Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

COMPUTER SCIENCE (1305 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 27)
Abakós     Open Access   (Followers: 3)
ACM Computing Surveys     Hybrid Journal   (Followers: 29)
ACM Inroads     Full-text available via subscription   (Followers: 1)
ACM Journal of Computer Documentation     Free   (Followers: 4)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 5)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 11)
ACM SIGACCESS Accessibility and Computing     Free   (Followers: 2)
ACM SIGAPP Applied Computing Review     Full-text available via subscription  
ACM SIGBioinformatics Record     Full-text available via subscription  
ACM SIGEVOlution     Full-text available via subscription  
ACM SIGHIT Record     Full-text available via subscription  
ACM SIGHPC Connect     Full-text available via subscription  
ACM SIGITE Newsletter     Open Access   (Followers: 1)
ACM SIGMIS Database: the DATABASE for Advances in Information Systems     Hybrid Journal  
ACM SIGUCCS plugged in     Full-text available via subscription  
ACM SIGWEB Newsletter     Full-text available via subscription   (Followers: 3)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 13)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 3)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)     Hybrid Journal  
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 10)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 11)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 5)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 19)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 15)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 9)
ACM Transactions on Computing for Healthcare     Hybrid Journal  
ACM Transactions on Cyber-Physical Systems (TCPS)     Hybrid Journal   (Followers: 1)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 5)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 11)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Internet of Things     Hybrid Journal   (Followers: 2)
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS)     Hybrid Journal  
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 10)
ACM Transactions on Parallel Computing     Full-text available via subscription  
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 9)
ACM Transactions on Social Computing     Hybrid Journal  
ACM Transactions on Spatial Algorithms and Systems (TSAS)     Hybrid Journal   (Followers: 1)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 11)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Hybrid Journal   (Followers: 39)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access   (Followers: 1)
Ad Hoc Networks     Hybrid Journal   (Followers: 12)
Adaptive Behavior     Hybrid Journal   (Followers: 8)
Additive Manufacturing Letters     Open Access   (Followers: 3)
Advanced Engineering Materials     Hybrid Journal   (Followers: 32)
Advanced Science Letters     Full-text available via subscription   (Followers: 9)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 9)
Advances in Artificial Intelligence     Open Access   (Followers: 31)
Advances in Catalysis     Full-text available via subscription   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 20)
Advances in Computer Engineering     Open Access   (Followers: 13)
Advances in Computer Science : an International Journal     Open Access   (Followers: 18)
Advances in Computing     Open Access   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Advances in Engineering Software     Hybrid Journal   (Followers: 26)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 19)
Advances in Human-Computer Interaction     Open Access   (Followers: 19)
Advances in Image and Video Processing     Open Access   (Followers: 20)
Advances in Materials Science     Open Access   (Followers: 19)
Advances in Multimedia     Open Access   (Followers: 1)
Advances in Operations Research     Open Access   (Followers: 13)
Advances in Remote Sensing     Open Access   (Followers: 59)
Advances in Science and Research (ASR)     Open Access   (Followers: 8)
Advances in Technology Innovation     Open Access   (Followers: 5)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 6)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 5)
AI EDAM     Hybrid Journal   (Followers: 2)
Air, Soil & Water Research     Open Access   (Followers: 6)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 5)
Al-Qadisiyah Journal for Computer Science and Mathematics     Open Access   (Followers: 2)
AL-Rafidain Journal of Computer Sciences and Mathematics     Open Access   (Followers: 3)
Algebras and Representation Theory     Hybrid Journal  
Algorithms     Open Access   (Followers: 13)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 8)
American Journal of Computational Mathematics     Open Access   (Followers: 6)
American Journal of Information Systems     Open Access   (Followers: 4)
American Journal of Sensor Technology     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 15)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 4)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 14)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 16)
Annals of Pure and Applied Logic     Open Access   (Followers: 4)
Annals of Software Engineering     Hybrid Journal   (Followers: 12)
