A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  Subjects -> NUTRITION AND DIETETICS (Total: 201 journals)
We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Similar Journals
Journal Cover
Plant Foods for Human Nutrition
Journal Prestige (SJR): 0.898
Citation Impact (citeScore): 3
Number of Followers: 5  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 0921-9668 - ISSN (Online) 1573-9104
Published by Springer-Verlag Homepage  [2467 journals]
  • Ferocactus herrerae Fruits: Nutritional Significance, Phytochemical
           Profiling, and Biological Potentials

    • Free pre-print version: Loading...

      Abstract: Abstract The current study reports for the first time the nutritional, fruit volatiles, phytochemical, and biological characteristics of Ferocactus herrerae J. G. Ortega fruits. The nutritional analysis revealed that carbohydrate (20.6%) was the most abundant nutrient followed by dietary fibers (11.8%), lipids (0.9%), and proteins (0.8%). It was rich in vitamins, minerals, essential, and non-essential amino acids. Gas chromatography-mass spectrometry (GC-MS) analysis of the headspace-extracted volatiles showed that 3-methyl octadecane (35.72 ± 2.38%) was the major constituent detected. Spectrophotometric determination of total phenolic and flavonoid contents of the fruit methanolic extract (ME) showed high total phenolic [9.17 ± 0.87 mg/g gallic acid equivalent (GAE)] and flavonoid [4.99 ± 0.23 mg/g quercetin equivalent (QE)] contents. The ME was analyzed using high-performance liquid chromatography with ultraviolet (HPLC-UV), which allowed for both qualitative and quantitative estimation of 16 phenolic compounds. Caffeic acid was the major phenolic acid identified [45.03 ± 0.45 mg/100 g dried powdered fruits (DW)] while quercitrin (52.65 ± 0.31 mg/100 g DW), was the major flavonoid detected. In-vitro assessment of the antioxidant capacities of the ME revealed pronounced activity using three comparative methods; 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (132.06 ± 2.1 μM Trolox equivalent (TE) /g), 2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), (241.1 ± 5.03 uM TE/g), and ferric reducing antioxidant power (FRAP) (258.9 ± 1.75 uM TE/g). Besides, remarkable anti-inflammatory [COX-1 (IC50 = 20.2 ± 1.1 μg/mL) and COX-2 (IC50 = 9.8 ± 0.64 μg/mL)] and acetylcholinesterase inhibitory (IC50 = 1.01 ± 0.39 mg/mL) activities were observed. Finally, our results revealed that these fruits could be used effectively as functional foods and nutraceuticals suggesting an increase in their propagation.
      PubDate: 2022-12-01
       
  • Wheat-Free and Nutritious Bread and ‘Coricos’ Made with Mesoamerican
           Ancestral Corn, Amaranth, Sweet Potato and Chia

    • Free pre-print version: Loading...

      Abstract: Abstract People with wheat-related disorders require wheat-free and good quality baked goods. We prepared wheat-free bread and cookies (coricos) with flour blends of corn, amaranth, orange sweet potato and chia. Sweet potato flour or puree and amaranth flour were prepared and their properties evaluated. Blends were optimized for dough hardness and cohesiveness by response surface methodology, with a central composite rotatory design. Bread was prepared with optimal blends plus 1.2% chia mucilage, and alternatively used sweet potato puree. The optimized blend was 57:34:9 (corn:amaranth:sweet potato flours). Coricos were made with the blend instead of only corn as traditionally. Chemical composition, texture profile, fiber, and gluten content of the products were analyzed. The breads’ crust was uniform, crunchy and golden, and the crumb was homogeneous, with 41% specific volume and 60% size of the wheat bread. Coricos presented a darker golden color than those of 100% corn. Protein content was similar (~ 12% d.w.) between the blend and wheat breads, with better chemical score for the blend one. Blend bread and coricos had 2–4% more dietary fiber and higher content of bioactive compounds than their wheat or corn counterparts. Blend bread was comparable to its counterpart in chewiness while coricos were softer. Gluten content was < 20 ppm in blend products; therefore, in addition to nutritional quality, they are safe for people with wheat-related disorders.
      PubDate: 2022-12-01
       
  • Effect of Raw and Roasted Phoenix dactylifera L. Seed Polyphenols Extracts
           on Suppression of Angiogenesis in Endothelial Cells

    • Free pre-print version: Loading...

