A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> NUTRITION AND DIETETICS (Total: 201 journals)
We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Similar Journals
Journal Cover
Amino Acids
Journal Prestige (SJR): 1.135
Citation Impact (citeScore): 3
Number of Followers: 8  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1438-2199 - ISSN (Online) 0939-4451
Published by Springer-Verlag Homepage  [2469 journals]
  • Branched-chain amino acids regulate intracellular protein turnover in
           porcine mammary epithelial cells

    • Free pre-print version: Loading...

      Abstract: Abstract Dietary supplementation with branched-chain amino acids (BCAAs) to lactating sows has been reported to enhance their milk production, but the underlying mechanisms remain largely unknown. This study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that individual BCAAs or their mixture stimulates protein synthesis and inhibit proteolysis in PMECs. Cells were cultured at 37 °C in customized Dulbecco’s modified Eagle medium containing 5 mmol/L D-glucose, 1 mmol/L L-phenylalanine, L-[ring-2,4-3H]phenylalanine, 0.1 (control), 0.25, 0.5, 1, or 2 mmol/L L-leucine, L-isoleucine or L-valine or an equimolar mixture of the three BCAAs. The culture medium also contained physiological concentrations of other amino acids found in the plasma of lactating sows. Proliferation, protein synthesis, proteolysis, β-casein production, the mechanistic target of rapamycin (mTOR) signaling, and the ubiquitin–proteasome pathway were determined for PMECs. Cell proliferation and abundances of phosphorylated mTOR, eukaryotic translation initiation factor 4E-binding protein 1, and ribosomal protein S6 kinase β-1 proteins increased (P < 0.05), but abundances of ubiquitinated protein and 20S proteasome decreased (P < 0.05) when extracellular concentrations of L-leucine, L-isoleucine, L-valine, or an equimolar mixture of BCAAs were increased from 0.1 to 2 mmol/L. Compared with the control, 0.25, 0.5, 1 or 2 mmol/L BCAAs enhanced (P < 0.01) protein (including β-casein) synthesis, while decreasing (P < 0.05) proteolysis in PMECs in a dose-dependent manner. Collectively, our results indicate that physiological concentrations of BCAAs regulate protein turnover in mammary epithelial cells to favor net protein synthesis through stimulating the mTOR signaling pathway and inhibiting the ubiquitin–proteasome pathway.
      PubDate: 2022-09-09
       
  • Taurine protects R28 cells from hypoxia/re-oxygenation-induced damage via
           regulation of mitochondrial energy metabolism

    • Free pre-print version: Loading...

      Abstract: Abstract Oxidative-induced damage and hypoxia/re-oxygenation (H/R) injury are common causes of irreversible visual impairment. The goals of this study were to explore the effects of taurine on R28 cells under the two damage models and the underlying mechanisms. Low doses of taurine supplementation promoted cell viability, mitochondrial membrane potential (MMP), SOD levels, ATP contents and attenuated cytotoxicity and intracellular ROS generation of the R28 cells under the two kinds of damage. The expression level of GTPBP3, a mitochondrial-tRNA (mt-tRNA) modification enzyme that catalyzes the taurine involved modification, was decreased under the two damage and taurine could reverse the reduction. After knocking down GTPBP3, the R28 cells become vulnerable to damage. The viability, cytotoxicity, MMP and intracellular ROS level of knockdown cells changed more obviously under the H/R injury than those of control cell. We also found that knockdown of GTPBP3 significantly decreased mitochondrial energy metabolism by measuring the oxidative respiration rate by the Seahorse XFe24 extracellular flux analyzer. The protection of low doses of taurine disappeared on knockdown R28 cells, indicating that GTPBP3 is crucial in the protection mechanisms of taurine. However, the impacts of the reduction of GTPBP3 level can be reversed by relatively high doses of taurine, implying the protection effects of taurine were dose-dependent, and there were more complicated mechanisms remain to be explored. This study explored a new mechanism of the neuroprotective effects of taurine, which depend on the GTPBP3-mediated taurine modification of mt-tRNAs and the promotion of mitochondrial energy metabolism.
      PubDate: 2022-09-02
       
  • Photochemical synthesis of pink silver and its use for monitoring peptide
           nitration via surface enhanced Raman spectroscopy (SERS)

    • Free pre-print version: Loading...