Annual Reviews in Control     Hybrid Journal   (Followers: 7)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 3)
Applied and Computational Harmonic Analysis     Full-text available via subscription  
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 17)
Applied Categorical Structures     Hybrid Journal   (Followers: 4)
Applied Clinical Informatics     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 16)
Applied Computer Systems     Open Access   (Followers: 6)
Applied Computing and Geosciences     Open Access   (Followers: 3)
Applied Mathematics and Computation     Hybrid Journal   (Followers: 31)
Applied Medical Informatics     Open Access   (Followers: 11)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 4)
Applied Soft Computing     Hybrid Journal   (Followers: 13)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Applied System Innovation     Open Access   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 97)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 7)
Array     Open Access   (Followers: 1)
Artifact : Journal of Design Practice     Open Access   (Followers: 8)
Artificial Life     Hybrid Journal   (Followers: 7)
Asian Journal of Computer Science and Information Technology     Open Access   (Followers: 3)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Research in Computer Science     Open Access   (Followers: 4)
Assembly Automation     Hybrid Journal   (Followers: 2)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 6)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 13)
Automatika : Journal for Control, Measurement, Electronics, Computing and Communications     Open Access  
Automation in Construction     Hybrid Journal   (Followers: 8)
Balkan Journal of Electrical and Computer Engineering     Open Access  
Basin Research     Hybrid Journal   (Followers: 7)
Behaviour & Information Technology     Hybrid Journal   (Followers: 32)
BenchCouncil Transactions on Benchmarks, Standards, and Evaluations     Open Access   (Followers: 3)
Big Data and Cognitive Computing     Open Access   (Followers: 5)
Big Data Mining and Analytics     Open Access   (Followers: 10)
Biodiversity Information Science and Standards     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 216)
Bioinformatics Advances : Journal of the International Society for Computational Biology     Open Access   (Followers: 1)
Biomedical Engineering     Hybrid Journal   (Followers: 11)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 11)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 43)
British Journal of Educational Technology     Hybrid Journal   (Followers: 93)
Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics     Open Access  
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
Cadernos do IME : Série Informática     Open Access  
CALCOLO     Hybrid Journal  
CALICO Journal     Full-text available via subscription  
Calphad     Hybrid Journal  
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 14)
Catalysis in Industry     Hybrid Journal  
CCF Transactions on High Performance Computing     Hybrid Journal  
CCF Transactions on Pervasive Computing and Interaction     Hybrid Journal  
CEAS Space Journal     Hybrid Journal   (Followers: 6)
Cell Communication and Signaling     Open Access   (Followers: 3)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 4)
CERN IdeaSquare Journal of Experimental Innovation     Open Access  
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 1)
Chaos, Solitons & Fractals : X     Open Access   (Followers: 1)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 13)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 8)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chip     Full-text available via subscription   (Followers: 2)
Ciencia     Open Access  
CIN : Computers Informatics Nursing     Hybrid Journal   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 16)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Clinical eHealth     Open Access  
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 2)
Cognitive Computation and Systems     Open Access  
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 18)
Communication Methods and Measures     Hybrid Journal   (Followers: 12)
Communication Theory     Hybrid Journal   (Followers: 29)
Communications in Algebra     Hybrid Journal   (Followers: 1)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 2)
Communications of the ACM     Full-text available via subscription   (Followers: 59)
Communications of the Association for Information Systems     Open Access   (Followers: 15)
Communications on Applied Mathematics and Computation     Hybrid Journal   (Followers: 1)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 4)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 3)
Computational and Mathematical Methods     Hybrid Journal  
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 1)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 11)
Computational Astrophysics and Cosmology     Open Access   (Followers: 6)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Biology Journal     Open Access   (Followers: 6)
Computational Brain & Behavior     Hybrid Journal   (Followers: 1)
Computational Chemistry     Open Access   (Followers: 3)
Computational Communication Research     Open Access   (Followers: 1)
Computational Complexity     Hybrid Journal   (Followers: 5)
Computational Condensed Matter     Open Access   (Followers: 1)

