for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> COMPUTER SCIENCE (Total: 2052 journals)
    - ANIMATION AND SIMULATION (30 journals)
    - ARTIFICIAL INTELLIGENCE (99 journals)
    - AUTOMATION AND ROBOTICS (105 journals)
    - CLOUD COMPUTING AND NETWORKS (65 journals)
    - COMPUTER ARCHITECTURE (10 journals)
    - COMPUTER ENGINEERING (11 journals)
    - COMPUTER GAMES (15 journals)
    - COMPUTER PROGRAMMING (26 journals)
    - COMPUTER SCIENCE (1194 journals)
    - COMPUTER SECURITY (44 journals)
    - DATA BASE MANAGEMENT (14 journals)
    - DATA MINING (34 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (29 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (39 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (92 journals)
    - SOCIAL WEB (50 journals)
    - SOFTWARE (33 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1194 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 20)
Abakós     Open Access   (Followers: 4)
ACM Computing Surveys     Hybrid Journal   (Followers: 27)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 8)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 12)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 15)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 5)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 12)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 3)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 17)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 15)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 5)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 4)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 19)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 7)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 9)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 29)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 2)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 28)
Advanced Science Letters     Full-text available via subscription   (Followers: 10)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 7)
Advances in Artificial Intelligence     Open Access   (Followers: 15)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 19)
Advances in Computer Engineering     Open Access   (Followers: 4)
Advances in Computer Science : an International Journal     Open Access   (Followers: 15)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 51)
Advances in Engineering Software     Hybrid Journal   (Followers: 27)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 13)
Advances in Human Factors/Ergonomics     Full-text available via subscription   (Followers: 22)
Advances in Human-Computer Interaction     Open Access   (Followers: 20)
Advances in Materials Sciences     Open Access   (Followers: 14)
Advances in Operations Research     Open Access   (Followers: 12)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 6)
Advances in Porous Media     Full-text available via subscription   (Followers: 5)
Advances in Remote Sensing     Open Access   (Followers: 44)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 5)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 8)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
AI EDAM     Hybrid Journal  
Air, Soil & Water Research     Open Access   (Followers: 11)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 5)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 5)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 4)
Annals of Data Science     Hybrid Journal   (Followers: 11)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 12)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 13)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 1)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 12)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 11)
Applied Computer Systems     Open Access   (Followers: 2)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 10)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Applied System Innovation     Open Access  
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 146)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 7)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 7)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access   (Followers: 1)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 4)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 11)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 9)
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Big Data and Cognitive Computing     Open Access   (Followers: 2)
Biodiversity Information Science and Standards     Open Access  
Bioinformatics     Hybrid Journal   (Followers: 294)
Biomedical Engineering     Hybrid Journal   (Followers: 15)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 21)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 37)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 46)
British Journal of Educational Technology     Hybrid Journal   (Followers: 144)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 12)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal   (Followers: 2)
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 15)
Capturing Intelligence     Full-text available via subscription  
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal   (Followers: 2)
Cell Communication and Signaling     Open Access   (Followers: 2)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access   (Followers: 3)
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 14)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 15)
Clean Air Journal     Full-text available via subscription   (Followers: 1)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 14)
Communication Methods and Measures     Hybrid Journal   (Followers: 12)
Communication Theory     Hybrid Journal   (Followers: 21)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Computational Physics     Full-text available via subscription   (Followers: 2)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 52)
Communications of the Association for Information Systems     Open Access   (Followers: 16)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 11)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 9)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 16)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 5)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 14)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 30)
Computer     Full-text available via subscription   (Followers: 94)
Computer Aided Surgery     Open Access   (Followers: 6)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 8)
Computer Communications     Hybrid Journal   (Followers: 16)
Computer Engineering and Applications Journal     Open Access   (Followers: 5)
Computer Journal     Hybrid Journal   (Followers: 9)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 23)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 12)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 2)