      Abstract: Abstract Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer’s and Parkinson’s diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517–532, 2021, ibid). In this article, we describe performance of a new SERS substrate, “pink silver”, synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550–1475 cm−1) and symmetric (1360–1290 cm−1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.
      PubDate: 2022-09-01
       
  • Fast killing kinetics, significant therapeutic index, and high stability
           of melittin-derived antimicrobial peptide

    • Free pre-print version: Loading...

      Abstract: Abstract The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.
      PubDate: 2022-09-01
       
  • Sex-related differences in plasma amino acids of patients with
           ST-elevation myocardial infarction and glycine as risk marker of acute
           heart failure with preserved ejection fraction

    • Free pre-print version: Loading...

      Abstract: Abstract Nowadays, the problem of preventing acute heart failure (AHF) in patients with ST-elevation myocardial infarction (STEMI) and preserved left-ventricular ejection fraction (pLVEF) is still not completely resolved, especially in late-presented patients. The purpose of study was: (1) assessment of free plasma amino acid (PAA) alterations in STEMI patients [not receiving reperfusion therapy (RT)], depending on sex and LVEF; (2) analysis of development of late/persistent AHF more than 48 h after admission (pAHF) in STEMI patients with pLVEF depending on PAA levels. This prospective cohort study included 92 STEMI patients (33 women and 59 men), not receiving RT. The free PAA were investigated by ion-exchange liquid-column chromatography. The women had significantly higher PAA levels than men in general cohort and cohort with pLVEF (n = 69). There were associations between female sex and pAHF in general cohort (OR 3.7, p = 0.004) and cohort with pLVEF (OR 11.4, p = 0.0001) by logistic regression. The association between pAHF and glycine level [OR 2.5, p < 0.0001; AUC 0.84, p < 0.0001; 86.7% sensitivity and 77.8% specificity for > 2.6 mg/dL] was revealed in cohort with pLVEF (including female and male). Glycine remained a predictor of pAHF with pLVEF by multivariable logistic regression adjusting for comorbidities, demographic and clinical variables. Higher rate of pAHF in female than in male STEMI patients with pLVEF is associated with higher plasma glycine in women. The glycine level may be genetically determinated by female sex. The plasma glycine > 2.6 mg/dL is a predictor of pAHF in STEMI with pLVEF (including female and male).
      PubDate: 2022-09-01
       
  • Effects of taurine on vascular tone

    • Free pre-print version: Loading...

      Abstract: Abstract Taurine is widely distributed at high concentrations in mammalian tissues, and it plays an important role in a wide range of biological effects including modulation of cardiovascular functions. This review summarizes the role of taurine in vascular tone and blood pressure modulation based on experimental and human studies. It is well established that supplementation of taurine prevents development of hypertension in several animal models and p.o. taurine administration reduces blood pressure in hypertensive patients. Both central and peripheral actions of taurine may be involved in its hypotensive effects. In isolated animal arteries, taurine exerts vasodilation through endothelium-dependent and independent mechanisms. Several studies showed that taurine relaxed various animal arteries through opening potassium channels. We have recently shown that taurine relaxes human internal mammary and radial arteries by opening large conductance Ca2+-activated K+ channels. To date, the molecular mechanism(s) involved in the vascular effects of taurine are largely unknown and require further investigation. Clarifying the mechanisms in which taurine affects the vascular system may facilitate the development of therapeutic and/or diet-based strategies to reduce the burden of vascular diseases.
      PubDate: 2022-08-19
       
  • Possible role of SIRT1 and SIRT3 in post-translational modifications in
           human breast milk during the neonatal period

    • Free pre-print version: Loading...