        1 2 3 4 5 6 7 | Last

Similar Journals
Journal Cover
ACM Transactions on Architecture and Code Optimization (TACO)
Journal Prestige (SJR): 0.301
Citation Impact (citeScore): 2
Number of Followers: 9  
 
  Hybrid Journal Hybrid journal (It can contain Open Access articles)
ISSN (Print) 1544-3566 - ISSN (Online) 1544-3973
Published by ACM Homepage  [83 journals]
  • ACM Transactions on Architecture and Code Optimization (TACO)

    • Free pre-print version: Loading...

      PubDate: Fri, 31 Dec 2021 00:00:00 GMT
       
  • Device Hopping: Transparent Mid-Kernel Runtime Switching for Heterogeneous
           Systems

    • Free pre-print version: Loading...

      Abstract: Paul Metzger, Volker Seeker, Christian Fensch, Murray Cole

      Existing OS techniques for homogeneous many-core systems make it simple for single and multithreaded applications to migrate between cores. Heterogeneous systems do not benefit so fully from this flexibility, and applications that cannot migrate in mid-execution may lose potential performance. The situation is particularly challenging when a switch of language runtime would be desirable in conjunction with a migration. We present a case study in making heterogeneous CPU + GPU systems more flexible in this respect. Our technique for fine-grained application migration, allows switches between OpenMP, OpenCL, and CUDA execution, in conjunction with migrations from GPU to CPU, and CPU to GPU.
      PubDate: Wed, 29 Sep 2021 00:00:00 GMT
       
  • LargeGraph: An Efficient Dependency-Aware GPU-Accelerated Large-Scale
           Graph Processing

    • Free pre-print version: Loading...

      Abstract: Yu Zhang, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu, Bingsheng He

      Many out-of-GPU-memory systems are recently designed to support iterative processing of large-scale graphs. However, these systems still suffer from long time to converge because of inefficient propagation of active vertices’ new states along graph paths. To efficiently support out-of-GPU-memory graph processing, this work designs a system LargeGraph. Different from existing out-of-GPU-memory systems, LargeGraph proposes a dependency-aware data-driven execution approach, which can significantly accelerate active vertices’ state propagations along graph paths with low data access cost and also high parallelism. Specifically, according to the dependencies between the vertices, it only loads and processes the graph data associated with dependency chains originated from active vertices for smaller access cost.
      PubDate: Wed, 29 Sep 2021 00:00:00 GMT
       
  • Spiking Neural Networks in Spintronic Computational RAM

    • Free pre-print version: Loading...

      Abstract: Hüsrev Cılasun, Salonik Resch, Zamshed I. Chowdhury, Erin Olson, Masoud Zabihi, Zhengyang Zhao, Thomas Peterson, Keshab K. Parhi, Jian-Ping Wang, Sachin S. Sapatnekar, Ulya R. Karpuzcu

      Spiking Neural Networks (SNNs) represent a biologically inspired computation model capable of emulating neural computation in human brain and brain-like structures. The main promise is very low energy consumption. Classic Von Neumann architecture based SNN accelerators in hardware, however, often fall short of addressing demanding computation and data transfer requirements efficiently at scale. In this article, we propose a promising alternative to overcome scalability limitations, based on a network of in-memory SNN accelerators, which can reduce the energy consumption by up to 150.25= when compared to a representative ASIC solution.
      PubDate: Wed, 29 Sep 2021 00:00:00 GMT
       
  • Byte-Select Compression

    • Free pre-print version: Loading...

      Abstract: Matthew Tomei, Shomit Das, Mohammad Seyedzadeh, Philip Bedoukian, Bradford Beckmann, Rakesh Kumar, David Wood

      Cache-block compression is a highly effective technique for both reducing accesses to lower levels in the memory hierarchy (cache compression) and minimizing data transfers (link compression). While many effective cache-block compression algorithms have been proposed, the design of these algorithms is largely ad hoc and manual and relies on human recognition of patterns. In this article, we take an entirely different approach. We introduce a class of “byte-select” compression algorithms, as well as an automated methodology for generating compression algorithms in this class. We argue that, based on upper bounds within the class, the study of this class of byte-select algorithms has potential to yield algorithms with better performance than existing cache-block compression algorithms.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • Domain-Specific Multi-Level IR Rewriting for GPU: The Open Earth Compiler
           for GPU-accelerated Climate Simulation

    • Free pre-print version: Loading...