        1 2 3 4 5 6 | Last

Journal Cover Calphad
  Journal Prestige (SJR): 1.116
  Citation Impact (citeScore): 44
  Number of Followers: 2  
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0364-5916
   Published by Elsevier Homepage  [3162 journals]
  • Phase equilibria and liquidus projection determination of the
           Ce–Co–Sb ternary system
    • Authors: Chengliang Xu; Changrong Li; Daiman Zhu; Cuiping Guo; Zhenmin Du; Xiaohua Chen; Junqin Li
      Pages: 1 - 19
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Chengliang Xu, Changrong Li, Daiman Zhu, Cuiping Guo, Zhenmin Du, Xiaohua Chen, Junqin Li
      The Ce-Co-Sb ternary system is experimentally investigated, including the isothermal section at 823 K and the supplementary measurements at 673 K, as well as the liquidus projection of this system. For the isothermal section at 823 K, the phase equilibria in the whole composition range are determined using the equilibrated alloys prepared by the combination of arc melting method and high frequency melting method under the protection of an argon atmosphere, in case of the volatility of Sb and the oxidation of Ce. To confirm the phase relations at 673 K from previous literature report, some phase equilibria are re-determined on the basis of supplementary experiments. Two ternary compounds, (CeCouSb2) and CeCoSb3 are observed and the isothermal sections of the Ce-Co-Sb system at 823 and 673 K are finally constructed. The solidification paths of the Ce-Co-Sb as-cast alloys are analyzed to ascertain the primarily solidified phases from liquid. Both the liquidus projection and the isothermal sections of the Ce-Co-Sb system are determined based on the microstructures, crystal structures and phase compositions determined by scanning electron microscopy, X-ray diffraction and electron probe micro-analyzer, respectively. Some phase transition temperatures of the Ce-Co rich region are determined by means of differential scanning calorimeter.

      PubDate: 2018-02-25T16:39:18Z
      DOI: 10.1016/j.calphad.2018.02.002
      Issue No: Vol. 61 (2018)
       
  • Experimental investigation of phase equilibria in the Ti-Fe-Zr system
    • Authors: Lijun Zeng; Guanglong Xu; Libin Liu; Weimin Bai; Ligang Zhang
      Pages: 20 - 32
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Lijun Zeng, Guanglong Xu, Libin Liu, Weimin Bai, Ligang Zhang
      The phase relations of the Ti-Fe-Zr system at 873 and 1173 K were experimentally investigated by using the equilibrated alloys. Four ternary phases were determined stable at 1173 K. Two of them were line compounds with fixed Fe/(Ti, Zr) ratio, while the other two showed ellipse-shaped homogeneity. There were eight three-phase equilibria and a continuous single phase field of β(Ti, Zr) in the isothermal section at 1173 K. The solubility of Zr in Fe2(Ti, Zr) and Ti in (Fe, Ti)2Zr was measured to be 25.5 at% and 6.1 at%, respectively. The remaining binary intermetallic phases hardly dissolved the third component. The phase relationships in the isothermal section at 873 K were similar to those at 1173 K over the composition range of 0–50 at% Fe. In this isothermal section, five three-phase equilibria were observed and they were all related with the newly found ternary phases. The phase relations measured in this work are of significant difference from the existing ones obtained with the diffusion couple.

      PubDate: 2018-02-25T16:39:18Z
      DOI: 10.1016/j.calphad.2018.02.005
      Issue No: Vol. 61 (2018)
       
  • Thermodynamic re-assessment of the Re–X (X=Al, Co, Cr, Ta) binary
           systems
    • Authors: Cuiping Guo; Tianfeng Wu; Changrong Li; Zhenmin Du
      Pages: 33 - 40
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Cuiping Guo, Tianfeng Wu, Changrong Li, Zhenmin Du
      Rhenium was one of important alloying elements in the Ni-based superalloys. Based on the molar Gibbs energy of the pure Re updated in SGTE Pure 5 database, the Re–X(X=Al, Co, Cr, Ta) systems were re-optimized by means of CALPHAD (CALculation of PHAse Diagrams) technique. In the present work, the phases liquid, fcc, bcc and hcp were described using a substitutional solution model. The phases AlRe, Al3Re, Al6Re, Al12Re, AlRe2 and Al11Re4 in the Re–Al system were described as stochiometric compound. The Al4Re_H and Al4Re_L instead of Al4Re were evaluated in the present work. The phases σ in the Re–Cr and Re–Ta systems and χ in the Re–Ta system were modeled as (X, Re)10(X, Re)20 (X=Cr or Ta) and Re24(Re, Ta)10(Re, Ta)24, respectively. A set of self-consistent thermodynamic parameters of the Re–X systems were obtained and the optimized results were in good agreement with the experimental data.

      PubDate: 2018-02-25T16:39:18Z
      DOI: 10.1016/j.calphad.2018.01.005
      Issue No: Vol. 61 (2018)
       
