Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: The original article has been corrected. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose The aim was to investigate the cross-sectional association of dietary omega-3 polyunsaturated fatty acids PUFA (alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) intake with multiple physical functions, muscle mass and fat mass in older women. Method Study subjects were 554 women from the Osteoporosis Risk Factor and Prevention Fracture Prevention Study, with dietary intake assessed with 3-day food record. Body composition was measured by dual-energy X-ray absorptiometry. Physical function measures included walking speed 10 m, chair rises, one leg stance, knee extension, handgrip strength and squat. Short physical performance battery (SPPB) score was defined based on the European working group on sarcopenia criteria. Results The multivariable adjusted models showed statistically significant associations for dietary ALA with higher SPPB (β = 0.118, P = 0.024), knee extension force at baseline (β = 0.075, P = 0.037) and lower fat mass (β = − 0.081, P = 0.034), as well as longer one-leg stance (β = 0.119, P = 0.010), higher walking speed (β = 0.113, P = 0.047), and ability to squat to the ground (β = 0.110, P = 0.027) at baseline. Total dietary omega-3 PUFA was associated with better SPPB (β = 0.108, P = 0.039), one-leg stance (β = 0.102, P = 0.041) and ability to squat (β = 0.110, P = 0.028), and with walking speed (β = 0.110, P = 0.028). However, associations for dietary EPA and DHA with physical function and body composition were not significant. Conclusion Dietary omega-3 and ALA, but not EPA and DHA, were positively associated with muscle strength and function in older women. The intake of omega-3 and its subtypes was not associated with muscle mass. Longitudinal studies are needed to show whether omega-3 intake may be important for muscle function in older women. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Obesity is a major risk factor for various metabolic diseases, including metabolic syndrome and type-2 diabetes. Glucose transporter 1 (GLUT1) impairment has been proposed as a mechanism of fat accumulation and glucose tolerance. Our aims were to determine the role of intestinal epithelial glut1 activity in obesity and the mechanism of anti-obesity effect of Lactobacillus casei Zhang (LCZ) intervention in the absence of gut villi-specific glut1 expression. Methods This study compared the body weight, intestinal microbiota perturbations, fat mass accumulation, and glucose tolerance (by oral glucose tolerance test) between high-fat diet fed villi-specific glut1 knockout (KO) mice and control mice (glut1 flox/flox) with/without LCZ intervention. The intestinal microbiota was evaluated by metagenomic sequencing. Results Our results showed that villi-specific glut1 KO mice had more fat deposition at the premetaphase stage, impaired glucose tolerance, and obvious alterations in gut microbiota compared to control mice. Probiotic administration significantly lowered the body weight, the weights of mesenteric and perirenal white adipose tissues (WAT), and mediated gut microbiota modulation in both types of KO and control mice. The species Barnesiella intestinihominis and Faecalibaculum rodentium might contribute to fasting fat mass accumulation associated with gut-specific glut1 inactivation, while the probiotic-mediated anti-obesity effect was linked to members of the Bacteroides genera, Odoribacter genera and Alistipes finegoldii. Conclusion Our study demonstrated that abrogating gut epithelial GLUT1 activity affected the gut microbiota, fat mass accumulation, and glucose tolerance; and LCZ administration reduced fat mass accumulation and central obesity. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Pomegranate peels are rich in anthocyanins. The present study aimed to explore the beneficial effects of pomegranate peel anthocyanins (PPA) on obesity and gut microbiota in mice with high-fat diet (HFD)-induced obesity. Methods Specific pathogen-free (SPF) male C57BL/6 J mice were randomly divided into three groups and fed with low-fat diet (LFD, 10% fat energy), HFD (45% fat energy), or HFD supplemented with PPA by intragastric administration for 15 weeks. Body weight and food intake were monitored weekly. The obesity-related biochemical indexes and hepatic gene expression levels were determined. The compositions of the gut microbiota were analyzed by 16S rRNA sequencing, and the association between the gut microbiota and obesity-related indicators was