      Abstract: Abstract We measured free and proteinic concentrations of native and modified amino acids from post-translational modifications (PTMs) and correlated them with the activity of SIRT1 and SIRT3 in the pellet and aqueous phases of human breast milk samples of ten lactating women during the neonatal period. SIRT1 and SIRT3 correlated directly with citrullination, asymmetric dimethylation and glycation of L-arginine, hydroxylation and glycation of L-lysine. SIRT1 and SIRT3 correlated inversely with the hydroxylation of L-proline. SIRT1 and SITR3 tended to correlate inversely with oxidative stress measured as malondialdehyde. Our study suggests that SIRT1 and SIRT3 may modulate PTMs in human breast milk cells.
      PubDate: 2022-08-17
       
  • Dietary L-arginine supplementation increases the hepatic expression of
           AMP-activated protein kinase in rats

    • Free pre-print version: Loading...

      Abstract: Abstract The goal of this study was to elucidate the molecular mechanisms responsible for the anti-obesity effect of L-arginine supplementation in diet-induced obese rats. Male Sprague–Dawley rats were fed either a low-fat or high-fat diet for 15 weeks. Thereafter, lean or obese rats were pair-fed their same respective diets and received drinking water containing either 1.51% L-arginine-HCl or 2.55% L-alanine (isonitrogenous control) for 12 weeks. Gene and protein expression of key enzymes in the metabolism of energy substrates were determined using real-time polymerase-chain reaction and western blotting techniques. The mRNA levels of hepatic fatty acid synthase and stearoyl-CoA desaturase were reduced (P < 0.05) but those of hepatic AMP-activated protein kinase-α (AMPKα), peroxisome proliferator activator receptor γ coactivator-1α, and carnitine palmitoyltransferase I (CPT-I), as well as skeletal muscle CPT-I were increased (P < 0.05) by L-arginine treatment. The protein expression and activity of hepatic AMPKα markedly increased (P < 0.05) but the activity of hepatic acetyl-CoA carboxylase (ACC) decreased (P < 0.05) in response to dietary L-arginine supplementation. Collectively, our results indicate that liver is the major target for the action of dietary L-arginine supplementation on reducing white-fat mass in diet-induced obese rats by inhibiting fatty acid synthesis and increasing fatty acid oxidation via the AMPK-ACC signaling pathway. Additionally, increased CPT-I expression in skeletal muscle may also contribute to the enhanced oxidation of long-chain fatty acids in L-arginine-supplemented rats.
      PubDate: 2022-08-16
       
  • l-Arginine increases AMPK phosphorylation and the oxidation of energy
           substrates in hepatocytes, skeletal muscle cells, and adipocytes

    • Free pre-print version: Loading...

      Abstract: Abstract Previous work has shown that dietary l-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg + 0.5 mM NG-nitro-l-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P < 0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P < 0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P < 0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P < 0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P > 0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.
      PubDate: 2022-08-16
       
  • Divergent synthesis of biologically active l-threo-β-hydroxyaspartates
           from common trans-oxazolidine dicarboxylate

    • Free pre-print version: Loading...

      Abstract: Abstract A divergent synthetic strategy starting from a common trans-oxazolidine dicarboxylate intermediate has been successful to produce several non-proteinogenic l-threo-β-hydroxyaspartate derivatives efficiently with high stereoselectivity. Three bioactive α-amino-β-hydroxy acids, l-threo-β-hydroxyaspartic acid, l-threo-β-hydroxyasparagine, and l-threo-β-benzyloxyaspartic acid, were synthesized in good yields (58–83%) from the common chiral intermediate, and the chemoselective peptide bond formation at the α-amino group, β-hydroxy group, or α-carboxylic acid of the common intermediate was possible to afford the corresponding dipeptide, tripeptide, or didepsipeptide intermediate in 46~77% yields (in three-to-four steps) due to the orthogonal protective groups on the chiral intermediate.
      PubDate: 2022-08-13
       
  • The post-translational modification of Fascin: impact on cell biology and
           its associations with inhibiting tumor metastasis

    • Free pre-print version: Loading...