  • Comprehensive first-principles study of transition-metal substitution in
           the γ phase of nickel-based superalloys
    • Authors: Weiliang Chen; Weiwei Xing; Hui Ma; Xueyong Ding; Xing-Qiu Chen; Dianzhong Li; Yiyi Li
      Pages: 41 - 49
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Weiliang Chen, Weiwei Xing, Hui Ma, Xueyong Ding, Xing-Qiu Chen, Dianzhong Li, Yiyi Li
      In order to elucidate the role of various M-alloying additions in the fcc-type γ phase of nickel-based superalloys, we have performed a comprehensive and systematical computation on all 3d-, 4d- and 5d-M alloying additions substituting in the Ni lattice using the same standard of the first-principles calculations within the framework of the density functional theory. The results show that the substitution enthalpies of Sc, Ti, V, Mn, Fe, Co, Zn, Zr, Nb, Hf, Ta, and Pt are negative, while the others elements have positive substitution enthalpies. To further explore the contributions of various factors to the substitution enthalpy, we have attempted to divide the substitution enthalpy into two parts. The first one is the mechanical deformation energy caused by the atomic volume change because of the M-alloying additions substituting in fcc Ni and the other one is the chemical and magnetic energy through electronic hybridizations and local magnetic interactions. It is found that the substitution enthalpy is a consequence of the balancing of these two contributions. Furthermore, we have attempted to correlate their mechanical deformation energies with metallic atomic radii of substitutional M-alloying addition with respect to Ni, and the chemical and magnetic energies with transferred charges between M-alloying addition and Ni, which are indeed associated with the so-called electronegativity difference.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.006
      Issue No: Vol. 61 (2018)
       
  • CpFit program for approximation of heat capacities and enthalpies by
           Einstein-Planck functions sum
    • Authors: Alexey L. Voskov; Ilya B. Kutsenok; Gennady F. Voronin
      Pages: 50 - 61
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Alexey L. Voskov, Ilya B. Kutsenok, Gennady F. Voronin
      CpFit program for joint approximation of heat capacities and enthalpies (heat contents) by means of Einstein-Planck functions sum has been developed. It uses algorithms for automatic search of number of functions in the sum and automatic search of initial approximation for model parameters. The program also allows to use arbitrary extra terms for approximation of heat capacity anomalies such as lambda-transitions, Schottky anomalies etc. Experimental data for thorium and uranium dioxides, natrolite, potassium and thallium substituted natrolites were successfully approximated in wide ranges of temperature.
      Graphical abstract image Highlights fx1

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.001
      Issue No: Vol. 61 (2018)
       
  • Experimental investigation of phase relations in Bi-Te-RE (Yb, La, Ce)
           ternary systems
    • Authors: Mingyue Tan; Cun Mao; Ligang Zhang; Weimin Bai; Libin Liu
      Pages: 62 - 71
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Mingyue Tan, Cun Mao, Ligang Zhang, Weimin Bai, Libin Liu
      Rare earth (RE) elements especially Yb, La and Ce have been frequently doped to Bi-Te alloys to improve thermoelectric performance. Three isothermal sections: Bi-Te-Yb at 573 K, Bi-Te-La and Bi-Te-Ce at 673 K were partly established by means of electron probe micro-analysis (EPMA) and powder X-ray diffractometry (XRD). The determined maximum solubilities of RE elements in Bi-Te alloys are very small and that of Yb reached the maximum about 0.3 at% at 573 K. Both LaTe2 and CeTe2 can dissolve a large amount of Bi, about 10 and 13 at% at 673 K, respectively. No ternary compound has been confirmed.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.007
      Issue No: Vol. 61 (2018)
       
  • Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its
           implications for phase stability of Ti bio-implant materials
    • Authors: Cassie Marker; Shun-Li Shang; Ji-Cheng Zhao; Zi-Kui Liu
      Pages: 72 - 84
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Cassie Marker, Shun-Li Shang, Ji-Cheng Zhao, Zi-Kui Liu
      Titanium alloys are great candidates for applications such as biomedical implants that require biocompatibility, a low Young's modulus and a high strength. However, the properties of Ti alloys are highly dependent on phase stability. In the present work, a database for the Ti-Mo-Nb-Ta-Zr system has been evaluated using the CALPHAD (CALculation of PHAse Diagram) approach. The database was completed by evaluating the accuracy of previously modeled systems from literature and modeling systems that, to the best of the authors’ knowledge, had no modeling available in literature. All of the binary systems that make up the Ti-Mo-Nb-Ta-Zr system had previously modeled thermodynamic descriptions available in the literature and in most cases had multiple different descriptions available, which meant determining which previous thermodynamic description most accurately modeled the binary system with a direct focus on the bcc phase. In order to determine the accuracy of the multiple available thermodynamic descriptions from literature a combination of experimental data (also obtained from the literature) and computed thermochemical properties of the bcc phase from DFT (Density Functional Theory)-based first-principles calculations (present work) were used. Once the thermodynamic descriptions for the binary systems were chosen, focus shifted to the Ti-containing ternary systems. The Ti-Mo-Zr, Ti-Nb-Zr and Ti-Ta-Zr systems had previous thermodynamic description available in literature, which were incorporated without changes into the working database. The Ti-Mo-Ta, Ti-Nb-Ta and Ti-Mo-Nb systems had, to the authors’ knowledge, no descriptions available in the literature. Interaction parameters were determined for the Ti-Mo-Ta and Ti-Nb-Ta systems, and no interaction parameters were introduced for the Ti-Mo-Nb system. The database introduced by this work satisfactorily predicts the thermodynamics of the Ti-Mo-Nb-Ta-Zr system.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.004
      Issue No: Vol. 61 (2018)
       
