
Applied Spectroscopy     Full-text available via subscription   (Followers: 24)
Applied Spectroscopy Reviews     Hybrid Journal   (Followers: 4)
Archive for Rational Mechanics and Analysis     Hybrid Journal   (Followers: 1)
Asia Pacific Physics Newsletter     Hybrid Journal   (Followers: 1)
Asian Journal of Physical and Chemical Sciences     Open Access   (Followers: 2)
ASTRA Proceedings     Open Access   (Followers: 3)
Astronomy & Geophysics     Hybrid Journal   (Followers: 49)
Astronomy and Astrophysics Review     Hybrid Journal   (Followers: 39)
Atoms     Open Access   (Followers: 1)
Attention, Perception & Psychophysics     Full-text available via subscription   (Followers: 15)
Axioms     Open Access   (Followers: 1)
Bangladesh Journal of Medical Physics     Open Access  
Bauphysik     Hybrid Journal   (Followers: 1)
Biomaterials     Hybrid Journal   (Followers: 55)
Biomedical Imaging and Intervention Journal     Open Access   (Followers: 5)
Biophysical Reviews     Hybrid Journal   (Followers: 2)
Biophysical Reviews and Letters     Hybrid Journal   (Followers: 5)
BJR|Open     Open Access  
Boson Journal of Modern Physics     Open Access   (Followers: 9)
Brazilian Journal of Physics     Hybrid Journal  
Bulletin of Materials Science     Open Access   (Followers: 43)
Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics     Open Access  
Bulletin of the Atomic Scientists     Hybrid Journal   (Followers: 7)
Bulletin of the Lebedev Physics Institute     Hybrid Journal  
Bulletin of the Russian Academy of Sciences: Physics     Hybrid Journal   (Followers: 1)
Caderno Brasileiro de Ensino de Física     Open Access  
Canadian Journal of Physics     Hybrid Journal   (Followers: 11)
Cell Reports Physical Science     Open Access  
Cells     Open Access   (Followers: 2)
CERN courier. International journal of high energy physics     Free   (Followers: 8)
Chemical Physics Impact     Full-text available via subscription  
ChemPhysMater     Full-text available via subscription  
Chinese Journal of Chemical Physics     Hybrid Journal   (Followers: 1)
Chinese Journal of Physics     Hybrid Journal   (Followers: 1)
Ciencia     Open Access  
Clinical Spectroscopy     Open Access  
Cogent Physics     Open Access  
Colloid Journal     Hybrid Journal   (Followers: 2)
Communications in Mathematical Physics     Hybrid Journal   (Followers: 2)
Communications in Numerical Methods in Engineering     Hybrid Journal   (Followers: 2)
Communications Materials     Open Access  
Communications Physics     Open Access  
Complex Analysis and its Synergies     Open Access   (Followers: 2)
Composites Part A : Applied Science and Manufacturing     Hybrid Journal   (Followers: 173)
Composites Part B : Engineering     Hybrid Journal   (Followers: 219)
Composites Part C : Open Access     Open Access   (Followers: 2)
Computational Astrophysics and Cosmology     Open Access   (Followers: 6)
Computational Condensed Matter     Open Access   (Followers: 1)
Computational Materials Science     Hybrid Journal   (Followers: 25)
Computational Mathematics and Mathematical Physics     Hybrid Journal   (Followers: 5)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computer Physics Communications     Hybrid Journal   (Followers: 9)
Condensed Matter     Open Access   (Followers: 2)
