Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

COMPUTER SCIENCE (1305 journals)

The end of the list has been reached or no journals were found for your choice.
Similar Journals
Journal Cover
Wearable Technologies
Number of Followers: 4  

  This is an Open Access Journal Open Access journal
ISSN (Print) 2631-7176 - ISSN (Online) 2631-7176
Published by Cambridge University Press Homepage  [353 journals]
  • Combining soft robotics and telerehabilitation for improving motor
           function after stroke

    • Authors: Proietti; Tommaso, Nuckols, Kristin, Grupper, Jesse, Schwerz de Lucena, Diogo, Inirio, Bianca, Porazinski, Kelley, Wagner, Diana, Cole, Tazzy, Glover, Christina, Mendelowitz, Sarah, Herman, Maxwell, Breen, Joan, Lin, David, Walsh, Conor
      First page: 1
      Abstract: Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients’ home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, p 
      PubDate: 2024-01-26
      DOI: 10.1017/wtc.2023.26
       
  • The efficacy of different torque profiles for weight compensation of the
           hand

    • Authors: van der Burgh; Bas J., Filius, Suzanne J., Radaelli, Giuseppe, Harlaar, Jaap
      First page: 2
      Abstract: Orthotic wrist supports will be beneficial for people with muscular weakness to keep their hand in a neutral rest position and prevent potential wrist contractures. Compensating the weight of the hands is complex since the level of support depends on both wrist and forearm orientations. To explore simplified approaches, two different weight compensation strategies (constant and linear) were compared to the theoretical ideal sinusoidal profile and no compensation in eight healthy subjects using a mechanical wrist support system. All three compensation strategies showed a significant reduction of 47–53% surface electromyography activity in the anti-gravity m. extensor carpi radialis. However, for the higher palmar flexion region, a significant increase of 44–61% in the m. flexor carpi radialis was found for all compensation strategies. No significant differences were observed between the various compensation strategies. Two conclusions can be drawn: (1) a simplified torque profile (e.g., constant or linear) for weight compensation can be considered as equally effective as the theoretically ideal sinusoidal profile and (2) even the theoretically ideal profile provides no perfect support as other factors than weight, such as passive joint impedance, most likely influence the required compensation torque for the wrist joint.
      PubDate: 2024-01-29
      DOI: 10.1017/wtc.2023.23
       
  • The effect of transcutaneous spinal cord stimulation on the balance and
           neurophysiological characteristics of young healthy adults

    • Authors: Omofuma; Isirame, Carrera, Robert, King-Ori, Jayson, Agrawal, Sunil K.
      First page: 3
      Abstract: Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects’ balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects’ post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.
      PubDate: 2024-02-08
      DOI: 10.1017/wtc.2023.24
       
  • Design of a wearable shoulder exoskeleton robot with dual-purpose gravity
           compensation and a compliant misalignment compensation mechanism

    • Authors: Atkins; John, Chang, Dongjune, Lee, Hyunglae
      First page: 4
      Abstract: This paper presents the design and validation of a wearable shoulder exoskeleton robot intended to serve as a platform for assistive controllers that can mitigate the risk of musculoskeletal disorders seen in workers. The design features a four-bar mechanism that moves the exoskeleton’s center of mass from the upper shoulders to the user’s torso, dual-purpose gravity compensation mechanism located inside the four-bar’s linkages that supports the full gravitational loading from the exoskeleton with partial user’s arm weight compensation, and a novel 6 degree-of-freedom (DoF) compliant misalignment compensation mechanism located between the end effector and the user’s arm to allow shoulder translation while maintaining control of the arm’s direction. Simulations show the four-bar design lowers the center of mass by  cm and the kinematic chain can follow the motion of common upper arm trajectories. Experimental tests show the gravity compensation mechanism compensates gravitational loading within  Nm over the range of shoulder motion and the misalignment compensation mechanism has the desired 6 DoF stiffness characteristics and range of motion to adjust for shoulder center translation. Finally, a workspace admittance controller was implemented and evaluated showing the system is capable of accurately reproducing simulated impedance behavior with transparent low-impedance human operation.
      PubDate: 2024-02-12
      DOI: 10.1017/wtc.2024.1
       
  • Versatile and non-versatile occupational back-support exoskeletons: A
           comparison in laboratory and field studies – ADDENDUM

    • Authors: Poliero; Tommaso, Sposito, Matteo, Toxiri, Stefano, Di Natali, Christian, Iurato, Matteo, Sanguineti, Vittorio, Caldwell, Darwin G., Ortiz, Jesús
      First page: 5
      PubDate: 2024-02-12
      DOI: 10.1017/wtc.2023.27
       
  • Benchmarking commercially available soft and rigid passive back
           exoskeletons for an industrial workplace

