A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> NUTRITION AND DIETETICS (Total: 201 journals)
We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Similar Journals
Journal Cover
Amino Acids
Journal Prestige (SJR): 1.135
Citation Impact (citeScore): 3
Number of Followers: 8  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1438-2199 - ISSN (Online) 0939-4451
Published by Springer-Verlag Homepage  [2469 journals]
  • The post-translational modification of Fascin: impact on cell biology and
           its associations with inhibiting tumor metastasis

    • Free pre-print version: Loading...

      Abstract: Abstract The post-translational modifications (PTMs), which are crucial in the regulation of protein functions, have great potential as biomarkers of cancer status. Fascin (Fascin actin-bundling protein 1, FSCN1), a key protein in the formation of filopodia that is structurally based on actin filaments (F-actin), is significantly associated with tumor invasion and metastasis. Studies have revealed various regulatory mechanisms of human Fascin, including PTMs. Although a number of Fascin PTM sites have been identified, their exact functions and clinical significance are much less explored. This review explores studies on the functions of Fascin and briefly discusses the regulatory mechanisms of Fascin. Next, to review the role of Fascin PTMs in cell biology and their associations with metastatic disease, we discuss the advances in the characterization of Fascin PTMs, including phosphorylation, ubiquitination, sumoylation, and acetylation, and the main regulatory mechanisms are discussed. Fascin PTMs may be potential targets for therapy for metastatic disease.
      PubDate: 2022-08-08
       
  • Methylmalonic acid induces inflammatory response and redox homeostasis
           disruption in C6 astroglial cells: potential glioprotective roles of
           melatonin and resveratrol

    • Free pre-print version: Loading...

      Abstract: Abstract Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.
      PubDate: 2022-08-04
       
  • Deciphering the conformational landscape of few selected aromatic noncoded
           amino acids (NCAAs) for applications in rational design of peptide
           therapeutics

    • Free pre-print version: Loading...

      Abstract: Abstract Amino acids are the essential building blocks of both synthetic and natural peptides, which are crucial for biological functions and also important as biological probes for mapping the complex protein–protein interactions (PPIs) in both prokaryotic and eukaryotic systems. Mapping the PPIs through the chemical biology approach provides pharmacologically relevant peptides, which can have agonistic or antagonistic effects on the targeted biological systems. It is evidenced that ≥ 60 peptide-based drugs have been approved by the US-FDA so far, and the number will improve further in the foreseeable future, as ≥ 140 peptides are currently in clinical trials. However, natural peptides often require fine-tuning of their pharmacological properties by strategically replacing the αL-amino acids of the peptides with non-coded amino acids (NCAA), for which codons are absent in the genetic code for biosynthesis of proteins, prior to their applications as therapeutics. Considering the diverse repertoire of the NCAAs, the conformational space of many NCAAs is yet to be explored systematically in the context of the rational design of therapeutic peptides. The current study deciphers the conformational landscape of a few such Cα-substituted aromatic NCAAs (Ing: 2-indanyl-l-Glycine; Bpa: 4-benzoyl-l-phenylalanine; Aic: 2-aminoindane-2-carboxylic acid) both in the context of tripeptides and model synthetic peptide sequences, using alanine (Ala) and proline (Pro) as the reference. The combined data obtained from the computational and biophysical studies indicate the general success of this approach, which can be exploited further to rationally design optimized peptide sequences of unusual architecture with potent antimicrobial, antiviral, gluco-regulatory, immunomodulatory, and anti-inflammatory activities.
      PubDate: 2022-08-01
       
  • Vanadium carbide MXene: as a reductant for the synthesis of gold
           nanoparticles and its biosensing application

    • Free pre-print version: Loading...

      Abstract: Abstract Vanadium carbide MXene (V2C) acts as a new type of two-dimensional (2D) graphene-like transition metal material that has attracted research interest. V2C has been widely used in various fields due to its excellent physical and chemical properties. Herein, the self-assembled V2C@gold nanoparticles (V2C@AuNPs) are prepared by water bath process at 80 °C. With the addition of glutathione (GSH), the absorbance (Abs.) at 550 nm of V2C@AuNPs was decreased. Therefore, an optical sensor is developed to detect GSH based on the properties of V2C@AuNPs. Under the optimal conditions, the detection range is 1–32 µM and the detection limit is 0.099 µM. Furthermore, the proposed GSH sensor exhibits high sensitivity, high selectivity, strong stability, and excellent recovery. The work will expand the application of V2C in biosensing.
      PubDate: 2022-08-01
       
  • Cystine reduces mitochondrial dysfunction in C2C12 myotubes under moderate
           oxidative stress induced by H2O2

    • Free pre-print version: Loading...