Contemporary Physics     Hybrid Journal   (Followers: 26)
Continuum Mechanics and Thermodynamics     Hybrid Journal   (Followers: 8)
Contributions to Plasma Physics     Hybrid Journal   (Followers: 3)
Cryogenics     Hybrid Journal   (Followers: 60)
Current Applied Physics     Full-text available via subscription   (Followers: 4)
Current Science     Open Access   (Followers: 115)
Diagnostic and Interventional Imaging     Full-text available via subscription  
Diamond and Related Materials     Hybrid Journal   (Followers: 10)
Discrete and Continuous Models and Applied Computational Science     Open Access  
Doklady Physics     Hybrid Journal   (Followers: 1)
e-Boletim da Física     Open Access  
East European Journal of Physics     Open Access   (Followers: 1)
Edufisika : Jurnal Pendidikan Fisika     Open Access  
EDUSAINS     Open Access  
Egyptian Journal of Remote Sensing and Space Science     Open Access   (Followers: 25)
EJNMMI Physics     Open Access  
Emergent Scientist     Open Access  
Engineering Failure Analysis     Hybrid Journal   (Followers: 68)
Engineering Fracture Mechanics     Hybrid Journal   (Followers: 24)
Environmental Fluid Mechanics     Hybrid Journal   (Followers: 11)
EPJ Quantum Technology     Open Access   (Followers: 2)
EPJ Techniques and Instrumentation     Open Access  
EPJ Web of Conferences     Open Access   (Followers: 1)
EUREKA : Physics and Engineering     Open Access  
European Physical Journal - Applied Physics     Full-text available via subscription   (Followers: 19)
European Physical Journal C     Hybrid Journal   (Followers: 2)
Europhysics News     Open Access  
Experimental and Computational Multiphase Flow     Hybrid Journal  
Experimental Mechanics     Hybrid Journal   (Followers: 21)
Experimental Techniques     Hybrid Journal   (Followers: 51)
Exploration Geophysics     Hybrid Journal   (Followers: 4)
Few-Body Systems     Hybrid Journal   (Followers: 1)
Fire and Materials     Hybrid Journal   (Followers: 5)
FirePhysChem     Open Access  
Flexible Services and Manufacturing Journal     Hybrid Journal   (Followers: 2)
Fluctuation and Noise Letters     Hybrid Journal  
Fluid Dynamics     Hybrid Journal   (Followers: 27)
Fortschritte der Physik/Progress of Physics     Hybrid Journal  
Frontiers in Nanotechnology     Open Access   (Followers: 1)
Frontiers in Physics     Open Access   (Followers: 6)
Frontiers of Materials Science     Hybrid Journal   (Followers: 5)
Frontiers of Physics     Hybrid Journal   (Followers: 2)
Fusion Engineering and Design     Hybrid Journal   (Followers: 6)
Geochemistry, Geophysics, Geosystems     Full-text available via subscription   (Followers: 35)
Geografiska Annaler, Series A : Physical Geography     Hybrid Journal   (Followers: 4)
Geophysical Research Letters     Full-text available via subscription   (Followers: 161)
Giant     Open Access  
Glass Physics and Chemistry     Hybrid Journal   (Followers: 1)
Granular Matter     Hybrid Journal  
Graphs and Combinatorics     Hybrid Journal   (Followers: 4)
Gravitation and Cosmology     Hybrid Journal   (Followers: 6)
Heat Transfer - Asian Research     Hybrid Journal   (Followers: 10)
High Energy Density Physics     Hybrid Journal   (Followers: 3)
High Pressure Research: An International Journal     Hybrid Journal   (Followers: 3)
Himalayan Physics     Open Access  
