for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> COMPUTER SCIENCE (Total: 1985 journals)
    - ANIMATION AND SIMULATION (29 journals)
    - ARTIFICIAL INTELLIGENCE (98 journals)
    - AUTOMATION AND ROBOTICS (98 journals)
    - CLOUD COMPUTING AND NETWORKS (63 journals)
    - COMPUTER ARCHITECTURE (9 journals)
    - COMPUTER ENGINEERING (9 journals)
    - COMPUTER GAMES (16 journals)
    - COMPUTER PROGRAMMING (23 journals)
    - COMPUTER SCIENCE (1153 journals)
    - COMPUTER SECURITY (45 journals)
    - DATA BASE MANAGEMENT (13 journals)
    - DATA MINING (32 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (27 journals)
    - ELECTRONIC DATA PROCESSING (21 journals)
    - IMAGE AND VIDEO PROCESSING (40 journals)
    - INFORMATION SYSTEMS (104 journals)
    - INTERNET (92 journals)
    - SOCIAL WEB (50 journals)
    - SOFTWARE (33 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1153 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 12)
Abakós     Open Access   (Followers: 3)
Academy of Information and Management Sciences Journal     Full-text available via subscription   (Followers: 67)
ACM Computing Surveys     Hybrid Journal   (Followers: 23)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 8)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 13)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 6)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 11)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 12)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 3)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 1)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 20)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 9)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 10)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 11)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 26)
Advanced Science Letters     Full-text available via subscription   (Followers: 6)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 8)
Advances in Artificial Intelligence     Open Access   (Followers: 15)
Advances in Artificial Neural Systems     Open Access   (Followers: 4)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Computer Science : an International Journal     Open Access   (Followers: 13)
Advances in Computing     Open Access   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 25)
Advances in Human-Computer Interaction     Open Access   (Followers: 19)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 37)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access  
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 6)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Air, Soil & Water Research     Open Access   (Followers: 7)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 10)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 3)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 6)
American Journal of Sensor Technology     Open Access   (Followers: 2)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 5)
Analysis in Theory and Applications     Hybrid Journal  
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 8)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 12)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 2)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 14)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Clinical Informatics     Hybrid Journal   (Followers: 1)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Computer Systems     Open Access   (Followers: 1)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 32)
Applied Medical Informatics     Open Access   (Followers: 9)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 118)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 5)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access  
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 3)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 9)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Basin Research     Hybrid Journal   (Followers: 3)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Bioinformatics     Hybrid Journal   (Followers: 301)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 17)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 32)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 45)
British Journal of Educational Technology     Hybrid Journal   (Followers: 121)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 2)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal  
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 13)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
Cell Communication and Signaling     Open Access   (Followers: 1)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access  
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 12)
Circuits and Systems     Open Access   (Followers: 16)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Communication Methods and Measures     Hybrid Journal   (Followers: 11)
Communication Theory     Hybrid Journal   (Followers: 19)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 53)
Communications of the Association for Information Systems     Open Access   (Followers: 18)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access  
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Computación y Sistemas     Open Access  
Computation     Open Access  
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 1)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 8)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 13)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 13)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 28)
Computer     Full-text available via subscription   (Followers: 83)
Computer Aided Surgery     Hybrid Journal   (Followers: 3)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Communications     Hybrid Journal   (Followers: 10)
Computer Engineering and Applications Journal     Open Access   (Followers: 5)
Computer Journal     Hybrid Journal   (Followers: 7)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 22)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 10)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 1)
Computer Music Journal     Hybrid Journal   (Followers: 14)
Computer Physics Communications     Hybrid Journal   (Followers: 6)
Computer Science - Research and Development     Hybrid Journal   (Followers: 7)
Computer Science and Engineering     Open Access   (Followers: 17)
Computer Science and Information Technology     Open Access   (Followers: 11)
Computer Science Education     Hybrid Journal   (Followers: 12)
Computer Science Journal     Open Access   (Followers: 20)

        1 2 3 4 5 6 | Last

Journal Cover Applied Informatics
  [0 followers]  Follow
    
  This is an Open Access Journal Open Access journal
   ISSN (Online) 2196-0089
   Published by SpringerOpen Homepage  [224 journals]
  • Modularity in complex multilayer networks with multiple aspects: a static
           perspective