      Abstract: Abstract Date seed is a by-product of Phoenix dactylifera L. fruit which is well recognized for its polyphenols content and numerous health-beneficial effects. Due to the increasing interest in natural phytochemicals with antioxidant activities, the present study aimed to extract polyphenols from both raw and roasted date seeds and investigate the anti-angiogenic effect of these two extracts (raw and roasted date seed polyphenols extracts (DSPE) at 25 and 50 µg/mL) using human microvascular endothelial cells (HMVEC). Our results showed that both raw and roasted DSPE suppressed some angiogenesis features in a dose-dependent manner including cell proliferation, migration, and capillary-like structure formation, of which raw DSPE was more potent inhibitor than roasted DSPE. Reduction in reactive oxygen species, as well as enhancement of superoxide dismutase activity occurred using both raw and roasted date seed polyphenols extracts. However, no changes were observed in advanced oxidation protein products versus control. Taken together, our data indicated that raw and roasted DSPE possess antioxidant activity, which suggested their potential use as a source of polyphenols with anti-angiogenic properties. Nevertheless, further studies are required to explore the underlying mechanisms responsible for their anti-angiogenic activities.
      PubDate: 2022-12-01
       
  • Quercetin, Engelitin and Caffeic Acid of Smilax china L. Polyphenols,
           Stimulate 3T3-L1 Adipocytes to Brown-like Adipocytes Via β3-AR/AMPK
           Signaling Pathway

    • Free pre-print version: Loading...

      Abstract: Abstract The aim of the present study was to investigate the browning effects mechanism of Smilax china L. polyphenols (SCLP) and its monomer. In this study, polyphenols (SCLP, engeletin, quercetin and caffeic acid) markedly suppressed lipid accumulation. Polyphenols significantly up-graded the expression of protein kinase A (PKA), adipose triglyceride lipase (ATGL), peroxisome proliferators-activated receptors alpha (PPARα), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) to promote lipolysis and β-oxidation. Moreover, polyphenols greatly enhanced mitochondrial biogenesis in adipocytes, as demonstrated by the expression of Nrf1 and Tfam were up-regulated. Furthermore, polyphenols treatment greatly up-regulated the browning program in adipocytes by increased brown-specific genes and proteins uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and PR domain containing 16 (PRDM16), as well as beige-specific genes (Tmem26, Tbx1, CD137, Cited1), especially engeletin. Further research found that the brown-specific markers were decreased by antagonist treatment of AMPK or β3-AR, but polyphenols treatment reversed the effect of antagonists and improved the expression of UCP-1, PRDM16 and PGC-1α. In conclusion, these results indicated that polyphenols stimulate browning in adipocytes via activation of the β3-AR/AMPK signaling pathway, and SCLP and its monomer may be worth investigating to prevent obesity.
      PubDate: 2022-12-01
       
  • Simulated Digestion of the Pigmented Legumes’ (Black Chickpea (Cicer
           arietinum L.) and Brown Lentil (Lens culinaris Medikus) Phenolics to
           Estimate Their Bioavailability

    • Free pre-print version: Loading...

      Abstract: Abstract This study simulated the gastrointestinal digestion (GID) of black chickpeas (BC) and brown lentils (BL). BC phenolics increased from 105.01 to 141.86 mg GAE/100 g DW) while the BL phenolics decreased from 143.26 to 132.70 mg GAE/100 g DW after cooking. In contrast, the remaining flavonoids after cooking were higher in BL (325.55 mg RE/100 g DW). After in vitro GID, moderate levels of flavonoids were detected in the colon (OUT) fractions (144.36 and 104.22 mg RE/100 g DW for cooked BC and BL, respectively). The highest TAA levels were detected as by CUPRAC assay, in cooked and in vitro GID BC (517.03 mg TEAC/100 g DW) and BL (604.98 mg TEAC/100 g DW) samples. Catechin was the most abundant compound detected in BC samples, while gallic acid was the most abundant in BL. BC and BL have unique and superior benefits for health when compared with conventional legumes. The possible interactions between their remaining phenolics and other bioactive components in the colon are promising for their widespread consumption.
      PubDate: 2022-12-01
       
  • Insight into Isolation and Characterization of Phenolic Compounds from
           Hawthorn (Crataegus pinnatifida Bge.) with Antioxidant,
           Anti-Acetylcholinesterase, and Neuroprotective Activities

    • Free pre-print version: Loading...