      Abstract: Abstract The post-translational modifications (PTMs), which are crucial in the regulation of protein functions, have great potential as biomarkers of cancer status. Fascin (Fascin actin-bundling protein 1, FSCN1), a key protein in the formation of filopodia that is structurally based on actin filaments (F-actin), is significantly associated with tumor invasion and metastasis. Studies have revealed various regulatory mechanisms of human Fascin, including PTMs. Although a number of Fascin PTM sites have been identified, their exact functions and clinical significance are much less explored. This review explores studies on the functions of Fascin and briefly discusses the regulatory mechanisms of Fascin. Next, to review the role of Fascin PTMs in cell biology and their associations with metastatic disease, we discuss the advances in the characterization of Fascin PTMs, including phosphorylation, ubiquitination, sumoylation, and acetylation, and the main regulatory mechanisms are discussed. Fascin PTMs may be potential targets for therapy for metastatic disease.
      PubDate: 2022-08-08
       
  • Methylmalonic acid induces inflammatory response and redox homeostasis
           disruption in C6 astroglial cells: potential glioprotective roles of
           melatonin and resveratrol

    • Free pre-print version: Loading...

      Abstract: Abstract Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.
      PubDate: 2022-08-04
       
  • Deciphering the conformational landscape of few selected aromatic noncoded
           amino acids (NCAAs) for applications in rational design of peptide
           therapeutics

    • Free pre-print version: Loading...

      Abstract: Abstract Amino acids are the essential building blocks of both synthetic and natural peptides, which are crucial for biological functions and also important as biological probes for mapping the complex protein–protein interactions (PPIs) in both prokaryotic and eukaryotic systems. Mapping the PPIs through the chemical biology approach provides pharmacologically relevant peptides, which can have agonistic or antagonistic effects on the targeted biological systems. It is evidenced that ≥ 60 peptide-based drugs have been approved by the US-FDA so far, and the number will improve further in the foreseeable future, as ≥ 140 peptides are currently in clinical trials. However, natural peptides often require fine-tuning of their pharmacological properties by strategically replacing the αL-amino acids of the peptides with non-coded amino acids (NCAA), for which codons are absent in the genetic code for biosynthesis of proteins, prior to their applications as therapeutics. Considering the diverse repertoire of the NCAAs, the conformational space of many NCAAs is yet to be explored systematically in the context of the rational design of therapeutic peptides. The current study deciphers the conformational landscape of a few such Cα-substituted aromatic NCAAs (Ing: 2-indanyl-l-Glycine; Bpa: 4-benzoyl-l-phenylalanine; Aic: 2-aminoindane-2-carboxylic acid) both in the context of tripeptides and model synthetic peptide sequences, using alanine (Ala) and proline (Pro) as the reference. The combined data obtained from the computational and biophysical studies indicate the general success of this approach, which can be exploited further to rationally design optimized peptide sequences of unusual architecture with potent antimicrobial, antiviral, gluco-regulatory, immunomodulatory, and anti-inflammatory activities.
      PubDate: 2022-08-01
       
  • Vanadium carbide MXene: as a reductant for the synthesis of gold
           nanoparticles and its biosensing application

    • Free pre-print version: Loading...