IEEE Embedded Systems Letters     Hybrid Journal   (Followers: 60)
IEEE Journal of Quantum Electronics     Hybrid Journal   (Followers: 19)
IEEE Journal on Multiscale and Multiphysics Computational Techniques     Hybrid Journal  
IEEE Magnetics Letters     Hybrid Journal   (Followers: 7)
IEEE Nanotechnology Magazine     Hybrid Journal   (Followers: 45)
IEEE Reviews in Biomedical Engineering     Hybrid Journal   (Followers: 19)
IEEE Signal Processing Magazine     Full-text available via subscription   (Followers: 98)
IEEE Solid-State Circuits Magazine     Hybrid Journal   (Followers: 11)
IEEE Transactions on Autonomous Mental Development     Hybrid Journal   (Followers: 8)
IEEE Transactions on Biomedical Engineering     Hybrid Journal   (Followers: 35)
IEEE Transactions on Broadcasting     Hybrid Journal   (Followers: 11)
IEEE Transactions on Geoscience and Remote Sensing     Hybrid Journal   (Followers: 174)
IEEE Transactions on Haptics     Hybrid Journal   (Followers: 4)
IEEE Transactions on Industrial Electronics     Hybrid Journal   (Followers: 85)
IEEE Transactions on Industry Applications     Hybrid Journal   (Followers: 57)
IEEE Transactions on Learning Technologies     Full-text available via subscription   (Followers: 12)
IEEE Transactions on Quantum Engineering     Open Access   (Followers: 3)
IEEE Transactions on Services Computing     Hybrid Journal   (Followers: 5)
IEEE Transactions on Software Engineering     Hybrid Journal   (Followers: 84)
IEEE Women in Engineering Magazine     Hybrid Journal   (Followers: 11)
IEEE/OSA Journal of Optical Communications and Networking     Hybrid Journal   (Followers: 19)
IET Optoelectronics     Open Access   (Followers: 2)
Il Colle di Galileo     Open Access  
Image Analysis & Stereology     Open Access   (Followers: 1)
Imaging Science Journal     Hybrid Journal   (Followers: 3)
ImmunoInformatics     Open Access   (Followers: 1)
Indian Journal of Biochemistry and Biophysics (IJBB)     Open Access   (Followers: 3)
Indian Journal of Physics     Hybrid Journal   (Followers: 18)
Indian Journal of Pure & Applied Physics (IJPAP)     Open Access   (Followers: 36)
Indian Journal of Radio & Space Physics (IJRSP)     Open Access   (Followers: 49)
Infinite Dimensional Analysis, Quantum Probability and Related Topics     Hybrid Journal   (Followers: 1)
InfraMatics     Open Access  
Infrared Physics & Technology     Hybrid Journal   (Followers: 11)
Intelligent Transportation Systems Magazine, IEEE     Full-text available via subscription   (Followers: 12)
Intermetallics     Hybrid Journal   (Followers: 21)
International Applied Mechanics     Hybrid Journal   (Followers: 5)
International Heat Treatment and Surface Engineering     Hybrid Journal   (Followers: 5)
International Journal for Computational Methods in Engineering Science and Mechanics     Hybrid Journal   (Followers: 13)
International Journal for Ion Mobility Spectrometry     Hybrid Journal   (Followers: 1)
International Journal for Simulation and Multidisciplinary Design Optimization     Open Access   (Followers: 5)
International Journal of Abrasive Technology     Hybrid Journal   (Followers: 2)
International Journal of Aeroacoustics     Hybrid Journal   (Followers: 37)
International Journal of Applied Electronics in Physics & Robotics     Open Access   (Followers: 3)