investigated by Spearman correlation analysis. Results The results showed that the body weight gain, steatosis scores and insulin resistance index in the PPA group decreased by 27.46%, 56.25%, and 46.07%, respectively, compared to the HFD group. Gene expression analysis indicated that PPA supplement improved the genes expression profiles involved in glucose and lipid metabolism compared with the mice fed HFD alone. Meanwhile, PPA significantly changed the composition of the gut microbiota, which were closely correlated with the obesity-related biomarkers. Conclusion This study suggested that PPA could be a beneficial treatment option for alleviating HFD-induced obesity and related metabolic disorders by targeting microbiota and lipid metabolism. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose In the Netherlands, margarines and other plant-based fats (fortified fats) are encouraged to be fortified with vitamin A and D, by a covenant between the Ministry of Health and food manufacturers. Frequently, these types of fats are also voluntarily fortified with other micronutrients. The current study investigated the contribution of both encouraged as well as voluntary fortification of fortified fats on the micronutrient intakes in the Netherlands. Methods Data of the Dutch National Food Consumption Survey (2012–2016; N = 4, 314; 1–79 year.) and the Dutch Food Composition Database (NEVO version 2016) were used to estimate micronutrient intakes. Statistical Program to Assess Dietary Exposure (SPADE) was used to calculate habitual intakes and compared to dietary reference values, separate for users and non-users of fortified fats. Results Of the Dutch population, 84% could be considered as user of fortified fats. Users consumed mostly 1 fortified fat a day, and these fats contributed especially to the total micronutrient intake of the encouraged fortified micronutrients (vitamins D and A; 44% and 29%, respectively). The voluntary fortification also contributed to total micronutrient intakes: between 7 and 32%. Vitamin D and A intakes were up to almost double among users compared to non-users. Intakes were higher among users for almost all micronutrients voluntarily added to fats. Higher habitual intakes resulted into higher risks of excessive vitamin A-intakes among boys and adult women users. Conclusion Consumption of fortified fats in the Netherlands resulted into higher vitamin A and D-intakes among users, compared to non-users of these products. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose To investigate intake levels of nutrients linked to non-communicable diseases in Australia using the novel combination of food processing and nutrient profiling metrics of the PAHO Nutrient Profile Model. Methods Dietary intakes of 12,153 participants from the Australian Health Survey (2011–12) aged 2 + years were evaluated. Food items reported during a 24 h recall were classified using the NOVA system. The Pan-American Health Organization Nutrient Profile Model (PAHO NPM) was applied to identify processed and ultra-processed products with excessive content of critical nutrients. Differences in mean intakes and prevalence of excessive intakes of critical nutrients for groups of the population whose diets were made up of products with and without excessive content in critical nutrients were examined. Results The majority of Australians consumed daily at least three processed and ultra-processed products identified as excessive in critical nutrients according to the PAHO NPM. Individuals consuming these products had higher intakes of free sugars (β = 8.9), total fats (β = 11.0), saturated fats (β = 4.6), trans fats (β = 0.2), and sodium (β = 1788 for adolescents and adults; β = 1769 for children 5–10 years; β = 1319 for children aged < 5 years) (p ≤ 0.001 for all nutrients) than individuals not consuming these foods. The prevalence of excessive intake of all critical nutrients also followed the same trend. Conclusion The PAHO NPM has shown to be a relevant tool to predict intake levels of nutrients linked to non-communicable diseases in Australia and, therefore, could be used to inform policy actions aimed at increasing the healthiness of food environments. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Background The postprandial regulation of angiopoietin-like proteins (Angptls) and their expression in adipocytes is poorly characterized. Objective Circulating Angptl3 and 4 were analyzed in healthy individuals undergoing either an oral lipid tolerance test (OLTT; n = 98) or an oral glucose tolerance test (OGTT; n = 99). Venous blood was drawn after 0, 2, 4, and 6 h during OLTT and after 0, 1, and 2 h during OGTT. Anthropometric and laboratory parameters were assessed and concentrations of Angptls were quantified by enzyme-linked immunosorbent assay. Angptl gene expression in 3T3-L1 adipocytes and in murine adipose tissues and cellular fractions was analyzed by quantitative real-time PCR. Results Angptl3 concentrations significantly decreased while Angptl4 levels continuously increased during OLTT. Both proteins remained unaffected during OGTT. Angptl3 and Angptl4 were expressed in murine subcutaneous and visceral AT with higher mRNA levels in mature adipocytes when compared to the stroma-vascular cell fraction. Both proteins were strongly induced during 3T3-L1 adipocyte differentiation and they were unresponsive to glucose in mature fat cells. Adipocyte Angptl3 (but not Angptl4) mRNA expression was inhibited by the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid, whereas nine types of dietary fatty acids remained without any effect. Conclusions There is evidence of short-time regulation of Angptl3/4 levels upon metabolic stress. Angptl4 expression is high and Angptl3 expression is low in AT and restricted mainly to mature adipocytes without any differences concerning fat compartments. Whereas dietary fatty acids and glucose are without any effect, omega-3/-6-polyunsaturated fatty acids inhibited Anptl3 expression in adipocytes. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B. Methods The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography—mass spectrometry (GC–MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells. Results We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity. Conclusion Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose The present study investigated whether maternal curcumin supplementation might protect against intra-uterine growth retardation (IUGR) induced intestinal damage and modulate gut microbiota in male mice offspring. Methods In total, 36 C57BL/6 mice (24 females and 12 males, 6–8 weeks old) were randomly divided into three groups based on the diet before and throughout pregnancy and lactation: (1) normal protein (19%), (2) low protein (8%), and (3) low protein (8%) + 600 mg kg−1 curcumin. Offspring were administered a control diet until postnatal day 35. Results Maternal curcumin supplementation could normalize the maternal protein deficiency-induced decrease in jejunal SOD activity (NP = 200.40 ± 10.58 U/mg protein; LP = 153.30 ± 5.51 U/mg protein; LPC = 185.40 ± 9.52 U/mg protein; P < 0.05) and T-AOC content (NP = 138.90 ± 17.51 U/mg protein; LP = 84.53 ± 5.42 U/mg protein; LPC = 99.73 ± 12.88 U/mg protein; P < 0.05) in the mice offspring. Maternal curcumin supplementation increased the maternal low protein diet-induced decline in the ratio of villus height-to-crypt depth (NP = 2.23 ± 0.19; LP = 1.90 ± 0.06; LPC = 2.56 ± 0.20; P < 0.05), the number of goblet cells (NP = 12.72 ± 1.16; LP = 7.04 ± 0.53; LPC = 13.10 ± 1.17; P < 0.05), and the ratio of PCNA-positive cells (NP = 13.59 ± 1.13%; LP = 2.42 ± 0.74%; LPC = 6.90 ± 0.96%; P < 0.05). It also reversed the maternal protein deficiency-induced increase of the body weight (NP = 13.00 ± 0.48 g; LP = 16.49 ± 0.75 g; LPC = 10.65 ± 1.12 g; P < 0.05), the serum glucose levels (NP = 5.32 ± 0.28 mmol/L; LP = 6.82 ± 0.33 mmol/L; LPC = 4.69 ± 0.35 mmol/L; P < 0.05), and the jejunal apoptotic index (NP = 6.50 ± 1.58%; LP = 10.65 ± 0.75%; LPC = 5.24 ± 0.71%; P < 0.05). Additionally, maternal curcumin supplementation enhanced the gene expression level of Nrf2 (NP = 1.00 ± 0.12; LP = 0.73 ± 0.10; LPC = 1.34 ± 0.12; P < 0.05), Sod2 (NP = 1.00 ± 0.04; LP = 0.85 ± 0.04; LPC = 1.04 ± 0.04; P < 0.05) and Ocln (NP = 1.00 ± 0.09; LP = 0.94 ± 0.10; LPC = 1.47 ± 0.09; P < 0.05) in the jejunum. Furthermore, maternal curcumin supplementation normalized the relative abundance of Lactobacillus (NP = 31.56 ± 6.19%; LP = 7.60 ± 2.33%; LPC = 17.79 ± 2.41%; P < 0.05) and Desulfovibrio (NP = 3.63 ± 0.93%; LP = 20.73 ± 3.96%; LPC = 13.96 ± 4.23%; P < 0.05), and the ratio of Firmicutes/Bacteroidota (NP = 2.84 ± 0.64; LP = 1.21 ± 0.30; LPC = 1.79 ± 0.15; P < 0.05). Moreover, Lactobacillus was positively correlated with the SOD activity, and it was negatively correlated with Il − 1β expression (P < 0.05). Desulfovibrio was negatively correlated with the SOD activity and the jejunal expression of Sod1, Bcl − 2, Card11, and Zo − 1 (P < 0.05). Conclusions Maternal curcumin supplementation could improve intestinal integrity, oxidative status, and gut microbiota in male mice offspring with IUGR. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose To investigate whether the effects of dietary folic acid supplementation on body weight gain are mediated by gut microbiota in obesity. Methods Male C57 BL/6J conventional (CV) and germ-free (GF) mice both aged three to four weeks were fed a high-fat diet (HD), folic acid-deficient HD (FD-HD), folic acid-supplement HD (FS-HD) and a normal-fat diet (ND) for 25 weeks. Faecal microbiota were analyzed by 16S rRNA high-throughput sequencing, and the mRNA expression of genes was determined by the real-time RT-PCR. Short-chain fatty acids (SCFAs) in faeces and plasma were measured using gas chromatography–mass spectrometry. Results In CV mice, HD-induced body weight gain was inhibited by FS-HD, accompanied by declined energy intake, smaller white adipocyte size, and less whitening of brown adipose tissue. Meanwhile, the HD-induced disturbance in the expression of fat and energy metabolism-associated genes (Fas, Atgl, Hsl, Ppar-α, adiponectin, resistin, Ucp2, etc.) in epididymal fat was diminished, and the dysbiosis in faecal microbiota was lessened, by FS-HD. However, in GF mice with HD feeding, dietary folic acid supplementation had almost no effect on body weight gain and the expression of fat- and energy-associated genes. Faecal or plasma SCFA concentrations in CV and GF mice were not altered by either FD-HD or FS-HD feeding. Conclusion Dietary folic acid supplementation differently affected body weight gain and associated genes’ expression under HD feeding between CV and GF mice, suggesting that gut bacteria might partially share the responsibility for beneficial effects of dietary folate on obesity. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Intrauterine exposures influence offspring health and development. Here we investigated maternal intake of sweetened carbonated beverages (SCB) during pregnancy and its association with ADHD symptoms in the offspring. Methods This study was based on the Norwegian Mother, Father and Child Cohort Study (MoBa) and the Medical Birth Registry of Norway. Maternal diet mid-pregnancy was assessed using a food frequency questionnaire (FFQ). All mothers who responded to the FFQ and a questionnaire when their child was 8 years of age were included (n = 39,870). The exposure was defined as maternal intake (daily servings) of SCB, using no daily intake as reference. Outcome was offspring ADHD symptoms, evaluated as a continuous standardized ADHD score and as a binary outcome of six or more ADHD symptoms vs. five symptoms or less. Associations were analysed using log-binomial regression and linear mixed regression models with adjustment for covariates. Results The adjusted regression coefficients for the standardized ADHD offspring symptom score were 0.31 [95% confidence intervals (0.001, 0.62)] and 0.46 (0.15, 0.77) for maternal daily intake of ≥ 1 glasses of SCB, when the models included adjustments for total energy intake or energy intake from other sources than SCBs and sweet drinks, respectively. The corresponding adjusted relative risks were 1.16 (1.004, 1.34) and 1.21. (1.05, 1.39) for drinking ≥ 1 glasses daily. Conclusion In a large pregnancy cohort with offspring followed until 8 years of age, we found an association between maternal daily intake of SCB and offspring ADHD symptoms. These results suggest a weak positive relationship between prenatal exposure to SCB and offspring ADHD. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. Methods 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother’s blood and cord blood were established. Results During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. Conclusions These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose It has been estimated that most vegans meet the total protein requirements, but whether this is also true for individual essential amino acids (AAs) is unclear. Furthermore, a shift in protein intake is suggested to alter microbiota composition, but this association is unknown in terms of veganism or individual AAs. This cross-sectional study compared vegans and omnivores regarding dietary intake and plasma concentration of AAs. The prevalence of insufficient intake of essential AAs among vegans was determined using estimated average requirements (EAR) of WHO. Moreover, correlations between AAs intake and gut microbiota were investigated. Methods Data of 36 vegans and 36 omnivores (30–60 years) were analysed. AA intake, AA plasma concentrations and gut microbiota were ascertained by three-day weighed