      Abstract: Abstract Recent epidemiologic studies have demonstrated a link between the consumption of daily functional fruits rich in phenols and the prevention of disease for neurodegenerative disorders. Hawthorn products are derived from the functional fruit hawthorn, which is rich in phenols and has been used around the world for centuries. In order to explore the phenolic components in hawthorn, the investigation of the ethanol extract led to the separation of five new phenol compounds (1a/1b, 2–4), including one pair of enantiomers (1a/1b), along with seven disclosed analogs (5–11). Their structures were elucidated based on extensive spectroscopic analyses and electronic circular dichroism (ECD). The compounds (1–11) were tested for antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS), and ferric reducing antioxidant power (FRAP) methods. Apart from that, monomeric compounds 2, 4, and 6 exhibited more potent protective capabilities against H2O2 (hydrogen peroxide)-induced SH-SY5Y cells. Meanwhile, electronic analyses were performed using the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) to analyze compounds 2, 4, and 6. Furthermore, compounds (1–11) measured acetylcholinesterase (AChE) inhibitory activities, and 2, 4, and 6 possessed greater AChE inhibitory activity than donepezil. At the same time, molecular docking was used to investigate the possible mechanism of the interaction between active compounds (2, 4, and 6) and AChE.
      PubDate: 2022-12-01
       
  • Daily Intake of Smallanthus sonchifolius (Yacon) Roots Reduces the
           

    • Free pre-print version: Loading...

      Abstract: Abstract High-fructose diet is associated with an increased risk of dyslipidemia, metabolic syndrome, and the development of non-alcoholic fatty liver disease (NAFLD) through chronic inflammation. The present study aimed to elucidate the potential benefit of daily consumption of Smallanthus sonchifolius (yacon) roots, rich in fructooligosaccharides (FOS), on the progression to liver fibrosis, in a rat model of NAFLD induced by a high-fructose diet. Male Wistar rats were fed a standard diet (CD, n = 6) or a standard diet plus 10% fructose solution (FD; n = 18). After 20 weeks, FD rats were randomly separated into the following groups (n = 6, each): FD; FD treated with yacon flour (340 mg FOS/body weight; FD + Y) and FD treated with fenofibrate (30 mg/kg body weight; FD + F), for 16 weeks. Daily intake of yacon flour significantly reduced body weight gain, plasma lipid levels, transaminase activities, and improved systemic insulin response in FD rats. In the liver, yacon treatment decreased fructose-induced steatosis and inflammation, and reduced total collagen deposition (64%). Also, yacon decreased TGF-β1 mRNA expression (78%), followed by decreased nuclear localization of p-Smad2/3 in liver tissue. Yacon significantly reduced the expression of α-smooth muscle actin (α-SMA), Col1α1, and Col3α1 mRNAs (85, 44, and 47%, respectively), inhibiting the activation of resident hepatic stellate cells (HSCs). These results suggested that yacon roots have the potential to ameliorate liver damage caused by long-term consumption of a high-fructose diet, being a promising nutritional strategy in NAFLD management.
      PubDate: 2022-12-01
       
  • Baking Process Effects and Combined Cowpea Flour and Sorghum Bran on
           Functional Properties of Gluten-Free Cookies

    • Free pre-print version: Loading...

      Abstract: Abstract Gluten-related disorders, including celiac disease and non-celiac gluten sensitivity, are growing worldwide. The only treatment for both disorders is a lifelong gluten-free diet. However, gluten-free foods are generally poorer in nutrients, less healthy, and have a high cost. Sorghum and cowpea are gluten-free grains with high levels of phenolic compounds (PC) and a low cost. Their phenolic profile is structurally different; thus, the blend of both can provide synergistic/complementary health benefits to the final product. This study analyzed the effect of baking process and the blend of cowpea flour (CP) and sorghum bran (SB) on the levels of PC, resistant starch (RS), neutral detergent fiber (NDF), and antioxidant capacity (AC) of gluten-free cookies. Eleven rice or cowpea cookie formulations were made with or without white sorghum bran (WSB) or black sorghum bran (BSB). Baking increased the extractability of PC, AC, and the NDF of almost all formulations. The PC and AC were, respectively, about twice and 3–5 times higher in cookies containing BSB compared to the others. There was a minor effect of WSB on the PC and AC. Although there were losses, the retention of RS of cookies after the baking process was between 49.8 and 92.7%. Sorghum bran has excellent potential for use as a functional ingredient in healthy food production. The combined CP and SB have great potential to improve the nutritional and functional properties of gluten-free products, especially the PC, RS, and NDF contents.
      PubDate: 2022-12-01
       
  • Structural Characterization, Rheological Properties, Antioxidant and
           Anti-Inflammatory Activities of Polysaccharides from Zingiber officinale

    • Free pre-print version: Loading...