        1 2 3 4 | Last

Similar Journals
Journal Cover
Experimental and Computational Multiphase Flow
Number of Followers: 0  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 2661-8869 - ISSN (Online) 2661-8877
Published by Springer Publishing Company Homepage  [24 journals]
  • Correction to: Complex bubble deformation and break-up dynamics studies
           using interface capturing approach

    • Free pre-print version: Loading...

      Abstract: The article “Complex bubble deformation and break-up dynamics studies using interface capturing approach” written by Yuqiao Fan, Jun Fang, and Igor Bolotnov, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 18 July 2020 without open access. After publication in Volume 3, Issue 3, page 139–151, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2021 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
      PubDate: 2022-06-01
       
  • Correction to: One-dimensional drift-flux correlations for two-phase flow
           in medium-size channels

    • Free pre-print version: Loading...

      Abstract: Correction to: Takashi Hibiki One-dimensional drift-flux correlations for two-phase flow in medium-size channels Experimental and Computational Multiphase Flow 2019, 1(2): 85–100 https://doi.org/10.1007/s42757-019-0009-y
      PubDate: 2022-06-01
       
  • Numerical simulation of hydrothermal liquefaction of algae in a lab-scale
           coil reactor

    • Free pre-print version: Loading...

      Abstract: Abstract A computational fluid dynamics (CFD) model of a coil type hydrothermal liquefaction (HTL) reactor with feedstock of algae has been developed using reaction kinetics reported in the literature. The CFD model is applied to understand the effects of thermal conductivity, heat capacity, molar mass, and viscosity of both the reactants and products on the HTL reactions in terms of residence time and mass fractions, for this coil reactor. It is found that the heat conductivity, heat capacity, and molar mass have negligible effects on the HTL reaction in this reactor. However, the viscosity, particularly of the dominant reactants such as the protein, was found to have the most significant effect on the residence time and mass fractions, particularly when the viscosity of protein is reduced from values of the base case. This highlights the need for better measurements of viscosity in future work.
      PubDate: 2022-06-01
       
  • Numerical simulation of wetting on a chemically textured surface with a
           large intrinsic contact angle ratio by the Lattice Boltzmann Method

    • Free pre-print version: Loading...

      Abstract: Abstract In the present paper, numerical sessile tests on chemically textured surfaces in 2D and 3D are simulated. The Lattice Boltzmann method coupled with pseudo potential model is used for the simulations. A modification of the fluid-solid potential is proposed using materials’ intrinsic contact angle in order to control locally the wetting properties of a surface composed of different materials. The effect of the wetting potential and the wetting properties of chemically textured surfaces are discussed regarding to the simulations’ results and compared to some common theoretical approaches of wetting on textured surfaces.
      PubDate: 2022-06-01
       
  • 3D interface analysis of velocity, volume ratio, and Reynolds number
           effects on core annular flow (CAF)

    • Free pre-print version: Loading...

      Abstract: Abstract In this article, we studied the influences of velocity, Reynolds number, and volume fraction in oil-water core annular flow (CAF) volume profile in a round horizontal pipe. To carry out the study, we adopted the Volume of Fluid (VOF) method, which is one of the prominent Computational Fluid Dynamics (CFD) study model used for multiphase studies. The computational method was validated through reproduction of the volume and velocity profiles found in a published article under the same conditions. Among many results obtained, it was possible to observe that during CAF, when the water inlet ratio is increased, the velocity of the oil (core region) must be increased in order to set a hydrodynamic equilibrium, thus maintaining a CAF profile.
      PubDate: 2022-06-01
       
  • Cavitation patterns in high-pressure homogenization nozzles with
           cylindrical orifices: Influence of mixing stream in Simultaneous
           Homogenization and Mixing

    • Free pre-print version: Loading...

      Abstract: Abstract High-pressure homogenization is the state of the art to produce high-quality emulsions with droplet sizes in the submicron range. In simultaneous homogenization and mixing (SHM), an additional mixing stream is inserted into a modified homogenization nozzle in order to create synergies between the unit operation homogenization and mixing. In this work, the influence of the mixing stream on cavitation patterns after a cylindrical orifice is investigated. Shadow-graphic images of the cavitation patterns were taken using a high-speed camera and an optically accessible mixing chamber. Results show that adding the mixing stream can contribute to coalescence of cavitation bubbles. Choked cavitation was observed at higher cavitation numbers σ with increasing mixing stream. The influence of the mixing stream became more significant at a higher orifice to outlet ratio, where a hydraulic flip was also observed at higher σ. The decrease of cavitation intensity with increasing back-pressure was found to be identical with conventional high-pressure homogenization. In the future, the results can be taken into account in the SHM process design to improve the efficiency of droplet break-up by preventing cavitation or at least hydraulic flip.
      PubDate: 2022-06-01
       
  • Review on direct contact condensation of vapor bubbles in a subcooled
           liquid

    • Free pre-print version: Loading...