food protocols, gas/liquid chromatography-tandem mass spectrometry and 16S rRNA sequencing, respectively. Results At almost the same energy intake, the intake of 9 AAs in vegans was significantly lower than in omnivores, with median differences of − 27.0% to − 51.9%. However, only one female vegan showed total protein and lysine intake below the EAR. Vegans showed lower lysine (− 25.0%), but higher glycine (+ 25.4%) and glutamate (+ 13.1%) plasma concentrations than omnivores. Correlation patterns between AA intake and bacterial microbiota differed between vegans and omnivores. In vegans 19 species and in omnivores 5 species showed correlations with AA intake. Conclusion Vegans consumed apparently sufficient but lower AAs than omnivores. In addition, the different AAs intake seems to influence the microbiota composition. The use of short-term dietary data without considering usual intake limits these findings. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose To evaluate bioavailability of omega-3 long-chain polyunsaturated fatty acids (LCPUFA) from foods enriched with novel vegetable-based encapsulated algal oil across Australian and Singaporean populations. Methods 27 men (n = 12 Australian European; n = 15 Singaporean Chinese), 21–50 yr; 18–27.5 kg/m2, with low habitual intake of omega-3 LCPUFA completed a multicentre randomised controlled acute 3-way cross-over single-blind trial. They consumed, in random order 1-week apart after an overnight fast, standard breakfast meals including 400 mg docosahexanoic acid (DHA) from either extruded rice snacks or soup both containing cauliflower-encapsulated HiDHA® algal oil or gel capsules containing HiDHA® algal oil. Blood samples for analysis of plasma DHA and eicosapentaenoic acid (EPA) were taken pre-meal and after 2, 4, 6, 8 and 24 h. Primary analyses comparing 24-h incremental area under the plasma DHA, EPA and DHA + EPA concentration (µg/ml) curves (iAUC0-24 h) between test foods were performed using linear mixed models by including ethnicity as an interaction term. Results Plasma iAUC0-24 h did not differ significantly between test foods (adjusted mean [95% CI] plasma DHA + EPA: extruded rice snack, 8391 [5550, 11233] µg/mL*hour; soup, 8862 [6021, 11704] µg/mL*hour; capsules, 11,068 [8226, 13910] µg/mL*hour, P = 0.31) and did not differ significantly between Australian European and Singaporean Chinese (treatment*ethnicity interaction, P = 0.43). Conclusion The vegetable-based omega-3 LCPUFA delivery system did not affect bioavailability of omega-3 LCPUFA in healthy young Australian and Singaporean men as assessed after a single meal over 24 h, nor was bioavailability affected by ethnicity. This novel delivery system may be an effective way to fortify foods/beverages with omega-3 LCPUFA. Trial registration The trial was registered with clinicaltrials.gov (NCT04610983), date of registration, 22 November 2020. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Probiotic species of butyrate producers have been investigated for the potential in preventing and treating obesity and overweight. However, Clostridium cochlearium has not been linked with any health benefits. We hypothesized that C. cochlearium could be a promising new probiotic with health benefits in improving body weight control and insulin sensitivity. Methods Productions of short-chain fatty acids (SCFAs) were characterized for C. cochlearium by NMR and GC–MS analyses. Probiotic effects of C. cochlearium were evaluated through diet-induced obese (DIO) C57BL/6 mice. The influence of C. cochlearium administration on gut SCFAs was measured using GC–MS. LC–MS-based untargeted metabolomic profiling and multivariate analysis were used to assess the serum metabolic alteration, identify biomarkers and pathways in response to the C. cochlearium administration. Results After 17 weeks of diet intervention, body weight gain of CC group (fed with a high-fat diet supplemented with C. cochlearium) showed a 21.86% reduction from the high-fat diet (HF) control group (P < 0.001), which was specifically reflected on the significantly lowered fat mass (CC vs HF, 17.19 g vs 22.86 g, P < 0.0001) and fat percentage (CC vs HF, 41.25% vs 47.10%, P < 0.0001), and increased lean percentage (CC vs HF, 46.63% vs 43.72%, P < 0.05). C. cochlearium administration significantly reduced fasting blood glucose from week 8 (P < 0.05 or 0.01), and eventually improved insulin sensitivity (HOMA-IR, CC vs HF, 63.77 vs 143.13, P < 0.05). Overall lowered levels of SCFAs were observed in the gut content of CC group. Metabolomic analysis enabled