    • Abstract: Complex systems are usually illustrated by networks which capture the topology of the interactions between the entities. To better understand the roles played by the entities in the system, one needs to uncover the underlying community structure of the system. In recent years, systems with interactions that have various types or can change over time between the entities have attracted much research attention. However, algorithms aiming at solving the key problem—community detection—in multilayer networks are still limited. In this work, we first introduce the multilayer network model representation. Then based on this model, we naturally derive the multilayer modularity—a widely adopted objective function of community detection in networks—from a static perspective to evaluate the quality of the communities detected in multilayer networks. It enables us to better understand the essence of the modularity by pointing out the specific kind of communities that will lead to a high modularity score. We also propose a spectral method called mSpec for the optimization of the proposed modularity function based on the supra-adjacency representation of the multilayer networks. Experiments on the electroencephalograph network and the comparison results on several empirical multilayer networks demonstrate the feasibility and reliable performance of the proposed method.
      PubDate: 2017-05-08
       
  • Acceptance of homegrown enterprise resource planning (ERP) systems in
           Ethiopia

    • Abstract: In the current competitive global market, organizations are implementing information and communication technology (ICT) that could add value to their products, processes, and satisfaction of their users. The adoption, implementation and use of homegrown enterprise resource planning (ERP) systems is one of these mechanisms being globally used for recording, processing, storing, and exchanging organizational information anytime anywhere. Although organizations have been utilizing ERP systems, the acceptance of homegrown ERP systems is given less attention as compared to commercial off-the shelf (COTS) software. Hence, this research studied factors that determine acceptance of homegrown ERP through the extension of unified theory of acceptance and use of technology (UTAUT) model. The finding revealed that performance expectancy, effort expectancy, social influence, competitive advantage, cost effectiveness, and facilitations functions are determinants of homegrown ERP system acceptance in Ethiopia. Moreover, experience and voluntariness are found to be significant moderators of the study.
      PubDate: 2017-03-14
       
  • Balancing decoding speed and memory usage for Huffman codes using
           quaternary tree

    • Abstract: In this paper, we focus on the use of quaternary tree instead of binary tree to speed up the decoding time for Huffman codes. It is usually difficult to achieve a balance between speed and memory usage using variable-length binary Huffman code. Quaternary tree is used here to produce optimal codeword that speeds up the way of searching. We analyzed the performance of our algorithms with the Huffman-based techniques in terms of decoding speed and compression ratio. The proposed decoding algorithm outperforms the Huffman-based techniques in terms of speed while the compression performance remains almost same.
      PubDate: 2017-01-07
       
  • Logistic regression analysis differentiates high from low computer users
           by facial skin conditions in a population of Chinese women

    • Abstract: In the past few decades, video display terminals (VDTs) and computer use have been associated with various skin symptoms in several published reports. In addition, internet beauty sites report that extended computer use leads to acne or accelerated facial aging. For example, the term “computer face” is used to describe premature aging caused by sitting for long periods of time in front of the screen (http://www.marieclaire.com/beauty/news/a12937/computer-screen-skin-problems/). We wished to determine, using instrumental and expert assessment, if prolonged/extended computer use could be associated with certain skin conditions. This study focused on long-term (10 years or more) office VDT work and was designed to include a wide range of confounding variables. One hundred Chinese women were recruited, 50 in each of two groups characterized as either (a) computer users with 8 or more hours per day, or (b) non-users who use computers 1 h or less per day. All subjects lived in Guangzhou and worked in the same building. Confounders were assessed by survey, and included age, smoking, sun exposure history, exercise, and other factors. Skin conditions, which included acne, sebum, wrinkles, and pigment spots, were assessed by instrumental measurements and blinded dermatologist assessment. Age and skin conditions were subjected to logistic regression analysis to determine major contributors which could separate, or distinguish, the computer group from the non-computer group. From this analysis, the office computer users were found to be statistically significantly associated with a higher incidence of acne, higher sebum levels, and a higher risk of self-reported sensitive skin when compared with the non-computer group. The final model suggests that the major contributors in separating the two groups are acne and pigmented spots (UV and brown). These results indicate that facial skin of women within the Chinese population who use computers for 8 h or more a day may be at higher risk for acne; however, they had lower levels of attributes associated with photoaging, such as lentigines and facial wrinkles. Separate pairwise assessment of other variables such as lifetime cumulative sun exposure, sleep quality, smoking behavior, exercise, and cosmetic product use or procedures showed no significant differences between the two groups. This indicates that the results obtained from objective and subjective measurements were not biased due to these potential confounders, but does not reveal the mechanism for the observed differences in skin conditions between computer/VDT users and non-users.
      PubDate: 2017-01-07
       