      Abstract: Abstract Moderate oxidative stress induces temporal impairment in mitochondrial ATP production. As glutathione (GSH) content is reduced to eliminate oxidative stress by oxidation–reduction reaction, intracellular GSH content is crucial for maintaining mitochondrial function under oxidative stress. GSH precursors such as N-acetyl cysteine (NAC) and cysteine are known to suppress oxidative stress based on the supply of cysteine residues being rate-limiting for GSH synthesis. However, it remains unclear whether cystine (Cys2) can suppress mitochondrial dysfunction under oxidative stress conditions. Therefore, we examined whether Cys2 could attenuate mitochondrial dysfunction under moderate oxidative stress without scavenging reactive oxygen species (ROS) in the medium. C2C12 myotubes were incubated for 120 min in a Cys2-supplemented medium and subsequently exposed to hydrogen peroxide (H2O2). Heme oxygenase-1 (HO-1) gene expression, intracellular cysteine and GSH content, intracellular ATP level, and maximal mitochondrial respiration were assessed. Cys2 treatment significantly increased GSH content in a dose-dependent manner under oxidative stress. Cys2 treatment significantly decreased HO-1 expression induced by H2O2 exposure. In addition, maximal mitochondrial respiration rate was decreased by H2O2 exposure, but improved by Cys2 treatment. In conclusion, Cys2 treatment mitigates oxidative stress-induced mitochondrial dysfunction by maintaining GSH content under moderate oxidative stress without scavenging ROS in the medium.
      PubDate: 2022-08-01
       
  • Expression of polyamines and its association with GnRH-I in the
           hypothalamus during aging in rodent model

    • Free pre-print version: Loading...

      Abstract: Abstract GnRH-I and GnIH are the key neuropeptides that regulate the hypothalamic–pituitary–gonadal axis in mammals during aging. Polyamines are important aliphatic amines that are expressed in the brain and show variation with aging. The present study demonstrates evidence of variation in the level of expression of polyamines, GnRH-I and GnIH in the hypothalamus of female mice during aging. The study also suggests regulatory effects of polyamines over expression of the hypothalamic GnRH-I. The study shows a significant positive correlation between polyamines, its associated factors and GnRH-I along with significant negative correlation between polyamines, its associated factors and GnIH. This is the first study to report the effect of polyamines along with lactate or TNF-α or both on GnRH-I expression in GT1-7 cell line. TNF-α and lactate significantly decreased hypothalamic GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Polyamines (putrescine and agmatine) in contrast, significantly increased GnRH-I mRNA expression in GT1-7 cells when treated for 24 h. Also, polyamines increased GnRH-I mRNA expression when treated in presence of TNF-α or lactate thereby suggesting its neuro-protective role. This study also found 3809 differentially expressed genes through RNA-seq done between the hypothalamic GT1-7 cells treated with putrescine only versus TNF-α and putrescine. The present study suggests for the first time that putrescine treatment to TNFα-primed GT1-7 cells upregulates GnRH-I expression via regulation of several pathways such as calcium ion pathway, estrogen signaling, clock genes as well as regulating other metabolic process like neuronal differentiation and neurulation.
      PubDate: 2022-08-01
       
  • The PentUnFOLD algorithm as a tool to distinguish the dark and the light
           sides of the structural instability of proteins

    • Free pre-print version: Loading...