      Abstract: Abstract The structural characteristics, rheological properties, antioxidant and anti-inflammatory activities of Zingiber officinale polysaccharides (ZOP) and ZOP-1 were studied. The total soluble sugar contents of ZOP and ZOP-1 were 78.6 ± 0.6 and 79.4 ± 0.4%, respectively. Compared with ZOP, ZOP-1 had a larger molecular weight and a more uniform distribution. There were also some differences in the monosaccharide composition between ZOP and ZOP-1. The main monosaccharide of ZOP and ZOP-1 was glucose (Glc) and galactose (Gal), respectively. Ultraviolet visible spectroscopy (UV–Vis) and fourier transform infrared spectra (FT-IR) results showed that the two polysaccharides had the characteristic absorption peaks of polysaccharides and did not contain nucleic acid and protein. They had good thermal stability, trihelix structure and amorphous sheet structure. ZOP and ZOP-1 had obvious differences in microstructure. The surface of ZOP was smooth and the broken structure was compact and stable with angular shape, while the surface of ZOP-1 was uneven with spiral accumulation and not closely arranged. Moreover, ZOP and ZOP-1 were polysaccharides molecular polymers which were entangled by van der waals' force (VDW) between polysaccharides molecules and hydrogen bond association between sugar chains, and both contain α pyranose. At different concentrations, temperature, pH and salt ion concentrations, both ZOP and ZOP-1 had the properties of non-Newtonian fluids, showed shear dilution phenomenon, which had the potential as a texture modifier or thickener in food or biomedicine. Compared with ZOP, ZOP-1 showed superior antioxidant and anti-inflammatory activities in vitro.
      PubDate: 2022-11-28
       
  • Characterization and Anti-Aging Activity of Polysaccharides from Akebia
           trifoliata Fruit Separated by an Aqueous Two-Phase System

    • Free pre-print version: Loading...

      Abstract: Abstract Bioactive polysaccharides have numerous pharmacological effects that are beneficial to human health. Akebia trifoliata (Thunb.) Koidz. has great development prospects as a food resource with medicinal value. The polysaccharides (ATFP) were extracted from A. trifoliata fruit by an aqueous two-phase system. ATFP-3, purified with DEAE-52 and Sephadex G-200 from ATFP, was mainly composed of glucose (47.55%) and galactose (20.39%). Its hydroxyl radical scavenging rate was 89.30% at 1.60 mg/mL and its IC50 was 0.29 mg/mL. ATFP-3 significantly enhanced the survival rate of Caenorhabditis elegans under thermal or oxidative stress. Furthermore, ATFP-3 could prolong the lifespan of C. elegans and improve the activities of the antioxidant enzyme, while also decrease the accumulation of lipofuscin and the level of malondialdehyde (MDA) in aging worms. Thus, ATFP-3 has application potential in health benefits for humans.
      PubDate: 2022-11-17
       
  • Cold Plasma Treatment Increases Bioactive Metabolites in Oat (Avena sativa
           L.) Sprouts and Enhances In Vitro Osteogenic Activity of their Extracts

    • Free pre-print version: Loading...