  • Atomic mobilities and diffusivities in U-X (X = Nb, Zr, Ti) bcc alloys
    • Authors: Baixue Bian; Peng Zhou; Shiyi Wen; Yong Du
      Pages: 85 - 91
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Baixue Bian, Peng Zhou, Shiyi Wen, Yong Du
      Based on a critical evaluation of experimental diffusion data available in the literature and the updated thermodynamic descriptions within the CALPHAD framework, the atomic mobilities of U, Nb, Ti, and Zr in U-X(X=Nb, Zr, Ti) bcc alloys were assessed with the DICTRA software. For each system, comprehensive comparison shows that a good agreement between the calculated and experimental data was obtained. The developed mobilities in conjunction with the thermodynamic parameters were also used to describe the marker movement in the U/Zr as well as U/Ti diffusion couples, and a satisfactory result was obtained. The presently obtained atomic mobilities can describe diffusion phenomenon more accurately than previously reported atomic mobilities.
      Graphical abstract image

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.003
      Issue No: Vol. 61 (2018)
       
  • Interdiffusion behaviors and mechanical properties of Cu-Zr system
    • Authors: Yongxing Zhao; Tikun Pang; Jiaxin He; Xiaoma Tao; Hongmei Chen; Yifang Ouyang; Yong Du
      Pages: 92 - 97
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Yongxing Zhao, Tikun Pang, Jiaxin He, Xiaoma Tao, Hongmei Chen, Yifang Ouyang, Yong Du
      In this work, solid-to-solid diffusion couples were assembled and annealed to investigate diffusion behavior and mechanical properties of the Cu-Zr system in temperatures range from 1043 K to 1113 K. Six intermetallic compounds (IMCs) Cu9Zr2, Cu51Zr14, Cu8Zr3, Cu10Zr7, CuZr, and CuZr2 were observed in the diffusion zone. Composition-dependent interdiffusion coefficients of IMCs have been calculated based on the measured composition Cu profiles of the diffusion zones by using Sauer–Freise method. And the average effective interdiffusion coefficients for each phase were also calculated by using Wagner method. The activation energies of diffusion are evaluated according to the average effective interdiffusion coefficient. Finally, the load-displacement curves measured by nano-indentation are obtained to characterize mechanical properties of Cu9Zr2 and Cu51Zr14, which have similar hardness and elastic moduli.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.008
      Issue No: Vol. 61 (2018)
       
  • Thermodynamic assessment of the C–Zr–Nb ternary system
    • Authors: Yinping Zeng; Peng Zhou; Yong Du
      Pages: 98 - 104
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Yinping Zeng, Peng Zhou, Yong Du
      The whole C–Zr–Nb ternary system was assessed by means of CALPHAD method for the first time. All of the experimental phase diagram data available from the literature were critically reviewed and assessed using thermodynamic models for the Gibbs energies of individual phases. The solution phases including the liquid, fcc, hcp and bcc were described by the substitutional solution model. There is no ternary compound in this system. A set of self-consistent thermodynamic parameters for the C–Zr–Nb system is obtained. Comparisons between the calculated and measured diagrams show that the present thermodynamic description can account for the experimental information satisfactorily. The liquidus projection and reaction scheme for the C–Zr–Nb system were generated by using the present thermodynamic parameters. The effect of microstructure on the mechanical properties of C–Zr–Nb alloys homogenized at 1800 °C reported in the literature was discussed from a phase diagram point of view.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.009
      Issue No: Vol. 61 (2018)
       
  • Development of a multicomponent reaction rate model coupling
           thermodynamics and kinetics for reaction between high Mn-high Al steel and
           CaO-SiO2-type molten mold flux
    • Authors: Min-Su Kim; Youn-Bae Kang
      Pages: 105 - 115
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Min-Su Kim, Youn-Bae Kang
      A new multi-component reaction model was developed in order to describe complex reaction phenomena between a high Mn-high Al steel and a CaO-SiO2-type molten mold flux. This model is an extension of Robertson's multicomponent mixed-transport-control theory (Robertson et al., 1984) [7], where rate controlling step is assumed to be a mass transport of diffusing species in a boundary layer, while chemical equilibrium is assumed at the reaction interface. This model also employs a CALPHAD type multicomponent-multiphase thermodynamic calculations for chemical equilibria at the interface. By explicitly taking into account 1) local equilibrium at the liquid steel-liquid flux interface, 2) flux density equations for each diffusing species in the steel and the flux phases, and 3) instantaneous change of mass transfer coefficients of all diffusing species in the flux phase by varying viscosity of the flux, previous laboratory scale experimental data could be well explained under various [pct Al]0, [pct Si]0 in the liquid steel, (pct CaO)/(pct SiO2), (pct Al2O3)0, (pct MgO)0 in the liquid flux, and reaction temperature. From the model calculations under the various [pct Al]0, it was concluded that the present reaction model can be successfully applicable from low [pct Al] to high [pct Al] conditions in liquid steel. The present model was further extended in simulating composition change in a mold flux in a continuous casting mold, where the steel and the flux continuously enter and leave. The model calculations show good agreement with pilot plant scale data available in literature. From the calculation results under different casting variables such as [pct Al]0, mold flux pool depth, and mold flux consumption rate, the Al2O3 accumulation in the CaO-SiO2-type mold flux during the continuous casting was discussed.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.02.010
      Issue No: Vol. 61 (2018)
       