the identification of 53 discriminatory metabolites and 24 altered pathways between CC and HF groups. In particularly, most of the pathway-matched metabolites showed positive correlations with body weight, which included glutamate, phenylalanine, ornithine, PCs, LPCs, AcCas, proline, 5,6-dihydrouracil, pyroglutamic acid, and 1-pyrroline-4-hydroxy-2-carboxylate. Conclusions The beneficial effects of C. cochlearium could be related to its ability to restore certain obesity-driven biomarkers and pathways, especially downregulating pathways related to specific amino acids, PCs, LPCs and AcCas. Further research is warranted to investigate related metabolites and metabolic pathways. C. cochlearium may be developed as a promising new probiotic for the prevention or alleviation of obesity and diabetes in human. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose Few studies have examined the variety in fruit and vegetable (FV) intake with cognitive impairment in older adults. This study examined the associations of variety in fruit, vegetable and combined FV with 4-year incident cognitive impairment in Chinese community-dwelling older adults. Methods Data was derived from a cohort study among Chinese community-dwelling older adults aged ≥ 65 years in Hong Kong. At baseline, a validated food frequency questionnaire was used to assess variety in fruit, vegetable and combined FV. Cognitive impairment was defined as a Community Screening Instrument of Dementia score of < 29.5 points and/or Mini-Mental State Examination score of < 27 points. Adjusted multiple logistic regression was performed to examine the associations. Results are presented as odds ratio (OR) and 95% confidence interval (CI). Results Of the 1518 participants [median age: 70 years (IQR 68–74), 32.7% women] included at baseline, 300 men and 111 women were newly identified as cognitively impaired at the 4-year follow-up. In men, higher variety in vegetable (adjusted OR: 0.97, 95% CI 0.95–0.99, p = 0.029) and combined FV (adjusted OR: 0.98, 95% CI 0.96–0.98, p = 0.039) were significantly associated with a lower risk of cognitive impairment. Fruit variety was not associated with cognitive impairment. In women, there were no associations between variety in fruit, vegetable and combined FV with cognitive impairment in the adjusted model. Conclusion Independent of FV quantity, higher variety in vegetable and combined FV were associated with lower risk of cognitive impairment in Chinese community-dwelling older adults, and these associations were only observed in men. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.
Abstract: Purpose While consumer demand for meat substitutes is growing, their varied composition raises questions regarding their nutritional value. We aimed to identify and characterize the optimal composition of a meat substitute that would best improve diet quality after complete meat replacement. Methods From an average individual representing the dietary intake of French adults (INCA3, n = 1125), meat was replaced with an equivalent amount of a mostly pulse-based substitute, whose composition was based on a list of 159 possible plant ingredients and optimized non-linearly to maximize diet quality assessed with the PANDiet score (considering adequacy for 32 nutrients), while taking account of technological constraints and applying nutritional constraints to limit the risk of overt deficiency in 12 key nutrients. Results The optimized meat substitute contained 13 minimally processed ingredients. When used to substitute meat, the PANDiet score increased by 5.7 points above its initial value before substitution (versus − 3.1 to + 1.5 points when using other substitutes on the market), mainly because of higher intakes of nutrients that are currently insufficiently consumed (e.g., alpha-linolenic acid, fiber, linoleic acid) and a lower SFA intake. The meat substitute also mostly compensated for the lower provision of some indispensable nutrients to which meat greatly contributed (e.g., vitamin B6, potassium, bioavailable iron), but it could not compensate for bioavailable zinc and vitamin B12. Conclusion Choosing the correct ingredients can result in a nutritionally highly effective meat substitute that could compensate for reductions in many nutrients supplied by meat while providing key nutrients that are currently insufficiently consumed. PubDate: 2022-06-01
Please help us test our new pre-print finding feature by giving the pre-print link a rating. A 5 star rating indicates the linked pre-print has the exact same content as the published article.