      Abstract: Abstract Cold plasma treatment has been studied to enhance the germination, growth, and bioactive phytochemical production in crops. Here, we aimed to investigate the effects of cold plasma treatment on the growth, bioactive metabolite production, and protein expression related to the physiological and osteogenic activities of oat sprouts. Oat seeds were soaked for 12 h, and then exposed to plasma for 6 min/day for 3 days after sowing. Plasma exposure did not significantly change the growth of oat sprouts; however, increased the content of bioactive metabolites. A single exposure for 6 min on the first day (T-1) increased the content of free amino acids (39.4%), γ-aminobutyric acid (53%), and avenacoside B (23%) compared to the control. Hexacosanol content was the highest in T-3 (6 min exposure on each day for 3 days), 28% higher than that in the control. Oat sprout extracts induced the phosphorylation of adenosine 5′-monophosphate-activated protein kinase and osteoblast differentiation was enhanced by increasing the alkaline phosphatase (ALP) activity; all these effects were induced by plasma treatment. Avenacoside B content was positively correlated with ALP activity (r = 0.911, p < 0.1). These results suggest that plasma treatment has the potential to improve the value of oat sprouts and that it may be used in food fortification to enhance nutritional value for promoting human health.
      PubDate: 2022-11-16
       
  • In Vitro Bioactivities of Food Grade Extracts from Yarrow (Achillea
           millefolium L.) and Stinging Nettle (Urtica dioica L.) Leaves

    • Free pre-print version: Loading...

      Abstract: Abstract Yarrow (Achillea millefolium L., AM) and nettle (Urtica dioica L., UD) are bioactive plants used commercially in functional food and supplement applications and traditionally to alleviate gastric disorders. In this work, the effects of food-grade optimized extracts of Finnish early-season AM and UD were tested on bacterial growth including potential beneficial and foodborne pathogens, as well as murine norovirus (MNV). The anti-inflammatory properties of the extracts were also tested in vitro by NF-κB reporter cells. The food-grade extraction was optimized with the response surface modelling in terms of total carotenoid, chlorophyll, and phenolic compounds contents and antioxidant capacities. The optimal food-grade extraction parameters were a 1-h extraction in 70% ethanol at 45 °C for AM, and at 49 °C for UD. There were no significant effects on the beneficial bacteria (Lacticaseibacillus and Bifidobacterium strains), and the extracts were more effective against gram-positive than gram-negative foodborne bacteria and potential pathogens. Listeria innocua was the most susceptible strain in the optimized extracts with a growth rate of 0.059 ± 0.004 for AM and 0.067 ± 0.006 for UD, p < 0.05 compared to control. The optimized extracts showed a logarithmic growth reduction of 0.67 compared to MNV. The hydroethanolic extracts were cytotoxic to both cell lines, whereas aqueous AM and UD extracts induced and reduced TLR4 signalling in a reporter cell line, respectively. The results provide novel food-grade extraction parameters and support the bioactive effects of AM and UD in functional food applications, but more research is needed to elucidate the precise biological activity in vivo for gastric health.
      PubDate: 2022-11-12
       
  • Effect of Modified Solar Dryers on Colorimetric and Physicochemical
           Properties of Pumpkin Flower (Cucurbita maxima)

    • Free pre-print version: Loading...

      Abstract: Abstract This study aimed to evaluate the solar dryers' cover material effects on the colorimetric and physicochemical properties of pumpkin flowers (Cucurbita maxima). A direct cabinet solar dryer was designed using three cover types: polycarbonate, polyethylene, and aluminum with selective surface (titanium oxide coating). A unifactorial experimental design with three levels was adopted. Pumpkin flower stability was assured by reducing the initial moisture content (95.22%) and water activity (0.989) to 3.15% and 0.276 in the polycarbonate dryer, to 3.03% and 0.279 in the selective surface dryer, and 5.19% and 0.364 in the polyethylene dryer. The drying kinetics showed that the drying time needed to achieve the moisture equilibrium was 480, 540, and 720 min in the respective dryers, depending on the ambient conditions. The initial pumpkin flower hue angle was 76.52°; however, this value decreased to 74.81, 69.52, and 70.23° in the dryers with polycarbonate, polyethylene, and the selective surface respectively; this behavior indicates a pumpkin flower tendency to orange color. The dryer with the selective surface obtained the best properties in pumpkin flowers. The pumpkin flower showed an initial total soluble solid of 1.5°Brix increased to 30°Brix in the polycarbonate and polyethylene dryers and 39°Brix in the selective dryer. The titanium oxide dryer observed an increment in ascorbic acid content from 3.5 to 8.806 mg/100 g, whereas 6.45 and 5.87 mg/100 g in the polycarbonate and polyethylene dryer, respectively.
      PubDate: 2022-11-12
       
  • Potentiality of Moringa oleifera as a Nutritive Ingredient in Different
           Food Matrices

    • Free pre-print version: Loading...