  • Partition and non-partition transition of austenite growth from a ferrite
           and cementite mixture in hypo- and hypereutectoid Fe-C-Mn alloys
    • Authors: M. Enomoto; S. Li; Z.N. Yang; C. Zhang; Z.G. Yang
      Pages: 116 - 125
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): M. Enomoto, S. Li, Z.N. Yang, C. Zhang, Z.G. Yang
      The growth of austenite from a ferrite and cementite mixture in low Mn steel of hypo- and hypereutectoid composition is investigated with focus upon the Mn partitioning between dissolving cementite (or ferrite) and austenite. Under the assumption that austenite is nucleated on cementite, two critical temperatures which characterize the transition between Mn-partitioned and non-partitioned growth of austenite are noticed; below the 1st and lower critical temperature the austenite grows with redistribution of Mn from the beginning, and above the 2nd and higher critical temperature, without Mn redistribution until completion. Between them the growth mode switches from carbon-diffusion to Mn-diffusion control during growth. The influence of carbon and/or Mn diffusion through the matrix becomes progressively more significant with time, but may not affect the growth mode transition temperatures. Above the 2nd critical temperature, which is at most ca. 50 °C higher than Acm or Ae3 in alloys studied, the distribution of Mn in as-transformed or spheroidized pearlite is preserved at the completion of austenitization irrespective of the last dissolving phase, leading to the formation of an ultrafine mixture of martensite and austenite upon quenching.
      Graphical abstract image

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.03.002
      Issue No: Vol. 61 (2018)
       
  • Solution properties and salt-solution equilibria in the
           H-Li-Na-K-Ca-Mg-Cl-H2O system at 25 °C: A new thermodynamic model based
           on Pitzer's equations
    • Authors: Arnault Lassin; Laurent André; Adeline Lach; Anne-Laure Thadée; Pierre Cézac; Jean-Paul Serin
      Pages: 126 - 139
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Arnault Lassin, Laurent André, Adeline Lach, Anne-Laure Thadée, Pierre Cézac, Jean-Paul Serin
      A large part of Li production comes from the exploitation of saline lakes and salars. Industrial processes for Li recovery from such resources have to deal with highly saline waters. It is therefore necessary to develop the knowledge of Li chemistry adapted to these contexts. The present work aims to present a new set of Pitzer interaction parameters able to describe the chemical behavior of the H-Li-Na-K-Ca-Mg-Cl-H2O system up to salt solubility, at 25 °C. In a previous work, the model was limited to the H-Li-Na-K-Cl-H2O system. It is extended here by including Ca and Mg, taking into account recently revised parameters allowing the thermal properties of the binary CaCl2-H2O and MgCl2-H2O systems to be represented. The consistent extension of the thermodynamic database was made possible by the study of the binary CaCl2-H2O system up to the supersaturated metastable region and of nine ternary systems, namely X-Ca-Cl, X-Mg-Cl and Ca-Mg-Cl (where X = H, Li, Na, K). The model was finally tested on five quaternary systems.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.03.005
      Issue No: Vol. 61 (2018)
       
  • Thermodynamic evaluation and optimization of the BaO-SiO2 and BaO-CaO-SiO2
           systems
    • Authors: Adarsh Shukla; In-Ho Jung; Sergei A. Decterov; Arthur D. Pelton
      Pages: 140 - 147
      Abstract: Publication date: June 2018
      Source:Calphad, Volume 61
      Author(s): Adarsh Shukla, In-Ho Jung, Sergei A. Decterov, Arthur D. Pelton
      The binary BaO-CaO and BaO-SiO2 systems have been critically evaluated based upon available phase equilibrium and thermodynamic data and optimized model parameters have been obtained giving the Gibbs energies of all phases as functions of temperature and composition. The liquid solution has been modeled with the Modified Quasichemical Model (MQM) to account for the short-range ordering. The results have been combined with those of previous optimizations of the CaO-SiO2 system to optimize the BaO-CaO-SiO2 system.