      Abstract: Abstract Intrinsically disordered proteins are frequently involved in important regulatory processes in the cell thanks to their ability to bind several different targets performing sometimes even opposite functions. The PentUnFOLD algorithm is a physicochemical method that is based on new propensity scales for disordered, nonstable and stable elements of secondary structure and on the counting of stabilizing and destabilizing intraprotein contacts. Unlike other methods, it works with a PDB file, and it can determine not only those fragments of alpha helices, beta strands, and random coils that can turn into disordered state (the “dark” side of the disorder), but also nonstable regions of alpha helices and beta strands which are able to turn into random coils (the “light” side), and vice versa (H ↔ C, E ↔ C). The scales have been obtained from structural data on disordered regions from the middle parts of amino acid sequences only, and not on their expectedly disordered N- and C-termini. Among other tendencies we have found that regions of both alpha helices and beta strands that can turn into the disordered state are relatively enriched in residues of Ala, Met, Asp, and Lys, while regions of both alpha helices and beta strands that can turn into random coil are relatively enriched in hydrophilic residues, and Cys, Pro, and Gly. Moreover, PentUnFOLD has the option to determine the effect of secondary structure transitions on the stability of a given region of a protein. The PentUnFOLD algorithm is freely available at http://3.17.12.213/pent-un-fold and http://chemres.bsmu.by/PentUnFOLD.htm.
      PubDate: 2022-08-01
       
  • Evaluation of the predictive values of elevated serum l-homoarginine and
           dimethylarginines in preeclampsia

    • Free pre-print version: Loading...

      Abstract: Abstract l-homoarginine (hARG) is involved in nitric oxide biosynthesis, but its role and concentration in preeclampsia (PE) have not been fully revealed. The purpose of this study was to develop and validate a feasible clinical assay to quantify serum hARG, arginine (ARG), asymmetric (ADMA) and symmetric dimethylarginines (SDMA) levels by LC–MS/MS and investigate their differences at different stages of pregnancy with or without preeclampsia. Serum samples were collected from 84 pregnant women without complications (controls), 84 with mild preeclampsia (MPE), and 81 with severe preeclampsia (SPE) at various gestation stages (before the 20th week, during the 20th–28th week or after the 28th week of gestation). No significant difference in ARG levels was observed between PE and controls at any stage (P > 0.05). The serum hARG levels and hARG/ADMA ratios of MPE before the 20th week were higher than those of controls (P < 0.001). ADMA levels of MPE were higher than those of controls during the 20th–28th week (P < 0.01). SDMA levels of SPE were higher than those of MPE (P < 0.01) and controls (P < 0.05) after the 28th week. Elevated serum hARG before the 20th week was identified as an independent predictor for PE (OR = 1.478, 95% CI 1.120–1.950). ROC curve analysis showed serum hARG before the 20th week had a good potential to predict MPE (AUC = 0.875, 95% CI 0.759–0.948). In conclusion, our study indicated that elevated serum hARG and dimethylarginine levels detected by LC–MS/MS might serve as potential biomarkers for the early prediction of PE.
      PubDate: 2022-08-01
       
  • An assessment of the transport mechanism and intraneuronal stability of
           l-carnosine

    • Free pre-print version: Loading...

      Abstract: Abstract l-Carnosine (β-alanyl-l-histidine) is a well-known antioxidant and neuroprotector in various models on animals and cell cultures. However, while there is a plethora of data demonstrating its efficiency as a neuroprotector, there is a distinct lack of data regarding the mechanism of its take up by neurons. According to literature, cultures of rat astrocytes, SKPT cells and rat choroid plexus epithelial cells take up carnosine via the H+-coupled PEPT2 membrane transporter. We’ve assessed the effectiveness and mechanism of carnosine transport, and its stability in primary rat cortical culture neurons. We demonstrated that neurons take up carnosine via active transport with Km = 119 μM and a maximum velocity of 0.289 nmol/mg (prot)/min. Passive transport speed constituted 0.21∙10–4 nmol/mg (prot)/min (with 119 μM concentration in the medium)—significantly less than active transport speed. However, carnosine concentrations over 12.5 mM led to passive transport speed becoming greater than active transport speed. Using PEPT2 inhibitor zofenopril, we demonstrated that PEPT2-dependent transport is one of the main modes of carnosine take up by neurons. Our experiments demonstrated that incubation with carnosine does not affect PEPT2 amount present in culture. At the same time, after removing carnosine from the medium, its elimination speed by culture cells reached 0.035 nmol/mg (prot)/min, which led to a decrease in carnosine quantity to control levels in culture within 1 h. Thus, carnosine is taken up by neurons with an effectiveness comparable to that of other PEPT2 substrates, but its elimination rate suggests that for effective use as a neuroprotector it’s necessary to either maintain a high concentration in brain tissue, or increase the effectiveness of glial cell synthesis of endogenous carnosine and its shuttling into neurons, or use more stable chemical modifications of carnosine.
      PubDate: 2022-08-01
       
  • Crystalline structures of l-cysteine and l-cystine: a combined theoretical
           and experimental characterization

    • Free pre-print version: Loading...