      Abstract: Abstract Given the growing interest of today's society in improving the nutritional profile of the food it consumes, industrial food reformulation is booming. In this sense, due to its high yield, good adaptation to climate change and high nutritional potential, Moringa oleifera may be an alternative means of fortifying products, in order to improve different food matrices. The different parts of this plant (leaves, seeds, flowers, pods, roots…) can be marketed for their nutritional and medicinal attributes. In this analysis, various scientific studies have been compiled that evaluate the potential of Moringa oleifera in terms of its incorporation into food matrices and its influence on the final sensory characteristics. In general, the incorporation of different parts of moringa into products, such as bread, pastries, snacks and beverages, increases the nutritional profile of the product (proteins, essential amino acids, minerals and fiber), the dried leaf powder representing an alternative to milk and eggs and helping vegans/vegetarians to consume the same protein content. In the case of dairy and meat products, the goal is to improve the antioxidant and antimicrobial capacity. In every food product, adding high concentrations of moringa leads to greenish colorations, herbal flavors and changes in the mechanical properties (texture, hardness, chewiness, volume and sponginess), negatively impacting the acceptance of the final product. This bibliographic review highlights the need to continue researching the technological properties with the dual aim of incorporating different parts of moringa into food matrices and increasing consumer familiarity with this product.
      PubDate: 2022-11-11
       
  • Physicochemical and Antioxidant Properties of Industrial Hemp Seed Protein
           Isolate Treated by High-Intensity Ultrasound

    • Free pre-print version: Loading...

      Abstract: Ultrasound is one of the non-thermal, green, and novel technologies used to functionalize plant proteins. We recently determined the optimum conditions of high-intensity ultrasound (HIUS) treatment for maximum solubility and investigated the functional properties of hemp seed protein isolate (HSPI) under the optimal conditions. In this study, we analyzed changes in primary, secondary, and tertiary structures, physical microstructures, thermal stability, and antioxidant capacity of ultrasound-applied hemp protein isolate (HSPI-HIUS). The free SH group content (+59%) and zeta potential (+25%) increased upon ultrasound treatment. The electrophoretic protein patterns of HSPI showed no significant change after HIUS treatment. The FTIR spectrum revealed the wavenumber shifts in Amid 1 and 2 regions of protein. The denaturation temperature and the ratio of β-structure increased after sonication. Antioxidant properties of hemp seed protein isolates were increased by 38% by ultrasound treatment. The obtained data in this study showed that HIUS treatment would be promising for improving the functional, physicochemical, and antioxidant properties of HSPI. Graphical abstract
      PubDate: 2022-10-13
       
  • Phenolic Compounds Present in Yerba Mate Potentially Increase Human
           Health: A Critical Review

    • Free pre-print version: Loading...

      Abstract: Abstract Yerba Mate (YM) is a food product derived from Ilex paraguariensis whose constituents obtained from its extract, mainly the phenolic fraction, have been linked to numerous health benefits, such as cardiovascular protection, weight reduction, glucose control, and gene modulation. However, evidences linking phenolic compounds (PC) intake and human health are still limited and often contentious. Several researches have shown that key PC elements are poorly absorbed in humans and exist predominantly as conjugates, which may not be bioactive but may play a crucial role when interacting with the gut microbiota (GM). As the intestine is the largest microorganism-populated organ in the human body, GM has been regarded as a “microbial organ”, acting as a second genome for modulating the host’s health phenotype. For this reason, the study of intestinal microbiota has received considerable attention in recent years. Its impact on the development of nutrition-related diseases must motivate broader researches on the interaction between YM’s PC and GM regarding the production of metabolites that may influence human health. This review aimed to gather and assess the available information about how PC from YM may impact host metabolism and the immune system and GM.
      PubDate: 2022-09-28
       
  • Hemp (Cannabis sativa subsp. sativa) Chemical Composition and the
           Application of Hempseeds in Food Formulations

    • Free pre-print version: Loading...