      PubDate: 2018-04-15T07:59:14Z
      DOI: 10.1016/j.calphad.2018.03.001
      Issue No: Vol. 61 (2018)
       
  • Thermodynamics of the ZnSO4-H2SO4-H2O system
    • Authors: T. Vielma; J. Salminen; U. Lassi
      Pages: 126 - 133
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): T. Vielma, J. Salminen, U. Lassi
      Internally consistent set of thermodynamic parameters was derived for the binary ZnSO4–H2O -system using the CALPHAD method. Available data on water activity, EMF measurements, solubility and heat of solution and dilution measurements was reviewed. Additional parameters for the ternary ZnSO4–H2SO4–H2O system were derived based on the available solubility and boiling point data. Solubility of zinc sulfate was predicted successfully under conditions relevant in hydrometallurgical processing of zinc, and even up to 15molkg−1 sulfuric acid solutions. Temperature dependent Pitzer parameters for the binary and ternary systems are reported.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.006
      Issue No: Vol. 60 (2018)
       
  • Critical assessment and thermodynamic modeling of the Cu-As system
    • Authors: Denis Shishin; Evgueni Jak
      Pages: 134 - 143
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Denis Shishin, Evgueni Jak
      Thermodynamic assessment and modeling of the Cu-As system are presented. The experimental dataset includes phase equilibrium data, activity measurements, heat contents, enthalpies of formation and mixing. The liquid phase and two non-stoichiometric copper arsenide solid solutions are developed within the framework of the Modified Quasichemical Model (MQM) in pair approximation. It is demonstrated that the unconventional choice of model for solid solution phases is beneficial for this particular system. The resulting set of model parameters will be a part of a large multicomponent thermodynamic database. It is aimed for predictions of phase equilibria, heat balance and distribution of elements in arsenic-containing chemical systems in pyrometallurgical copper and lead industrial operations.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.005
      Issue No: Vol. 60 (2018)
       
  • A thermodynamic description of data for pure Pb from 0K using the expanded
           
    • Authors: A.V. Khvan; A.T. Dinsdale; I.A. Uspenskaya; M. Zhilin; T. Babkina; A.M. Phiri
      Pages: 144 - 155
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): A.V. Khvan, A.T. Dinsdale, I.A. Uspenskaya, M. Zhilin, T. Babkina, A.M. Phiri
      Thermodynamic data for the crystalline and liquid phases of pure lead were critically assessed. A thermodynamic description was obtained using an extended Einstein model for the crystalline phase and a two state model for the liquid phase. The assessment was carried out through careful analysis of the experimental data published in the scientific literature. Additional measurements using enthalpy drop were also carried out in the present work to remove ambiguities in published experimental data.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.008
      Issue No: Vol. 60 (2018)
       
  • Experimental and thermodynamic study of the influence of the base elements
           on the carbides natures in {Ni,Co}-based {25Cr, 0.4C, 6Ta}-containing
           alloys
    • Authors: Patrice Berthod; Zohra Himeur
      Pages: 156 - 162
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Patrice Berthod, Zohra Himeur
      Primary carbides may be important for the high temperature strength of polycrystalline Cr-rich cast alloys. TaC are among the best carbides for this role. Their presence depends on the base elements of the alloys. This dependence is here studied in the case of a series of Cr-rich alloys based on Ni and/or Co and containing Ta and C in equal molar fractions. Real alloys were cast and exposed at 1400K and 1510K, and their as-cast and aged microstructures were characterized. In parallel thermodynamic calculations using Thermo-Calc and a home-made database were carried out. It appears that TaC is the single carbide present in the alloy stabilized at high temperature only if the Co content is higher than the Ni one. Discrepancies appeared between calculations and the experimental results, showing that the used database must be improved. The experimental part of this work provides microstructures data which can be used to test databases and to enrich them if necessary.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.001
      Issue No: Vol. 60 (2018)
       
  • Phase diagrams and thermochemical modeling of salt lake brine systems.
           III. Li2SO4+H2O, Na2SO4+H2O, K2SO4+H2O, MgSO4+H2O and CaSO4+H2O systems
    • Authors: Dongdong Li; Dewen Zeng; Xia Yin; Dandan Gao
      Pages: 163 - 176
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Dongdong Li, Dewen Zeng, Xia Yin, Dandan Gao
      This paper is part of a series of studies on the development of a multi-temperature thermodynamically consistent model for salt lake brine systems. Under the comprehensive thermodynamic framework proposed in our previous study, the thermodynamic and phase equilibria properties of the sulfate binary systems (i.e., Li2SO4 + H2O, Na2SO4 + H2O, K2SO4 + H2O, MgSO4 + H2O and CaSO4 + H2O) were simulated using the Pitzer-Simonson-Clegg (PSC) model. Various type of thermodynamic properties (i.e., water activity, osmotic coefficient, mean ionic activity coefficient, enthalpy of dilution and solution, relative apparent molar enthalpy, heat capacity of aqueous phase and solid phases) were collected and fitted to the model equations. The thermodynamic properties of these systems can be well reproduced or predicted using the obtained model parameters. Comparisons with the experimental or model values in literature indicate that the model parameters determined in this study can describe all of the thermodynamic and phase equilibria properties of these binary sulfate systems from infinite dilution to saturation and freezing point temperature to approx. 500K.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.002
      Issue No: Vol. 60 (2018)
       