  • A novel framework for 3D shape retrieval

    • Abstract: The ability to accurately and effectively search for 3D shape is crucial for many applications. In this study, we proposed a novel framework for 3D shape retrieval. We compensate the loss of high frequencies of heat kernel signature from two aspects. One is to introduce the weight for each point to highlight the details of the salient points. The other is to directly capture microgeometry structure through wave kernel’s access to high frequencies. Thus, our method can capture geometric features at different frequencies of a shape, which satisfy the property of an ideal descriptor. We conduct shape retrieval experiments on a standard benchmark and compared with another heat kernel-based method. Experimental results demonstrate that the proposed method is effective and accurate.
      PubDate: 2017-01-06
       
  • Impact of order set use on outcome of patients with sepsis

    • Abstract: In an effort to improve outcome of patients with sepsis, we developed and implemented a disease-specific alert and order set for our computerized physician order entry system. This alert and order set were implemented in 2015. We have produced a progressive decrease in mortality for patients at our hospital with diagnosis of sepsis. We see a significant decrease in mortality for patients who had the sepsis order set used compared to those who did not have the order set used. We recommend use of an order set for patients with sepsis.
      PubDate: 2017-01-05
       
  • A modified approach for solving a fuzzy multi-objective programming
           problem

    • Abstract: Based on ranking of fuzzy numbers which deals with fuzzy-valued multi-objective programming problem and the modified crisp model, a modified approach is proposed. Also, two algorithms that play a pivotal role in the proposed method are introduced. The first one returns a ranking function to a given fuzzy number and the second algorithm uses the modified crisp model to deliver a Pareto optimal solution. Moreover, we investigate the stability of the first kind of the solution which is obtained using these algorithms. Finally, a numerical example is given to illustrate our modified approach, using Maple program.
      PubDate: 2017-01-05
       
  • An adaptive random compressive partial sampling method with TV recovery

    • Abstract: Different from standard sampling strategy in compressive sensing (CS), we present a compressive partial sampling framework called adaptive-random sampling and recovery (ASR) for image. It could faithfully recover images by hybridizing random samples with edge-extracted pixels with much lower sampling rate. The new framework preserves edge pixels containing essential information of images, and meanwhile employs the edge-preserving total variation (TV) regularizer. Assisted with the edges, three steps are adopted to recover the high-quality image. First, we extract the edges of a coarse image recovered with completely random measurements in our sampling framework. Then, the TV algorithm in the CS theory is employed for solving the Lagrangian regularization problem. Finally, we refine the coarse image to obtain a high-quality one with both the extracted edges and previous random measurements. Experimental results show that the novel ASR strategy achieves significant performance improvements over the current state-of-the-art schemes.
      PubDate: 2016-12-28
       
  • Enhanced automatic sleep spindle detection: a sliding window-based wavelet
           analysis and comparison using a proposal assessment method

    • Abstract: Sleep spindles are thought to be related to some sleep diseases and play an important role in memory consolidation. They were traditionally identified by physiology experts based on rules and recently detected by automatic algorithms. However, many automatic approaches were validated on the different electroencephalogram (EEG) using various assessment methods, making it difficult to appraised a method objectively and fairly. In this paper, we proposed a sliding window-based probability estimation (SWPE) method for sleep spindle detection. We performed a continuous wavelet transform with Mexican hat wavelet function, following by a sliding window to find out the candidate spindle points corresponding to the large wavelet coefficients at the frequencies of spindles and estimated their probabilities. To enhance the results, we used the envelope of the rectified signal to reject some false sleep spindle candidates. This was an enhanced method and we called it SWPE-E in this paper. Finally, we compared our approaches with four approaches on the same public available EEG database, and the result showed the significative improvement of our proposed approaches.
      PubDate: 2016-12-08
       
  • A spatial-constrained multi-target regression model for human brain
           activity prediction

    • Abstract: Analyzing functional magnetic resonance imaging (fMRI) data from the encoding perspective provides a powerful tool to explore human vision. Using voxel-wise encoding models, previous studies predicted the brain activity evoked by external stimuli successfully. However, these models constructed a regularized regression model for each single voxel separately, which overlooked the intrinsic spatial property of fMRI data. In this work, we proposed a multi-target regression model that predicts the activities of adjacent voxels simultaneously. Different from the previous models, the spatial constraint is considered in our model. The effectiveness of the proposed model is demonstrated by comparing it with two state-of-the-art voxel-wise models on a publicly available dataset. Results indicate that the proposed method can predict voxel responses more accurately than the competing methods.
      PubDate: 2016-11-24
       