      Abstract: Abstract It is assumed that genetic diseases affecting the metabolism of cysteine and the kidney function lead to two different kinds of pathologies, namely cystinuria and cystinosis whereby generate l-cystine crystals. Recently, the presence of l-cysteine crystal has been underlined in the case of cystinosis. Interestingly, it can be strikingly seen that cystine ([–S–CH2–CH–(NH2)–COOH]2) consists of two cysteine (C3H7NO2S) molecules connected by a disulfide (S–S) bond. Therefore, the study of cystine and cysteine is important for providing a better understanding of cystinuria and cystinosis. In this paper, we elucidate the discrepancy between l-cystine and l-cysteine by investigating the theoretical and experimental infrared spectra (IR), X-ray diffraction (XRD) as well as Raman spectra aiming to obtain a better characterization of abnormal deposits related to these two genetic pathologies.
      PubDate: 2022-08-01
       
  • A mutation in the S6 segment of the KvAP channel changes the secondary
           structure and alters ion channel activity in a lipid bilayer membrane

    • Free pre-print version: Loading...

      Abstract: Abstract The peptide segment S6 is known to form the inner lining of the voltage-gated K+ channel KvAP (potassium channel of archaea-bacterium, Aeropyrum pernix). In our previous work, it has been demonstrated that S6 itself can form an ion channel on a bilayer lipid membrane (BLM). In the present work, the role of a specific amino acid sequence ‘LIG’ in determining the secondary structure of S6 has been investigated. For this purpose, 22-residue synthetic peptides named S6-Wild (S6W) and S6-Mutant (S6M) were used. Sequences of these peptides are similar except that the two amino acids isoleucine and glycine of the wild peptide interchanged in the mutant peptide. Channel forming capabilities of both the peptides were checked electro-physiologically on BLM composed of DPhPC and cholesterol. Bilayer electrophysiological experiments showed that the conductance of S6M is higher than that of S6W. Significant differences in the current versus voltage (I–V) plot, open probability, and gating characteristics were observed. Interestingly, two sub-types of channels, S6M Type 1 and Type 2, were identified in S6M differing in conductances and open probability patterns. Circular dichroism (CD) spectroscopy indicated that the secondary structures of the two peptides are different in phosphatidyl choline/asolectin liposomes and 1% SDS detergent. Reduced helicity of S6M was also noticed in membrane mimetic liposomes and 1% SDS detergent micelles. These results are interpreted in view of the difference in hydrophobicity of the two amino acids, isoleucine and glycine. It is concluded that the ‘LIG’ stretch regulates the structure and pore-forming ability of the S6 peptide.
      PubDate: 2022-07-27
       
  • Intramolecular cyclization of isothiocyanyl amino acids/peptide: arrival
           at unnatural thioxoimidazolidinyl/thioxooxazolidinyl amino acids

    • Free pre-print version: Loading...

      Abstract: Abstract A novel intramolecular cyclization of isothiocyanyl amino acids/peptide is reported to arrive at unnatural thioxoimidazolidinyl (TOI)/thioxooxazolidinyl (TOO) amino acids for the first time. Interestingly, analogous isothiocyanyl amines under a similar reaction condition either follow 5-endo-dig cyclization to offer 5-membered thiourea or acyclic diethylaminyl thiourea derivative instead of 6-membered cyclic thiourea.
      PubDate: 2022-07-23
       
  • A novel family of non-secreted tridecaptin lipopeptide produced by
           Paenibacillus elgii

    • Free pre-print version: Loading...

      Abstract: Abstract Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.
      PubDate: 2022-07-21
       
  • PTPAMP: prediction tool for plant-derived antimicrobial peptides

    • Free pre-print version: Loading...