      Abstract: Abstract Condensation of vapor bubbles in a subcooled liquid is known to influence heat transfer and pressure oscillation in subcooled boiling and direct contact condensation. This study reviews the published literature concerning interfacial heat transfer and bubble dynamics in the process of bubble condensation. The correlations for bubble condensation are analyzed and evaluated with a database covering a wide range of Reynolds, Jacob, and Prandtl numbers. Then, the investigations addressing bubble dynamics are reviewed, which focus on the bubble condensation patterns, motion, collapse, and the pressure oscillations induced by bubble condensation, as well as the effect of noncondensable gas and field. Despite the extensive experiments of bubble condensation available in the literature, it is shown that there is still a shortage of investigation focused on the variation of thermal boundary layer and turbulence formed near the bubble at the micro-scale, which could help to develop the prediction method of bubble condensation in the future. The transportation of noncondensable gas inside the mixture bubble and effect of capillary waves formed on the bubble surface on the actual vapor-liquid contact area and thermal boundary are also suggested to be further investigated to gain the thorough understanding of the bubble condensation process.
      PubDate: 2022-06-01
       
  • Analysis of interfacial dynamics in stratified and wavy-stratified flow
           using Laser Doppler Velocimetry

    • Free pre-print version: Loading...

      Abstract: Abstract Interfacial behaviour of stratified and wavy-stratified flow is analysed in terms of measured velocity signals in liquid phase using Laser Doppler Velocimetry. Measurement of liquid height (interface level) is achieved using Laser Doppler Velocimetry synchronized with a computerised 3-dimensional traverse system. The precision obtained in measurement of air sheared interface level (liquid height) in this approach is 0.032±0.01 mm. First part of this paper deals with influence of gas and liquid superficial Reynolds numbers on the liquid height for stratified and wavy-stratified flow. With increase in liquid depth, waves are initiated at the gas-liquid interface which is precursor to slug formation. A critical liquid height for onset of slug formation is obtained in this part. The second part deals with the measurement of fluctuations occurring near to the air-sheared interface. These fluctuations are recorded in terms of local velocity of liquid phase and have been used to characterize the behaviour of air-water interface for stratified and wavy-stratified flow. Furthermore, influence of gas and liquid flow rates on local liquid velocity for different stratified and wavy-stratified flow conditions is analysed by plotting the axial velocity profiles in radial direction.
      PubDate: 2022-06-01
       
  • Time-resolved PIV measurements of a deflected submerged jet interacting
           with liquid-gas and liquid-liquid interfaces

    • Free pre-print version: Loading...

      Abstract: Abstract This paper presents an experimental investigation on the interactions of a deflected submerged jet into a liquid pool with its above interface in the absence and presence of an additional lighter liquid. Whereas the former is a free surface flow, the latter mimics a situation of two stratified liquids where the liquid-liquid interface is disturbed by large-scale motions in the liquid pool. Such configurations are encountered in various industrial applications and, in most cases, it is of major interest to avoid the entrainment of droplets from the lighter liquid into the main flow. Therefore, it is important to understand the fluid dynamics in such configurations and to analyze the differences between the cases with and without the additional liquid layer. To study this problem, we applied time-resolved particle image velocimetry experiments with high spatial resolution. A detailed data analysis of a small layer beneath the interface shows that although the presence of an additional liquid layer stabilizes the oscillations of the submerged jet significantly, the amount of kinetic energy, enstrophy, and velocity fluctuations concentrated in the proximity of the interface is higher when the oil layer is present. In addition, we analyze the energy distribution across the eigenmodes of a proper orthogonal distribution and the distribution of strain and vortex dominated regions. As the main objective of this study, these high-resolution time-resolved experimental data provide a validation platform for the development of new models in the context of the volume of fluid-based large eddy simulation of turbulent two-phase flows.
      PubDate: 2022-06-01
       
  • Multicomponent gas mixture parametric CFD study of condensation heat
           transfer in small modular reactor system safety

    • Free pre-print version: Loading...