      Abstract: Abstract Vanadium carbide MXene (V2C) acts as a new type of two-dimensional (2D) graphene-like transition metal material that has attracted research interest. V2C has been widely used in various fields due to its excellent physical and chemical properties. Herein, the self-assembled V2C@gold nanoparticles (V2C@AuNPs) are prepared by water bath process at 80 °C. With the addition of glutathione (GSH), the absorbance (Abs.) at 550 nm of V2C@AuNPs was decreased. Therefore, an optical sensor is developed to detect GSH based on the properties of V2C@AuNPs. Under the optimal conditions, the detection range is 1–32 µM and the detection limit is 0.099 µM. Furthermore, the proposed GSH sensor exhibits high sensitivity, high selectivity, strong stability, and excellent recovery. The work will expand the application of V2C in biosensing.
      PubDate: 2022-08-01
       
  • Cystine reduces mitochondrial dysfunction in C2C12 myotubes under moderate
           oxidative stress induced by H2O2

    • Free pre-print version: Loading...

      Abstract: Abstract Moderate oxidative stress induces temporal impairment in mitochondrial ATP production. As glutathione (GSH) content is reduced to eliminate oxidative stress by oxidation–reduction reaction, intracellular GSH content is crucial for maintaining mitochondrial function under oxidative stress. GSH precursors such as N-acetyl cysteine (NAC) and cysteine are known to suppress oxidative stress based on the supply of cysteine residues being rate-limiting for GSH synthesis. However, it remains unclear whether cystine (Cys2) can suppress mitochondrial dysfunction under oxidative stress conditions. Therefore, we examined whether Cys2 could attenuate mitochondrial dysfunction under moderate oxidative stress without scavenging reactive oxygen species (ROS) in the medium. C2C12 myotubes were incubated for 120 min in a Cys2-supplemented medium and subsequently exposed to hydrogen peroxide (H2O2). Heme oxygenase-1 (HO-1) gene expression, intracellular cysteine and GSH content, intracellular ATP level, and maximal mitochondrial respiration were assessed. Cys2 treatment significantly increased GSH content in a dose-dependent manner under oxidative stress. Cys2 treatment significantly decreased HO-1 expression induced by H2O2 exposure. In addition, maximal mitochondrial respiration rate was decreased by H2O2 exposure, but improved by Cys2 treatment. In conclusion, Cys2 treatment mitigates oxidative stress-induced mitochondrial dysfunction by maintaining GSH content under moderate oxidative stress without scavenging ROS in the medium.
      PubDate: 2022-08-01
       
  • Design and modification of frog skin peptide brevinin-1GHa with enhanced
           antimicrobial activity on Gram-positive bacterial strains

    • Free pre-print version: Loading...

      Abstract: Abstract Naturally occurring frog skin peptides are one of largest sources of antimicrobial peptides that have many advantages including high potency, broad spectrum of targets and low susceptibility to multiple drug-resistance bacteria. However, they also have disadvantages such as hemolytic activity, low stability and high production costs. For these reasons, various strategies have been applied to overcome these drawbacks restricting their use in clinical trials. Previously reported brevinin-1GHa (BR-1GHa) is a 24 amino acid long antimicrobial peptide isolated from Hylarana guentheri with hemolytic activity. To enhance the antimicrobial activity of this peptide and to reduce its hemolytic activity, we designed five new temporin like analogues and examined their bioactivities. Temporins are another class of frog skin peptides without hemolytic activity and shorter than brevinins. When the antimicrobial activities of new analogues were examined against a panel of microorganisms, BR-1GHa-3, in which two alanine residues in the truncated version of BR-1GHa were replaced with leucine, exhibited significantly improved antimicrobial activity against Gram-positive bacterial strains (e.g., S. aureus ATCC 29213 and E. casseliflavus ATCC 700327) with lower hemolytic activity compared to the BR-1GHa peptide. Furthermore, BR-1GHa-4 analogue, in which Gly3 was replaced with Pro, did not show any hemolytic activity except for highest (128 µM) concentration tested and have a strong antimicrobial effect on Gram-positive bacteria (e.g., E. faecalis ATCC 51299 and B. cereus ATCC 13061).
      PubDate: 2022-07-19
       
  • N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on
           nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical
           considerations

    • Free pre-print version: Loading...