      Abstract: Abstract The emergence of antimicrobial peptides (AMPs) as a potential alternative to conventional antibiotics has led to the development of efficient computational methods for predicting AMPs. Among all organisms, the presence of multiple genes encoding AMPs in plants demands the development of a plant-based prediction tool. To this end, we developed models based on multiple peptide features like amino acid composition, dipeptide composition, and physicochemical attributes for predicting plant-derived AMPs. The selected compositional models are integrated into a web server termed PTPAMP. The designed web server is capable of classifying a query peptide sequence into four functional activities, i.e., antimicrobial (AMP), antibacterial (ABP), antifungal (AFP), and antiviral (AVP). Our models achieved an average area under the curve of 0.95, 0.91, 0.85, and 0.88 for AMP, ABP, AFP, and AVP, respectively, on benchmark datasets, which were ~ 6.75% higher than the state-of-the-art methods. Moreover, our analysis indicates the abundance of cysteine residues in plant-derived AMPs and the distribution of other residues like G, S, K, and R, which differ as per the peptide structural family. Finally, we have developed a user-friendly web server, available at the URL: http://www.nipgr.ac.in/PTPAMP/. We expect the substantial input of this predictor for high-throughput identification of plant-derived AMPs followed by additional insights into their functions.
      PubDate: 2022-07-21
       
  • Design and modification of frog skin peptide brevinin-1GHa with enhanced
           antimicrobial activity on Gram-positive bacterial strains

    • Free pre-print version: Loading...

      Abstract: Abstract Naturally occurring frog skin peptides are one of largest sources of antimicrobial peptides that have many advantages including high potency, broad spectrum of targets and low susceptibility to multiple drug-resistance bacteria. However, they also have disadvantages such as hemolytic activity, low stability and high production costs. For these reasons, various strategies have been applied to overcome these drawbacks restricting their use in clinical trials. Previously reported brevinin-1GHa (BR-1GHa) is a 24 amino acid long antimicrobial peptide isolated from Hylarana guentheri with hemolytic activity. To enhance the antimicrobial activity of this peptide and to reduce its hemolytic activity, we designed five new temporin like analogues and examined their bioactivities. Temporins are another class of frog skin peptides without hemolytic activity and shorter than brevinins. When the antimicrobial activities of new analogues were examined against a panel of microorganisms, BR-1GHa-3, in which two alanine residues in the truncated version of BR-1GHa were replaced with leucine, exhibited significantly improved antimicrobial activity against Gram-positive bacterial strains (e.g., S. aureus ATCC 29213 and E. casseliflavus ATCC 700327) with lower hemolytic activity compared to the BR-1GHa peptide. Furthermore, BR-1GHa-4 analogue, in which Gly3 was replaced with Pro, did not show any hemolytic activity except for highest (128 µM) concentration tested and have a strong antimicrobial effect on Gram-positive bacteria (e.g., E. faecalis ATCC 51299 and B. cereus ATCC 13061).
      PubDate: 2022-07-19
       
  • Tryptophan regulates bile and nitrogen metabolism in two pig gut
           lactobacilli species in vitro based on metabolomics study

    • Free pre-print version: Loading...

      Abstract: Abstract Research has demonstrated that tryptophan (Trp) regulated the composition and metabolism of the gut microbiota. However, the detailed mode of action of Trp on the metabolism of intestinal commensal lactobacilli has not been well characterized. This study aimed to compare the effects of Trp concentration (0.2, 0.4, 0.6 mmol/L) in the media on the metabolism of Lactobacillus amylovorus and Limosilactobacillus mucosae isolated from the small intestine of piglets in vitro by high-performance liquid chromatography and metabolomics study. Results showed that increased Trp concentration increased (P < 0.05) net utilization of lysine, methionine, tryptophan, asparagine/aspartate, glutamine/glutamate, however, increased net production of glycine and taurine in Lac. amylovorus. In contrast, increased Trp concentration decreased (P < 0.05) net utilization of leucine, phenylalanine, and serine and increased (P < 0.05) net utilization of arginine and net production of ornithine and glycine in Lim. mucosae. Targeted metabolomics analysis showed that increased Trp concentration promoted (P < 0.05) the production of indole-3-lactic acid and 3-indoleacetic acid in the two lactobacilli strains. Increased concentration of Trp increased (P < 0.01) glycochenodeoxycholic acid metabolism in Lim. mucosae and glycocholic acid and taurocholic acid metabolism in Lac. amylovorus. Untargeted metabolomics analysis showed that metabolic pathways related to phenylalanine and tryptophan metabolism, and nicotinate and nicotinamide metabolism were regulated by Trp in Lim. mucosae. These findings will help develop new biomarkers and dietary strategies to maintain the functionality of the gut microbiota aiming at improving the nutrition and health of both humans and animals.
      PubDate: 2022-07-15
       
  • N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on
           nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical
           considerations

    • Free pre-print version: Loading...