  • Object segmentation by saliency-seeded and spatial-weighted region merging

    • Abstract: In this paper, we present a region merging-based method for object segmentation in natural images. The method consists of three separate steps: (1) initial over-segmentation such that pixels in each region are as homogeneous as possible and therefore likely to be from the same object; (2) saliency-seeded interaction to provide proper prior input to guide the segmentation; (3) region merging by an introduced maximal spatially weighted similarity (MSWS) criterion. Saliency-seeded interaction can well reflect the human intention but does not require any manual user editing, which makes our method applicable to increasingly large-scale image databases. The MSWS criterion takes into account both the color similarity and spatial distance of the candidate regions for merging, which allows the region merging-based method to achieve better performance. Extensive experiments show that our method can reliably and automatically segment the objects from a great variety of natural images.
      PubDate: 2016-11-22
       
  • Altered effective connectivity network of the thalamus in post-traumatic
           

    • Abstract: Post-traumatic stress disorder (PTSD) is an anxiety disorder that can develop following a traumatic event. Previous studies have found abnormal functional connectivity between the thalamus and other brain regions. However, the traditional functional connectivity method cannot investigate the directional flow of the influence in PTSD. In the present study, we used an effective connectivity method based on Granger causality to explore altered direction of causal information flow within a network associated with the thalamus in PTSD. Employing this method, we found that PTSD patients exhibited increased influence from thalamus to middle/inferior frontal gyrus and insula, and increased bidirectional influences between thalamus and medial prefrontal cortex compared to healthy controls. This is the first study to reveal a network of abnormal effective connectivity in PTSD. In addition, using the machine learning approach, we found that the altered functional measurements could differentiate patients from healthy controls. Our findings may have important implications for the pathophysiological basis underlying PTSD.
      PubDate: 2016-11-15
       
  • Structural covariance model reveals dynamic reconfiguration of triple
           networks in autism spectrum disorder

    • Abstract: The data open sharing provides us opportunity to investigate mechanisms underlying autism spectrum disorder (ASD) by employing advanced techniques. In the current study, we employed structural covariance (SC) model to investigate the development of triple networks in ASD. Three hundred and seven ASD and 337 typical controls were collected and further classified into four distinct age cohorts. Night brain seeds belonging to default modal network, salience network, and central executive network were obtained. SC between those seeds, as well as its topological properties, was calculated for each group within each age cohort. Statistical analysis revealed that ASD had dynamic reconfigurations of SC of the triple networks, especially the right fronto-insular cortex. The results might indicate that ASD had specific mechanism within distinct age cohort. Additionally, the big data sharing, together with the SC modal, was able to facilitate understanding of the mechanism underlying ASD.
      PubDate: 2016-10-21
       
  • Techniques for the suppression of sidelobes in a non-contiguous orthogonal
           frequency division multiplexing framework

    • Abstract: In orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems, high out-of-band radiation (OOBR) results in severe interference to the neighboring users, including licensed users (LUs) and cognitive radio users (CRUs). To tackle that issue, a framework of non-contiguous orthogonal frequency division multiplexing (NCOFDM) is presented in this paper that has the ability of describing any OOBR reduction techniques, regardless of whether a single or multiple techniques are applied. Based on this framework, we proposed four new different schemes that can be viewed as two-level suppression schemes. In the first level, the OOBR is reduced by techniques represented by precoding matrices, while in the second level further reduction of OOBR is done by using generalized sidelobe canceller (GSC). Numerical results show that the proposed schemes can suppress the OOBR significantly in terms of power spectral density (PSD), thus allowing the successful coexistence of LUs, as well as CRUs in a spectrum-sharing environment.
      PubDate: 2016-08-26
       
  • DDO: a diabetes mellitus diagnosis ontology

    • Abstract: Diabetes mellitus is a major cause of morbidity and mortality in humans. Early diagnosis is the first step toward the management of this condition. However, a diagnosis involves several variables, which makes it difficult to arrive at an accurate and timely diagnosis and to construct accurate personalized treatment plans. An electronic health record system requires an integrated decision support capability, and ontologies are rapidly becoming necessary for the design of efficient, reliable, extendable, reusable, and semantically intelligent knowledge bases. In this study, we take the first step in this direction, by designing an OWL2 diabetes diagnosis ontology (DDO). Protégé 5 software was used for the construction of the ontology. DDO is developed within the framework of the basic formal ontology and the ontology for general medical science to represent entities in the domain of diabetes, and it follows the design principles recommended by the Open Biomedical Ontology Foundry. Currently, DDO contains 6444 concepts, 48 properties, 13,551 annotations, and 27,127 axioms. DDO can serve as a diabetes knowledge base and supports automatic reasoning. It represents a major step toward the development of a new generation of patient-centric decision support tools. DDO is available through BioPortal at: http://www.bioportal.bioontology.org/ontologies/DDO.
      PubDate: 2016-08-25
       
  • Enviro-geno-pheno state approach and state based biomarkers for
           differentiation, prognosis, subtypes, and staging