      Abstract: Abstract Safety is always the primary concern for designing and analyzing nuclear reactor systems. The requirements for the safety margin for advanced small modular reactor (SMR) systems are targeted even higher than the conventional commercial large-scale nuclear reactors incorporating the passive and inherent safety systems. The SMR systems are designed with the condensation passive containment cooling system (PCCS), which plays a critical role in removing reactor heat during a steam release accident case. However, the presence of non-condensable gas (NCG), like air, reduces the heat transfer performance. This physics phenomenon becomes multifactorial for nuclear reactor containment during a fuel failure accident case that releases hydrogen gas. Besides, the mixture component of steam-air-hydrogen varies in reactor accident cases, which needs simulation and validation keeping parameters of importance. Reviews showed that previous studies for SMR’s PCCS did not cover the condensation heat transfer (CHT) in the presence of multicomponent NCG mixture parametric computational fluid dynamics (CFD) simulation and validation, making a research gap in the SMR design safety. A comprehensive CHT parametric CFD study was performed for SMR PCCS to fill this research gap. This study used experimental data as simulation 3D physics domain inlet and outlet boundary conditions. However, the wall boundary conditions were constant temperature, curve-fit, and annular coolant for verifying the turbulence models. Parametric simulations were performed, verified, and optimized for steam-NCG mixtures. The multicomponent gases, multiphase mixtures, and fluid film condensation models were applied with associated turbulence models. The results of the parametric study were evaluated for realistic reactor conditions. Results showed that parametric study provided critical insight about the dependency of multicomponent gas mixture parameters that supports reactor safety design, analysis, and licensing.
      PubDate: 2022-05-04
       
  • Sensitivity analysis using improved two-fluid model-based 1D code with the
           state-of-the-art constitutive equations for two-phase flow in rod bundle

    • Free pre-print version: Loading...

      Abstract: Abstract In view of the importance of one-dimensional (1D) thermal-hydraulic analysis for rod bundle geometry, extensive efforts to improve constitutive equations have been made in recent years. In the present article, the state-of-the-art rod-bundle constitutive equations for flow regime map, void fraction, covariance, and interfacial area concentration models are reviewed. Among them, the constitutive relations for covariance and interfacial area concentration models may improve the conventional analysis method’s robustness. Some sensitivity analysis results using TRAC-BF1 code with the new constitutive equations are summarized and reviewed.
      PubDate: 2022-04-13
       
  • Pool boiling experiment characteristics on the pure copper surface

    • Free pre-print version: Loading...

      Abstract: Abstract The pool boiling characteristics with different boiling surfaces and working fluids play an important part in multiphase flow research. The key parameters of pool boiling, such as heat transfer coefficient (HTC) and critical heat flux (CHF), can be only acquired by experiment. Thus, a pool boiling experimental device is designed and produces the HTC and CHF data on the pure copper heating surface, which are 72.25 kW/(m2·K) and 1093.28 kW/m2, respectively. Besides, a series of visualization experimental results of bubble behavior in the pool boiling are taken by the high-speed camera to provide references for the boiling mechanism research. The pool boiling experiment would be the benchmark data to validate the future experiments and computer simulations.
      PubDate: 2022-04-02
       
  • Effect of thermal radiation on magnetohydrodynamics heat transfer
           micropolar fluid flow over a vertical moving porous plate

    • Free pre-print version: Loading...

      Abstract: Abstract An analysis is investigated for this study of the magnetohydrodynamics heat transfer flow of the micropolar fluid over a vertical porous moving plate in the existence of the radiation effect. The numerical elucidations of the governing equations achieved for various values of flow fields are taken out for the several parameters inflowing into the problem and solved by raising the Galerkin finite element technique. By taking the range of the magnetic field parameter 0 ≤ M ≤ 5, the range of viscosity ratio parameter is 0 ≤ β ≤ 5, and micro-gyration parameter is 0 ≤ n ≤ 5, whereas the value of Grashof number lies in 0 ≤ Gr ≤ 2 and −2 ≤ Gr ≤ 0. The numerical results and impact on the translation velocity and temperature are presented and discussed through graphs and listed in the tables. With an increase of β and Gr, the velocity increases, and the reverse effect is found with enhancing of M and n. With enhanced values of M, n, Pr, and R, the result in Cf rises.
      PubDate: 2022-03-15
       
  • Bubble motion and reaction in different viscous liquids

    • Free pre-print version: Loading...