      Abstract: Abstract N-Acetyl-L-cysteine (NAC) is an endogenous cysteine metabolite. The drug is widely used in chronic obstructive pulmonary disease (COPD) and as antidote in acetaminophen (paracetamol) intoxication. Currently, the utility of NAC is investigated in rheumatoid arthritis (RA), which is generally considered associated with inflammation and oxidative stress. Besides clinical laboratory parameters, the effects of NAC are evaluated by measuring in plasma or serum nitrite, nitrate or their sum (NOx) as measures of nitric oxide (NO) synthesis. Malondialdehyde (MDA) and relatives such as 4-hydroxy-nonenal and 15(S)-8-iso-prostaglandin F2α serve as measures of oxidative stress, notably lipid peroxidation. In this work, we review recent clinico-pharmacological studies on NAC in rheumatoid arthritis. We discuss analytical, pre-analytical and clinical issues and their potential impact on the studies outcome. Major issues include analytical inaccuracy due to interfering endogenous substances and artefactual formation of MDA and relatives during storage in long-term studies. Differences in the placebo and NAC groups at baseline with respect to these biomarkers are also a serious concern. Modern applied sciences are based on data generated using commercially available instrumental physico-chemical and immunological technologies and assays. The publication process of scientific work rarely undergoes rigorous peer review of the analytical approaches used in the study in terms of accuracy/trueness. There is pressing need of considering previously reported reference concentration ranges and intervals as well as specific critical issues such as artefactual formation of particular biomarkers during sample storage. The latter especially applies to surrogate biomarkers of oxidative stress, notably MDA and relatives. Reported data on NO, MDA and clinical parameters, including C-reactive protein, interleukins and tumour necrosis factor α, are contradictory in the literature. Furthermore, reported studies do not allow any valid conclusion about utility of NAC in RA. Administration of NAC patients with rheumatoid arthritis is not recommended in current European and American guidelines.
      PubDate: 2022-07-13
       
  • Molecular species of oxidized phospholipids in brain differentiate between
           learning- and memory impaired and unimpaired aged rats

    • Free pre-print version: Loading...

      Abstract: Abstract Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
      PubDate: 2022-07-11
       
  • Large-scale analysis of circulating glutamate and adipose gene expression
           in relation to abdominal obesity

    • Free pre-print version: Loading...

      Abstract: Abstract Circulating levels of the amino acid glutamate are associated with central fat accumulation, yet the pathophysiology of this relationship remains unknown. We aimed to (i) refine and validate the association between circulating glutamate and abdominal obesity in a large twin cohort, and (ii) investigate whether transcriptomic profiles in adipose tissue could provide insight into the biological mechanisms underlying the association. First, in a cohort of 4665 individuals from the TwinsUK resource, we identified individuals with abdominal obesity and compared prevalence of the latter across circulating glutamate quintiles. Second, we used transcriptomic signatures generated from adipose tissue, both subcutaneous and visceral, to investigate associations with circulating glutamate levels. Individuals in the top circulating glutamate quintile had a sevenfold higher prevalence of abdominal obesity compared to those in the bottom quintile. The adipose tissue transcriptomic analyses identified GLUL, encoding Glutamate-Ammonia Ligase, as being associated with circulating glutamate and abdominal obesity, with pronounced signatures in the visceral depot. In conclusion, circulating glutamate is positively associated with the prevalence of abdominal obesity which relates to dysregulated GLUL expression specifically in visceral adipose tissue.
      PubDate: 2022-07-09
       
  • GABAergic circuits of the basolateral amygdala and generation of anxiety
           after traumatic brain injury

    • Free pre-print version: Loading...

      Abstract: Abstract Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10–15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
      PubDate: 2022-07-07
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.233.217.106
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-