    • Abstract: Finding biomarkers for differentiation, prognosis, subtypes, and staging takes a key role in precision medicine, usually featured by association analysis on geno-measures and pheno-measures. Recent efforts turn to identifying the role of a biomarker under certain condition or in a particular environment, represented by a set of enviro-measures. This paper proposes to consider the joint domain of geno-measures, pheno-measures, and enviro-measures, in which one element (i.e., each triple jointly taken by the three measures) represents a possible behaviour of the bio-system under investigation. A collection of elements that locate adjacently and share a common system status represents a ‘state’, and the system is characterised by a number of such states learned from samples. Instead of directly using one or a set of geno-measures as a biomarker, such an enviro-geno-pheno state (E-GPS) is considered as a biomarker, indicating ‘health/normal’ versus ‘risk/abnormal’ together with its associated enviro-geno-pheno conditions. Association analyses for differentiation, prognosis, subtypes, and staging can be performed between such E-GPS biomarkers and those measures representing clinical phenotypes and treatments, made either on one state or cross multiple states. Moreover, potential applications are suggested for analyses of expression data, sequencing data, and their integrative uses.
      PubDate: 2016-08-02
       
  • Causal discovery and inference: concepts and recent methodological
           advances

    • Abstract: This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.
      PubDate: 2016-02-18
       
  • A novel fuzzy document-based information retrieval scheme (FDIRS)

    • Abstract: Information retrieval systems are generally used to find documents that are most appropriate according to some query that comes dynamically from the users. In this paper, a novel fuzzy document-based information retrieval scheme (FDIRS) is proposed for the purpose of Stock Market Index forecasting. The novelty of the proposed approach is the use of a modified tf-idf scoring scheme to predict the future trend of the stock market index. The contribution of this paper has two dimensions: (1) In the proposed system, the simple daily time series data are converted to an enriched fuzzy linguistic time series with a unique approach of incorporating information about the manner in which the OHLC (open, high, low, and close) price formation took place at every instance of the time series, and (2) A unique approach is followed while modeling the information retrieval (IR) system which converts a simple IR system into a forecasting system. The modified IR system provides us with a trend forecast and after which a crisp value is generated that becomes the forecast value that can be achieved in next few trading sessions. From the performance comparison of FDIRS with standard benchmark models, it can be affirmed that the proposed model has a potential of becoming a good forecasting model. Transaction data of CNX NIFTY-50 index of National Stock Exchange of India are used to experiment and validate the proposed model.
      PubDate: 2016-02-15
       
  • A new multivariate test formulation: theory, implementation, and
           applications to genome-scale sequencing and expression

    • Abstract: A new formulation is proposed for multivariate test, consisting of not only a hierarchy of numerous tests organised in a lattice taxonomy of properties that come from different combinations of multi-variates and represent different factors associated with the rejection of null hypothesis, but also by a theory of property-oriented rejection. Located on the bottom level of this taxonomy is a conventional formulation of multivariate test, featured by a property with the weakest collegiality and a rejection with the largest p value. From one level up to the next, the dimension of rejection increases, the collegiality of properties strengthen, and the p values reduce, until the top level that is featured by a property with the strongest collegiality and a rejection with the smallest p value. Instead of traversing all the combinations in the taxonomy, an easy implementation is developed to identify distinctive properties by the best first path (BFP) in a lattice taxonomy of an appropriate number of intrinsic factors that are obtained after decoupling second-order dependence cross multivariate statistics and discarding those non-distinctive components. Even away off this BFP, if needed, a particular combination of intrinsic factors may be conveniently tested in such a taxonomy too. Moreover, further improvement is made by considering some dependence of higher than second order, with the top level p value refined into one upper bound that is obtained by directional test. Furthermore, detailed implementations are also provided for applications to genome-scale sequencing and expression, with particular emphasis on multivariate phenotype-targeted test for expression profile analyses.
      PubDate: 2016-01-13
       
  • Kernel fractional affine projection algorithm

    • Abstract: This paper extends the kernel affine projection algorithm to a rich, flexible and cohesive taxonomy of fractional signal processing approach. The formulation of the algorithm is established on the inclusion of Riemann–Liouville fractional derivative to gradient-based stochastic Newton recursive method to minimize the cost function of the kernel affine projection algorithm. This approach extends the idea of fractional signal processing in reproducing kernel Hilbert space. The proposed algorithm is applied to the prediction of chaotic Lorenz time series and nonlinear channel equalization. Also the performance is validated in comparison with the least mean square algorithm, kernel least mean square algorithm, affine projection algorithm and kernel affine projection algorithm.
      PubDate: 2015-12-14
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016