    • Authors: Mohamed Refai; Mohamed I., Moya-Esteban, Alejandro, van Zijl, Lynn, van der Kooij, Herman, Sartori, Massimo
      First page: 6
      Abstract: Low-back pain is a common occupational hazard for industrial workers. Several studies show the advantages of using rigid and soft back-support passive exoskeletons and exosuits (exos) to reduce the low-back loading and risk of injury. However, benefits of using these exos have been shown to be task-specific. Therefore, in this study, we developed a benchmarking approach to assess exos for an industrial workplace at Hankamp Gears B.V. We assessed two rigid (Laevo Flex, Paexo back) and two soft (Auxivo Liftsuit 1.0, and Darwing Hakobelude) exos for tasks resembling the workplace. We measured the assistive moment provided by each exo and their respective influence on muscle activity as well as the user’s perception of comfort and exertion. Ten participants performed four lifting tasks (Static hold, Asymmetric, Squat, and Stoop), while their electromyography and subjective measures were collected. The two rigid exos provided the largest assistance during the Dynamic tasks. Reductions in erector spinae activity were seen to be task-specific, with larger reductions for the two rigid exos. Overall, Laevo Flex offered a good balance between assistive moments, reductions in muscle activity, as well as user comfort and reductions in perceived exertion. Thus, we recommend benchmarking exos for intended use in the industrial workplace. This will hopefully result in a better adoption of the back-support exoskeletons in the workplace and help reduce low-back pain.
      PubDate: 2024-02-15
      DOI: 10.1017/wtc.2024.2
       
  • A novel neck brace to characterize neck mobility impairments following
           neck dissection in head and neck cancer patients – ADDENDUM

    • Authors: Chang; Biing-Chwen, Zhang, Haohan, Long, Sallie, Obayemi, Adetokunbo, Troob, Scott H., Agrawal, Sunil K.
      First page: 7
      PubDate: 2024-02-16
      DOI: 10.1017/wtc.2024.3
       
  • Validity of estimating center of pressure during walking and running with
           plantar load from a three-sensor wireless insole – ERRATUM

    • Authors: Brindle; Richard A., Bleakley, Chris M., Taylor, Jeffrey B., Queen, Robin M., Ford, Kevin R.
      First page: 8
      PubDate: 2024-03-21
      DOI: 10.1017/wtc.2023.22
       
  • Acute suppression of lower limb spasm by sacral afferent stimulation for
           people with spinal cord injury: A pilot study

    • Authors: Massey; Sarah, Doherty, Sean, Duffell, Lynsey, Craggs, Mike, Knight, Sarah
      First page: 9
      Abstract: Lower limb spasm and spasticity may develop following spinal cord injury (SCI), causing hyper-excitability and increased tone, which can impact function and quality of life. Pharmaceutical interventions for spasticity may cause unwanted side effects such as drowsiness and weakness. Invasive and non-invasive electrical stimulation has been shown to reduce spasticity without these side effects. The aim of this study was to investigate the effect of sacral afferent stimulation (SAS), through surface electrical stimulation of the dorsal genital nerve (N = 7), and through implanted electrodes on the sacral afferent nerve roots, on lower limb spasm and spasticity (N = 2). Provoked spasms were interrupted with conditional SAS, where stimulation commenced following a provoked spasm, or unconditional stimulation, which was applied continuously. Conditionally and unconditionally applied SAS was shown to suppress acute provoked spasms in people with SCI. There was a statistically significant reduction in area under the curve of quadriceps electromyography during acute spasm with SAS compared to a control spasm. These results show that SAS may provide a safe, low-cost method of reducing acute spasm and spasticity in people living with SCI. SAS through implanted electrodes may also provide an additional function to sacral nerve stimulation devices.
      PubDate: 2024-04-05
      DOI: 10.1017/wtc.2024.4
       
  • GLULA: Linear attention-based model for efficient human activity
           recognition from wearable sensors

    • Authors: Bolatov; Aldiyar, Yessenbayeva, Aigerim, Yazici, Adnan
      First page: 10
      Abstract: Body-worn sensor data is used in monitoring patient activity during rehabilitation and also can be extended to controlling rehabilitation devices based on the activity of the person. The primary focus of research has been on effectively capturing the spatiotemporal dependencies in the data collected by these sensors and efficiently classifying human activities. With the increasing complexity and size of models, there is a growing emphasis on optimizing their efficiency in terms of memory usage and inference time for real-time usage and mobile computers. While hybrid models combining convolutional and recurrent neural networks have shown strong performance compared to traditional approaches, self-attention-based networks have demonstrated even superior results. However, instead of relying on the same transformer architecture, there is an opportunity to develop a novel framework that incorporates recent advancements to enhance speed and memory efficiency, specifically tailored for human activity recognition (HAR) tasks. In line with this approach, we present GLULA, a unique architecture for HAR. GLULA combines gated convolutional networks, branched convolutions, and linear self-attention to achieve efficient and powerful solutions. To enhance the performance of our proposed architecture, we employed manifold mixup as an augmentation variant which proved beneficial in limited data settings. Extensive experiments were conducted on five benchmark datasets: PAMAP2, SKODA, OPPORTUNITY, DAPHNET, and USC-HAD. Our findings demonstrate that GLULA outperforms recent models in the literature on the latter four datasets but also exhibits the lowest parameter count and close to the fastest inference time among state-of-the-art models.
      PubDate: 2024-04-05
      DOI: 10.1017/wtc.2024.5
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.239.76.211
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-
JournalTOCs
 
 
  Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

COMPUTER SCIENCE (1305 journals)

The end of the list has been reached or no journals were found for your choice.
Similar Journals
Similar Journals
HOME > Browse the 73 Subjects covered by JournalTOCs  
SubjectTotal Journals
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 3.239.76.211
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-