      Abstract: Abstract Owing to its nutritional and medicinal value, hemp has been cultivated to provide since ancient times. This review aims to map the scientific literature concerning the main functional components and the chemical composition of hemp plant. It is generally acknowledged that each organ of the hemp plant embodies a valuable source, and among them the most pivotal part is the edible fruits hempseeds. Hempseeds are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber, which are of high nutritional value. Furthermore, the beneficial effects have increased researchers’ interests in hempseeds-containing foods. Developed as an indispensable ingredient, hempseed is also a significant supplement in various products, such as bakery food, drinks, snacks and culinary products. Overall, this review intends to promote the further in-depth investigation of approved hemp plants and expand the range of hempseeds adoption in the functional foods field.
      PubDate: 2022-09-16
      DOI: 10.1007/s11130-022-01013-x
       
  • Functional Teas from Penthorum chinense Pursh Alleviates Ethanol-Induced
           Hepatic Oxidative Stress and Autophagy Impairment in Zebrafish via
           Modulating the AMPK/p62/Nrf2/mTOR Signaling Axis

    • Free pre-print version: Loading...

      Abstract: Abstract Penthorum chinense Pursh (PCP), a medicinal and edible plant, is widely used in many clinical liver diseases. Oxidative stress and autophagy impairment play crucial roles in the pathophysiology of alcoholic liver disease (ALD). Therefore, the aim of this study was to elucidate the mechanism of PCP in attenuating ethanol-induced liver injury. The liver-specific transgenic zebrafish larvae (lfabp: EGFP) at three days post-fertilization (3 dpf) were treated with different concentrations of PCP (100, 50 and 25 μg/mL) for 48 h, after soaked in a 350 mM ethanol for 32 h. Whole-mount oil red O, H&E staining and biochemical kits were used to detect fatty liver function and fat accumulation, western blot (WB) and immunofluorescence were used to determine proteins expression, and RT-qPCR was used to further verify the related gene expression. PCP restored zebrafish liver function. Additionally, PCP (as dose-dependent) blocked the expression of cytochrome P450 2E1 (CYP2E1), the production of intracellular reactive oxygen species (ROS) and alleviated liver fat accumulation and oxidative damage. PCP exerted its hepatoprotective function by downregulating the expression of kelch-like ECH-associated protein 1 (Keap1), up-regulating the expression of nucleus factor-E2-related factor 2 (Nrf2) (transferring to the nucleus), and attenuating systemic oxidative stress. Furthermore, PCP reduced the expression of sequestosome 1 (p62/SQSTM1, p62), Atg13, and Beclin 1, up-regulating autophagy signaling pathway. Taken together, the molecular evidence that PCP protected the ethanol-induced hepatic oxidative stress and autophagy impairment through activating AMPK/p62/Nrf2/mTOR signaling axis.
      PubDate: 2022-09-14
      DOI: 10.1007/s11130-022-01010-0
       
  • Teff Grain-Based Functional Food for Prevention of Osteoporosis: Sensory
           Evaluation and Molecular Docking Approach

    • Free pre-print version: Loading...

      Abstract: Abstract Osteoporosis is a highly prevalent skeletal disorder, which is characterized by compromised bone strength predisposing to an increased risk of fracture. The medical approaches presently followed for the prevention and treatment are associated with several side effects. Thus, it becomes important to design alternatives that are safer, economical, and easy to use. Plants provide us with a beneficial and effective option for such designs. They are rich in nutrients and phytochemicals that can be used to target signalling pathways to prevent the development of disease. For this purpose, we used Ethiopian grain, teff as a preventive strategy for osteoporosis as it has a favourable nutritional profile. In our study, we focussed on the preparation of functional multi-grain flour with Ethiopian grain, teff, and other ingredients that have a positive effect on bone health. A cookie was prepared from the multi mix flour and to analyze its shelf life and acceptance we performed a sensory evaluation where we observed no significant difference in the cookies’ characteristics during the period of study. We also performed Molecular Docking of eight flavonoid polyphenols selected from the nutritional profile of the ingredients to understand their binding affinity, interaction with the target, receptor activator of nuclear factor kappa-Β ligand (RANKL), and prophylactic or therapeutic effects in the prevention of osteoporosis. It was found that all 8 flavonoid polyphenols bound with RANKL, at least at one of the crucial binding sites and so can be used for the prevention of osteoporosis.
      PubDate: 2022-09-12
      DOI: 10.1007/s11130-022-01012-y
       
  • Chia (Salvia hispanica L.) Seed Germination: a Brief Review

    • Free pre-print version: Loading...

      Abstract: Abstract Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
      PubDate: 2022-09-09
      DOI: 10.1007/s11130-022-01011-z
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 44.210.85.190
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-