      Abstract: Tobias Gysi, Christoph Müller, Oleksandr Zinenko, Stephan Herhut, Eddie Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoefler, Tobias Grosser

      Most compilers have a single core intermediate representation (IR) (e.g., LLVM) sometimes complemented with vaguely defined IR-like data structures. This IR is commonly low-level and close to machine instructions. As a result, optimizations relying on domain-specific information are either not possible or require complex analysis to recover the missing information. In contrast, multi-level rewriting instantiates a hierarchy of dialects (IRs), lowers programs level-by-level, and performs code transformations at the most suitable level. We demonstrate the effectiveness of this approach for the weather and climate domain. In particular, we develop a prototype compiler and design stencil- and GPU-specific dialects based on a set of newly introduced design principles.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • System-level Early-stage Modeling and Evaluation of IVR-assisted Processor
           Power Delivery System

    • Free pre-print version: Loading...

      Abstract: An Zou, Huifeng Zhu, Jingwen Leng, Xin He, Vijay Janapa Reddi, Christopher D. Gill, Xuan Zhang

      Despite being employed in numerous efforts to improve power delivery efficiency, the integrated voltage regulator (IVR) approach has yet to be evaluated rigorously and quantitatively in a full power delivery system (PDS) setting. To fulfill this need, we present a system-level modeling and design space exploration framework called Ivory for IVR-assisted power delivery systems. Using a novel modeling methodology, it can accurately estimate power delivery efficiency, static performance characteristics, and dynamic transient responses under different load variations and external voltage/frequency scaling conditions. We validate the model over a wide range of IVR topologies with silicon measurement and SPICE simulation. Finally, we present two case studies using architecture-level performance and power simulators.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • GraphAttack: Optimizing Data Supply for Graph Applications on In-Order
           Multicore Architectures

    • Free pre-print version: Loading...

      Abstract: Aninda Manocha, Tyler Sorensen, Esin Tureci, Opeoluwa Matthews, Juan L. Aragón, Margaret Martonosi

      Graph structures are a natural representation of important and pervasive data. While graph applications have significant parallelism, their characteristic pointer indirect loads to neighbor data hinder scalability to large datasets on multicore systems. A scalable and efficient system must tolerate latency while leveraging data parallelism across millions of vertices. Modern Out-of-Order (OoO) cores inherently tolerate a fraction of long latencies, but become clogged when running severely memory-bound applications. Combined with large power/area footprints, this limits their parallel scaling potential and, consequently, the gains that existing software frameworks can achieve. Conversely, accelerator and memory hierarchy designs provide performant hardware specializations, but cannot support diverse application demands.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • Scenario-Aware Program Specialization for Timing Predictability

    • Free pre-print version: Loading...

      Abstract: Joscha Benz, Oliver Bringmann

      The successful application of static program analysis strongly depends on flow facts of a program such as loop bounds, control-flow constraints, and operating modes. This problem heavily affects the design of real-time systems, since static program analyses are a prerequisite to determine the timing behavior of a program. For example, this becomes obvious in worst-case execution time (WCET) analysis, which is often infeasible without user-annotated flow facts. Moreover, many timing simulation approaches use statically derived timings of partial program paths to reduce simulation overhead. Annotating flow facts on binary or source level is either error-prone and tedious, or requires specialized compilers that can transform source-level annotations along with the program during optimization.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • WaFFLe: Gated Cache-Ways with Per-Core Fine-Grained DVFS for Reduced
           On-Chip Temperature and Leakage Consumption

    • Free pre-print version: Loading...

      Abstract: Shounak Chakraborty, Magnus Själander

      Managing thermal imbalance in contemporary chip multi-processors (CMPs) is crucial in assuring functional correctness of modern mobile as well as server systems. Localized regions with high activity, e.g., register files, ALUs, FPUs, and so on, experience higher temperatures than the average across the chip and are commonly referred to as hotspots. Hotspots affect functional correctness of the underlying circuitry and a noticeable increase in leakage power, which in turn generates heat in a self-reinforced cycle. Techniques that reduce the severity of or completely eliminate hotspots can maintain functional correctness along with improving performance of CMPs. Conventional dynamic thermal management targets the cores to reduce hotspots but often ignores caches, which are known for their high leakage power consumption.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • SortCache: Intelligent Cache Management for Accelerating Sparse Data
           Workloads

    • Free pre-print version: Loading...