  • HitDIC: A free-accessible code for high-throughput determination of
           interdiffusion coefficients in single solution phase
    • Authors: Jing Zhong; Weimin Chen; Lijun Zhang
      Pages: 177 - 190
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Jing Zhong, Weimin Chen, Lijun Zhang
      In this paper, a free-accessible code for High-throughput Determination of Interdiffusion Coefficients (HitDIC, https://hitdic.com/) based on the numerical inverse method is introduced. HitDIC is developed to robotize the procedures to retrieve the reliable composition-dependent interdiffusivities from the experimental composition profiles of single or multiple diffusion couples by minimizing the misfit between the experimental and model-predicted compositions profiles. The code is an efficient C++ implementation and provided as a free-accessible one, as well as demos and assistant toolkits. The underlying physics and mathematics of the modules of HitDIC, (i.e., database, simulation, error and minimization modules) are also demonstrated. Such an implementation is further proved to be feasible and reliable according to the results and discussion of the benchmarks and real cases. Moreover, some hints for the usage of HitDIC are also given.
      Graphical abstract image Highlights fx1

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.004
      Issue No: Vol. 60 (2018)
       
  • Measurement of phase equilibria in Ti-Co-Pt ternary system
    • Authors: K. Hu; X.M. Huang; J. Lu; H.S. Liu; G.M. Cai; Z.P. Jin
      Pages: 191 - 199
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): K. Hu, X.M. Huang, J. Lu, H.S. Liu, G.M. Cai, Z.P. Jin
      Phase equilibria in the Ti-Co-Pt ternary system were measured through diffusion triple and alloy sampling. Based on the results from Electron Probe Microanalysis (EPMA) and X-ray diffraction (XRD) techniques, the isothermal sections of the Ti-Co-Pt system were constructed, which consist of 16 and 13 three-phased regions at 973 and 1173K, respectively. A new ternary phase τ was detected, which contains 23.6–29.9at% Pt at 973K and 27.4–40.1at% Pt at 1173K. Furthermore, an invariant reaction between 973 and 1173K was deduced, i.e. τ + Ti4Pt3 ↔ Ti3Pt + TiPt. By the way, the solubilities of Pt mainly substituting for Co in TiCo and TiCo3 respectively increase from 22.4at% and 26.1at% at 973K to 23.8at% and 33.1at% at 1173K.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.007
      Issue No: Vol. 60 (2018)
       
  • Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn
           binary system
    • Authors: Hyo-Sun Jang; Kyeong-Min Kim; Byeong-Joo Lee
      Pages: 200 - 207
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Hyo-Sun Jang, Kyeong-Min Kim, Byeong-Joo Lee
      Interatomic potentials for pure Zn and Mg–Zn binary system have been developed on the basis of the second nearest-neighbor modified embedded-atom method formalism. The potentials describe fundamental material properties of pure Zn (bulk, defect, and thermal properties) reasonably and reproduce the alloy behavior (thermodynamic, structural, and elastic properties of compounds and solution phases) of Mg-Zn alloys well in good agreement with experiments, first-principles and CALPHAD. The applicability of the developed potentials to atom-scale investigations on the slip behavior of Mg-Zn alloys is also demonstrated by showing that the calculated effects of Zn on the general stacking fault energy on the basal, prismatic and pyramidal planes are consistent with first-principles calculations.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.003
      Issue No: Vol. 60 (2018)
       
  • Thermodynamic modeling of Ag – Cu nanoalloy phase diagram
    • Authors: Mohammad Amin Jabbareh; Fatemeh Monji
      Pages: 208 - 213
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Mohammad Amin Jabbareh, Fatemeh Monji
      Ag – Cu nanoparticles has been attracted a considerable attention due to their potential to use as catalysts, sensors and nano – solders. It is well known that the alloy nanoparticles have different phase stabilities than those observed in the bulk systems. Previous calculated results on phase stability of Ag – Cu nanoparticles showed relatively large differences with reported experimental data. Using recently modified CALPHAD type thermodynamic model, we reassess the phase diagram of Ag – Cu nanoalloy. Effect of particle size has been discussed. The results compared with the experimental and calculated data from the literature. In comparison with previous calculated phase diagrams, calculated phase diagram in this work shows better agreements with the experimental data.
      Graphical abstract image