      Abstract: Abstract Reactive bubble columns are omnipresent in the chemical industry. The layout of these columns is still limited by correlations and therefore improved simulation techniques are required to describe the complex hydrodynamics/reaction interaction. In this work, we focus on the numerical and experimental study of the viscosity influence on bubble motion and reaction using an Euler-Lagrange framework with an added oscillation and reaction model to bring the column layout base closer to a predictive level. For comparison and validation, experimental data in various water-glycerol solutions was obtained in a cylindrical bubble column at low gas hold-up, where the main parameters such as bubble size, motion, and velocities were detected. Glycerol leads thereby to a change in viscosity and surface tension. Further, the surface tension was modified by addition of a surfactant. The bubble oscillating motion in low to higher viscosity could be described using an Euler-Lagrange framework and enables a description of industrial bubble flows. In addition, the simulations were in good agreement concerning reactive mass transfer investigations at higher viscosity of the liquid which led to an overall lower mass transfer compared to the cases with lower viscosity.
      PubDate: 2022-03-01
       
  • Numerical investigations of polymer sheet breakup and secondary phase
           change processes in steam contactors

    • Free pre-print version: Loading...

      Abstract: Abstract Polymer devolatilization or steam stripping involves removing any unwanted substances, such as volatiles and solvents, from the polymer mixture. This is achieved via mixing with superheated steam and breakup into smaller droplets followed by phase change, resulting in dry polymer crumb. The objective of the current study is embodied in two steps. The first step involves the development of a computational fluid dynamics (CFD)-based multiphase model that solves for the initial breakup of the liquid polymer mixture by steam. As part of this effort, detailed parametric studies are conducted to determine the effects of different contactor geometries on the initial sheet breakup, and the potential impact on the final polymer product quality. The second step then uses the resulting diameter distribution to model the multiphase heat and mass transfer of the polymer mixture including evaporation of the solvent. Specifically, 3D CFD calculations are carried out using a Eulerian-Lagrangian approach, where the superheated steam is modelled as the continuous phase and tracked in a Eulerian frame, while the cement droplets are treated using a Lagrangian tracking method, thereby providing distributions of particle sizes, temperatures, and solvent content in the contactor. Results can help optimize the devolatilization process in terms of steam savings and volatile content in the final polymer.
      PubDate: 2022-03-01
       
  • Application of density-viscosity in predicting oil-water flow profile in
           horizontal pipe

    • Free pre-print version: Loading...

      Abstract: Abstract In this article, the commercial software COMSOL multiphysics 5.0 was used to model and simulate 2D core annular flow (CAF) between oil and water flow in a horizontal pipe. The objective was to obtain the flow volume, velocity, shear rate, and pressure profiles of nine different kinds of oils (ranging from heavy to light) found in published articles, and explain them using density-viscosity magnitudes. Interestingly, those magnitudes and their application in describing multiphase volume pressure, velocity were the main novelties of this paper. Thus, the magnitudes were calculated through multiplying the densities of oils by their respective viscosities. However, for convenience, dimensionless forms of these magnitudes were also calculated through further division of oil density-viscosity magnitudes by that of water. Using those magnitudes, it was possible to explain the numerical results of flow volume, velocity, shear rate, and pressure profiles obtained in this article. Notably, analyses of the results showed that larger magnitudes (above 500, using the dimensionless magnitude) produce core annular flows (CAF), while lower magnitudes (below 10 using the dimensionless magnitude) produce other flow profiles (such as dispersed, slug, and plug). The numerical study was carried out using two-phase laminar Level-set method, which was successfully validated by reproducing volume, velocity, pressure, and shear stress (product of shear rate and viscosity) profiles that were found in two published articles.
      PubDate: 2022-03-01
       
  • Multiphase CFD modelling for enclosure fires—A review on past
           studies and future perspectives

    • Free pre-print version: Loading...