      Abstract: Sriseshan Srikanth, Anirudh Jain, Thomas M. Conte, Erik P. Debenedictis, Jeanine Cook

      Sparse data applications have irregular access patterns that stymie modern memory architectures. Although hyper-sparse workloads have received considerable attention in the past, moderately-sparse workloads prevalent in machine learning applications, graph processing and HPC have not. Where the former can bypass the cache hierarchy, the latter fit in the cache. This article makes the observation that intelligent, near-processor cache management can improve bandwidth utilization for data-irregular accesses, thereby accelerating moderately-sparse workloads. We propose SortCache, a processor-centric approach to accelerating sparse workloads by introducing accelerators that leverage the on-chip cache subsystem, with minimal programmer intervention.
      PubDate: Fri, 03 Sep 2021 00:00:00 GMT
       
  • Low I/O Intensity-aware Partial GC Scheduling to Reduce Long-tail Latency
           in SSDs

    • Free pre-print version: Loading...

      Abstract: Zhibing Sha, Jun Li, Lihao Song, Jiewen Tang, Min Huang, Zhigang Cai, Lianju Qian, Jianwei Liao, Zhiming Liu

      This article proposes a low I/O intensity-aware scheduling scheme on garbage collection (GC) in SSDs for minimizing the I/O long-tail latency to ensure I/O responsiveness. The basic idea is to assemble partial GC operations by referring to several determinable factors (e.g., I/O characteristics) and dispatch them to be processed together in idle time slots of I/O processing. To this end, it first makes use of Fourier transform to explore the time slots having relative sparse I/O requests for conducting time-consuming GC operations, as the number of affected I/O requests can be limited. After that, it constructs a mathematical model to further figure out the types and quantities of partial GC operations, which are supposed to be dealt with in the explored idle time slots, by taking the factors of I/O intensity, read/write ratio, and the SSD use state into consideration.
      PubDate: Wed, 18 Aug 2021 00:00:00 GMT
       
  • Towards Enhanced System Efficiency while Mitigating Row Hammer

    • Free pre-print version: Loading...

      Abstract: Kaustav Goswami, Dip Sankar Banerjee, Shirshendu Das

      In recent years, DRAM-based main memories have become susceptible to the Row Hammer (RH) problem, which causes bits to flip in a row without accessing them directly. Frequent activation of a row, called an aggressor row, causes its adjacent rows’ (victim) bits to flip. The state-of-the-art solution is to refresh the victim rows explicitly to prevent bit flipping. There have been several proposals made to detect RH attacks. These include both probabilistic as well as deterministic counter-based methods. The technique of handling RH attacks, however, remains the same. In this work, we propose an efficient technique for handling the RH problem.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • All-gather Algorithms Resilient to Imbalanced Process Arrival Patterns

    • Free pre-print version: Loading...

      Abstract: Jerzy Proficz

      Two novel algorithms for the all-gather operation resilient to imbalanced process arrival patterns (PATs) are presented. The first one, Background Disseminated Ring (BDR), is based on the regular parallel ring algorithm often supplied in MPI implementations and exploits an auxiliary background thread for early data exchange from faster processes to accelerate the performed all-gather operation. The other algorithm, Background Sorted Linear synchronized tree with Broadcast (BSLB), is built upon the already existing PAP-aware gather algorithm, that is, Background Sorted Linear Synchronized tree (BSLS), followed by a regular broadcast distributing gathered data to all participating processes. The background of the imbalanced PAP subject is described, along with the PAP monitoring and evaluation topics.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • Configurable Multi-directional Systolic Array Architecture for
           Convolutional Neural Networks

    • Free pre-print version: Loading...

      Abstract: Rui Xu, Sheng Ma, Yaohua Wang, Xinhai Chen, Yang Guo

      The systolic array architecture is one of the most popular choices for convolutional neural network hardware accelerators. The biggest advantage of the systolic array architecture is its simple and efficient design principle. Without complicated control and dataflow, hardware accelerators with the systolic array can calculate traditional convolution very efficiently. However, this advantage also brings new challenges to the systolic array. When computing special types of convolution, such as the small-scale convolution or depthwise convolution, the processing element (PE) utilization rate of the array decreases sharply. The main reason is that the simple architecture design limits the flexibility of the systolic array.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • SLO-Aware Inference Scheduler for Heterogeneous Processors in Edge
           Platforms

    • Free pre-print version: Loading...