      Abstract: Abstract N-Acetyl-L-cysteine (NAC) is an endogenous cysteine metabolite. The drug is widely used in chronic obstructive pulmonary disease (COPD) and as antidote in acetaminophen (paracetamol) intoxication. Currently, the utility of NAC is investigated in rheumatoid arthritis (RA), which is generally considered associated with inflammation and oxidative stress. Besides clinical laboratory parameters, the effects of NAC are evaluated by measuring in plasma or serum nitrite, nitrate or their sum (NOx) as measures of nitric oxide (NO) synthesis. Malondialdehyde (MDA) and relatives such as 4-hydroxy-nonenal and 15(S)-8-iso-prostaglandin F2α serve as measures of oxidative stress, notably lipid peroxidation. In this work, we review recent clinico-pharmacological studies on NAC in rheumatoid arthritis. We discuss analytical, pre-analytical and clinical issues and their potential impact on the studies outcome. Major issues include analytical inaccuracy due to interfering endogenous substances and artefactual formation of MDA and relatives during storage in long-term studies. Differences in the placebo and NAC groups at baseline with respect to these biomarkers are also a serious concern. Modern applied sciences are based on data generated using commercially available instrumental physico-chemical and immunological technologies and assays. The publication process of scientific work rarely undergoes rigorous peer review of the analytical approaches used in the study in terms of accuracy/trueness. There is pressing need of considering previously reported reference concentration ranges and intervals as well as specific critical issues such as artefactual formation of particular biomarkers during sample storage. The latter especially applies to surrogate biomarkers of oxidative stress, notably MDA and relatives. Reported data on NO, MDA and clinical parameters, including C-reactive protein, interleukins and tumour necrosis factor α, are contradictory in the literature. Furthermore, reported studies do not allow any valid conclusion about utility of NAC in RA. Administration of NAC patients with rheumatoid arthritis is not recommended in current European and American guidelines.
      PubDate: 2022-07-13
      DOI: 10.1007/s00726-022-03185-x
       
  • Molecular species of oxidized phospholipids in brain differentiate between
           learning- and memory impaired and unimpaired aged rats

    • Free pre-print version: Loading...

      Abstract: Abstract Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
      PubDate: 2022-07-11
      DOI: 10.1007/s00726-022-03183-z
       
  • Large-scale analysis of circulating glutamate and adipose gene expression
           in relation to abdominal obesity

    • Free pre-print version: Loading...

      Abstract: Abstract Circulating levels of the amino acid glutamate are associated with central fat accumulation, yet the pathophysiology of this relationship remains unknown. We aimed to (i) refine and validate the association between circulating glutamate and abdominal obesity in a large twin cohort, and (ii) investigate whether transcriptomic profiles in adipose tissue could provide insight into the biological mechanisms underlying the association. First, in a cohort of 4665 individuals from the TwinsUK resource, we identified individuals with abdominal obesity and compared prevalence of the latter across circulating glutamate quintiles. Second, we used transcriptomic signatures generated from adipose tissue, both subcutaneous and visceral, to investigate associations with circulating glutamate levels. Individuals in the top circulating glutamate quintile had a sevenfold higher prevalence of abdominal obesity compared to those in the bottom quintile. The adipose tissue transcriptomic analyses identified GLUL, encoding Glutamate-Ammonia Ligase, as being associated with circulating glutamate and abdominal obesity, with pronounced signatures in the visceral depot. In conclusion, circulating glutamate is positively associated with the prevalence of abdominal obesity which relates to dysregulated GLUL expression specifically in visceral adipose tissue.
      PubDate: 2022-07-09
      DOI: 10.1007/s00726-022-03181-1
       
  • GABAergic circuits of the basolateral amygdala and generation of anxiety
           after traumatic brain injury

    • Free pre-print version: Loading...

      Abstract: Abstract Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10–15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
      PubDate: 2022-07-07
      DOI: 10.1007/s00726-022-03184-y
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 18.204.56.97
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-