      Abstract: Abstract Modern buildings and structures are commonly equipped with fire safety detection and protection systems. Owing to the complexity in building architectures, performance-based fire engineering designs are often applied to achieve safety compliance criteria in stipulated fire events. With the uprising popularity of computer simulation fire predictive models benefited by the rapid improvement in computing speed and modelling techniques, the use of computational fluid dynamics (CFD) based fire field models has become an integrated component in fire tenability and assessment studies. This article delivers a comprehensive review on the history, past developments, and current state-of-the-art of CFD models for enclosure fires, as well as providing an in-depth review on the advancement in other sub-modelling components including turbulence, combustion, radiation, and soot models. Additionally, two types of multiphase modelling approaches involving solid-gas and liquid-gas phase models are reviewed. As for the preceding, the consideration of the solid phase combustibles is generally achieved via pyrolysis modelling under the context of CFD. Recent advancements in CFD-based pyrolysis studies are extensively discussed, including the consideration of porous media, charring layer formation, and kinetics search algorithms to describe the solid decomposition and charring processes. Meanwhile, fire suppression models involving the discrete phase model (DPM) approach are reviewed. This includes previous developments in simulation methods of water droplets, coupling approaches with the fire dynamics in the large eddy simulation (LES) framework. Finally, a future perspective regarding the need to develop a melting/dripping sub-model for building materials is discussed, whose reaction kinetics can be supported by molecular dynamics (MD).
      PubDate: 2022-03-01
       
  • Analysis on hydrogen risk under LOCA in marine nuclear reactor

    • Free pre-print version: Loading...

      Abstract: Abstract A large amount of hydrogen is released under the LOCA in marine nuclear reactor, which seriously affects the safety of ships, so it is very important to investigate the hydrogen risk in nuclear reactor cabin. The three-dimensional computational fluid dynamics code GASFLOW is used to simulate the hydrogen behavior in the cuboid reactor cabin under LOCA and analyze the hydrogen risk in different areas. The results show that hydrogen explosion and flame acceleration are likely to occur under the LOCA without hydrogen mitigation measures. The pressure and temperature of the cabin are less than the design value, but once hydrogen explosion occurs, the pressure and temperature may destroy the devices and the integrity of the cabin.
      PubDate: 2022-03-01
       
  • Study on bubble-induced turbulence in pipes and containers with
           Reynolds-stress models

    • Free pre-print version: Loading...

      Abstract: Abstract Bubbly flow still represents a challenge for large-scale numerical simulation. Among many others, the understanding and modelling of bubble-induced turbulence (BIT) are far from being satisfactory even though continuous efforts have been made. In particular, the buoyancy of the bubbles generally introduces turbulence anisotropy in the flow, which cannot be captured by the standard eddy viscosity models with specific source terms representing BIT. Recently, on the basis of bubble-resolving direct numerical simulation data, a new Reynolds-stress model considering BIT was developed by Ma et al. (J Fluid Mech, 883: A9 (2020)) within the Euler—Euler framework. The objective of the present work is to assess this model and compare its performance with other standard Reynolds-stress models using a systematic test strategy. We select the experimental data in the BIT-dominated range and find that the new model leads to major improvements in the prediction of full Reynolds-stress components.
      PubDate: 2022-01-04
       
  • Correction to: Multi-fluid modelling of bubbly channel flows with an
           adaptive multi-group population balance method

    • Free pre-print version: Loading...

      Abstract: The article “Multi-fluid modelling of bubbly channel flows with an adaptive multi-group population balance method ” written by D. Papoulias, A. Vichansky, and M. Tandon, was originally published electronically on the publisher ’s internet portal (currently SpringerLink) on 21 October 2020 without open access. After publication in Volume 3, Issue 3, page 171–185, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2021 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
      PubDate: 2021-12-15
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.200.25.51
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-