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.004
      Issue No: Vol. 60 (2018)
       
  • Thermodynamic optimizations of the Nd-Sn and Sn-Tb systems
    • Authors: S.L. Wang; X.H. Su; S.S. Li; C.Y. Fu; Y.H. Guo; Y.X. Huang; D.H. Xiang; C.P. Wang; X.J. Liu
      Pages: 214 - 221
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): S.L. Wang, X.H. Su, S.S. Li, C.Y. Fu, Y.H. Guo, Y.X. Huang, D.H. Xiang, C.P. Wang, X.J. Liu
      The thermodynamic optimizations of the Nd-Sn and Sn-Tb binary systems were carried out by means of the Calculation of Phase Diagram (CALPHAD) method on the basis of the available experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, bct, dhcp and hcp phases were described by the substitutional solution model with the Redlich-Kister equation, while all of the intermetallic compounds (Nd5Sn3, Nd5Sn4, Nd11Sn10, NdSn, Nd3Sn5, NdSn2, Nd3Sn7, Nd2Sn5, NdSn3, Sn3Tb, βSn7Tb3, αSn7Tb3, Sn2Tb, Sn5Tb4, SnTb4, Sn10Tb11, Sn4Tb5 and Sn3Tb5) were described by the sublattice model. A set of self-consistent thermodynamic parameters of each phase in the Nd-Sn and Sn-Tb binary systems has been obtained, and the calculated results are in good agreement with the available experimental data.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2017.12.009
      Issue No: Vol. 60 (2018)
       
  • Thermodynamic modeling of the Al-C-Mn system supported by ab initio
           calculations
    • Authors: Weisen Zheng; Xiao-Gang Lu; Huahai Mao; Yanlin He; Malin Selleby; Lin Li; John Ågren
      Pages: 222 - 230
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Weisen Zheng, Xiao-Gang Lu, Huahai Mao, Yanlin He, Malin Selleby, Lin Li, John Ågren
      A CALPHAD-type thermodynamic assessment of the Al-C-Mn system was carried out in the present work. Special attention was paid to the ternary κ-phase with the aid of ab initio calculations. The enthalpies of formation at 0 K of all end-members of the κ phase were derived from the ab initio calculations and utilized in the present optimization. The κ phase was modeled as an ordered form of the fcc structure for the substitutional sub-lattices, employing the following formula within the framework of compound energy formalism: (Al,Mn)0.25(Al,Mn)0.25(Al,Mn)0.25(Al,Mn)0.25(C,Va)0.25. With the present optimized model parameters, the wide homogeneity range of the κ phase was reproduced satisfactorily. Comparison between the predicted and measured phase equilibria as well as the ab initio calculation results validates the present optimized model parameters.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.007
      Issue No: Vol. 60 (2018)
       
  • A CALPHAD assessment of the Al–Mn–C system supported by ab
           initio calculations
    • Authors: Florian Tang; Dimitri Bogdanovski; Irina Bajenova; Alexandra Khvan; Richard Dronskowski; Bengt Hallstedt
      Pages: 231 - 239
      Abstract: Publication date: March 2018
      Source:Calphad, Volume 60
      Author(s): Florian Tang, Dimitri Bogdanovski, Irina Bajenova, Alexandra Khvan, Richard Dronskowski, Bengt Hallstedt
      frequently toggled from 1The Al–Mn–C ternary system has been thermodynamically evaluated using the CALPHAD method. Published data on phase equilibria have been critically examined and used to optimize the model parameters. The phase model for the κ AlMn3C phase (E21) has been changed to (Al,Mn)1(Al,Mn)3(C,Va)1 for improved reproduction of stability ranges and phase equilibria at 1100 °C and 1200 °C. The solid solution phase parameters of γ -Mn, ε -AlMn, ε -Mn4C have been adjusted to reproduce experimental ternary phase equilibria. Density functional theory-based ab initio calculations of enthalpies of formation at 0 K were performed to guide the modeling of the κ phase and elucidate general energetic trends. Reasonable liquidus temperatures were achieved by adjustments to the stability of the liquid phase. The Mn5C2 phase model was extended to Mn5(C,Al)2 which allows aluminium on the carbon sublattice. The CALPHAD calculations were performed with the optimized set of parameters and compared with the available experimental data and changes to previous work were elucidated.

      PubDate: 2018-02-05T17:03:07Z
      DOI: 10.1016/j.calphad.2018.01.006
      Issue No: Vol. 60 (2018)
       
  • Summary report of CALPHAD XLV - Awaji Island, Japan, 2016
    • Abstract: Publication date: Available online 12 February 2018
      Source:Calphad


      PubDate: 2018-02-25T16:39:18Z
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.198.86.28
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-