      Abstract: Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, Jongse Park

      With the proliferation of applications with machine learning (ML), the importance of edge platforms has been growing to process streaming sensor, data locally without resorting to remote servers. Such edge platforms are commonly equipped with heterogeneous computing processors such as GPU, DSP, and other accelerators, but their computational and energy budget are severely constrained compared to the data center servers. However, as an edge platform must perform the processing of multiple machine learning models concurrently for multimodal sensor data, its scheduling problem poses a new challenge to map heterogeneous machine learning computation to heterogeneous computing processors. Furthermore, processing of each input must provide a certain level of bounded response latency, making the scheduling decision critical for the edge platform.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • Gem5-X: A Many-core Heterogeneous Simulation Platform for Architectural
           Exploration and Optimization

    • Free pre-print version: Loading...

      Abstract: Yasir Mahmood Qureshi, William Andrew Simon, Marina Zapater, Katzalin Olcoz, David Atienza

      The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • PICO: A Presburger In-bounds Check Optimization for Compiler-based Memory
           Safety Instrumentations

    • Free pre-print version: Loading...

      Abstract: Tina Jung, Fabian Ritter, Sebastian Hack

      Memory safety violations such as buffer overflows are a threat to security to this day. A common solution to ensure memory safety for C is code instrumentation. However, this often causes high execution-time overhead and is therefore rarely used in production. Static analyses can reduce this overhead by proving some memory accesses in bounds at compile time. In practice, however, static analyses may fail to verify in-bounds accesses due to over-approximation. Therefore, it is important to additionally optimize the checks that reside in the program. In this article, we present PICO, an approach to eliminate and replace in-bounds checks. PICO exactly captures the spatial memory safety of accesses using Presburger formulas to either verify them statically or substitute existing checks with more efficient ones.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • Low-precision Logarithmic Number Systems: Beyond Base-2

    • Free pre-print version: Loading...

      Abstract: Syed Asad Alam, James Garland, David Gregg

      Logarithmic number systems (LNS) are used to represent real numbers in many applications using a constant base raised to a fixed-point exponent making its distribution exponential. This greatly simplifies hardware multiply, divide, and square root. LNS with base-2 is most common, but in this article, we show that for low-precision LNS the choice of base has a significant impact. We make four main contributions. First, LNS is not closed under addition and subtraction, so the result is approximate. We show that choosing a suitable base can manipulate the distribution to reduce the average error. Second, we show that low-precision LNS addition and subtraction can be implemented efficiently in logic rather than commonly used ROM lookup tables, the complexity of which can be reduced by an appropriate choice of base.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • Monolithically Integrating Non-Volatile Main Memory over the Last-Level
           Cache

    • Free pre-print version: Loading...

      Abstract: Candace Walden, Devesh Singh, Meenatchi Jagasivamani, Shang Li, Luyi Kang, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, Donald Yeung

      Many emerging non-volatile memories are compatible with CMOS logic, potentially enabling their integration into a CPU’s die. This article investigates such monolithically integrated CPU–main memory chips. We exploit non-volatile memories employing 3D crosspoint subarrays, such as resistive RAM (ReRAM), and integrate them over the CPU’s last-level cache (LLC). The regular structure of cache arrays enables co-design of the LLC and ReRAM main memory for area efficiency. We also develop a streamlined LLC/main memory interface that employs a single shared internal interconnect for both the cache and main memory arrays, and uses a unified controller to service both LLC and main memory requests.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
  • CIB-HIER: Centralized Input Buffer Design in Hierarchical High-radix
           Routers

    • Free pre-print version: Loading...

      Abstract: Cunlu Li, Dezun Dong, Shazhou Yang, Xiangke Liao, Guangyu Sun, Yongheng Liu

      Hierarchical organization is widely used in high-radix routers to enable efficient scaling to higher switch port count. A general-purpose hierarchical router must be symmetrically designed with the same input buffer depth, resulting in a large amount of unused input buffers due to the different link lengths. Sharing input buffers between different input ports can improve buffer utilization, but the implementation overhead also increases with the number of shared ports. Previous work allowed input buffers to be shared among all router ports, which maximizes the buffer utilization but also introduces higher implementation complexity. Moreover, such design can impair performance when faced with long packets, due to the head-of-line blocking in intermediate buffers.
      PubDate: Fri, 16 Jul 2021 00:00:00 GMT
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.172.111.71
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-