for Journals by Title or ISSN
for Articles by Keywords
help
  Subjects -> COMPUTER SCIENCE (Total: 2002 journals)
    - ANIMATION AND SIMULATION (29 journals)
    - ARTIFICIAL INTELLIGENCE (99 journals)
    - AUTOMATION AND ROBOTICS (100 journals)
    - CLOUD COMPUTING AND NETWORKS (63 journals)
    - COMPUTER ARCHITECTURE (9 journals)
    - COMPUTER ENGINEERING (9 journals)
    - COMPUTER GAMES (16 journals)
    - COMPUTER PROGRAMMING (24 journals)
    - COMPUTER SCIENCE (1160 journals)
    - COMPUTER SECURITY (46 journals)
    - DATA BASE MANAGEMENT (13 journals)
    - DATA MINING (32 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (29 journals)
    - ELECTRONIC DATA PROCESSING (21 journals)
    - IMAGE AND VIDEO PROCESSING (40 journals)
    - INFORMATION SYSTEMS (107 journals)
    - INTERNET (91 journals)
    - SOCIAL WEB (50 journals)
    - SOFTWARE (34 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1160 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 13)
Abakós     Open Access   (Followers: 3)
Academy of Information and Management Sciences Journal     Full-text available via subscription   (Followers: 73)
ACM Computing Surveys     Hybrid Journal   (Followers: 22)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 9)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 13)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 6)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 11)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 13)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 4)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 1)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 20)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 8)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 10)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 11)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 22)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 26)
Advanced Science Letters     Full-text available via subscription   (Followers: 7)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 8)
Advances in Artificial Intelligence     Open Access   (Followers: 16)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Computer Science : an International Journal     Open Access   (Followers: 13)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Human-Computer Interaction     Open Access   (Followers: 20)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 37)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 2)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 7)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Air, Soil & Water Research     Open Access   (Followers: 8)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 7)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 9)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 12)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 2)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 14)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Clinical Informatics     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Computer Systems     Open Access   (Followers: 1)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 11)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 128)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 6)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access  
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 3)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 9)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Bioinformatics     Hybrid Journal   (Followers: 308)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 17)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 32)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 44)
British Journal of Educational Technology     Hybrid Journal   (Followers: 124)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 2)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal  
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 14)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
Cell Communication and Signaling     Open Access   (Followers: 1)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access  
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 12)
Circuits and Systems     Open Access   (Followers: 16)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Communication Methods and Measures     Hybrid Journal   (Followers: 11)
Communication Theory     Hybrid Journal   (Followers: 20)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 53)
Communications of the Association for Information Systems     Open Access   (Followers: 18)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access  
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Computación y Sistemas     Open Access  
Computation     Open Access  
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 9)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 14)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 13)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 31)
Computer     Full-text available via subscription   (Followers: 85)
Computer Aided Surgery     Hybrid Journal   (Followers: 3)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Communications     Hybrid Journal   (Followers: 10)
Computer Engineering and Applications Journal     Open Access   (Followers: 5)
Computer Journal     Hybrid Journal   (Followers: 7)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 22)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 10)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 1)
Computer Music Journal     Hybrid Journal   (Followers: 16)
Computer Physics Communications     Hybrid Journal   (Followers: 6)
Computer Science - Research and Development     Hybrid Journal   (Followers: 7)
Computer Science and Engineering     Open Access   (Followers: 17)
Computer Science and Information Technology     Open Access   (Followers: 11)
Computer Science Education     Hybrid Journal   (Followers: 12)
Computer Science Journal     Open Access   (Followers: 20)
Computer Science Master Research     Open Access   (Followers: 10)
Computer Science Review     Hybrid Journal   (Followers: 10)

        1 2 3 4 5 6 | Last

Journal Cover Asian Journal of Control
  [SJR: 0.862]   [H-I: 34]   [0 followers]  Follow
    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1561-8625 - ISSN (Online) 1934-6093
   Published by John Wiley and Sons Homepage  [1579 journals]
  • Stabilization of Hybrid Systems by Feedback Control Based on Discrete-Time
           State and Mode Observations
    • Authors: Yuyuan Li; Jianqiu Lu, Xuerong Mao, Qinwei Qiu
      Abstract: Recently, a kind of feedback control based on discrete-time state observations was proposed to stabilize continuous-time hybrid stochastic systems in the mean-square sense. We find that the feedback control there still depends on the continuous-time observations of the mode. However, it usually costs to identify the current mode of the system in practice. So we can further improve the control to reduce the control cost by identifying the mode at discrete times when we make observations for the state. In this paper, we aim to design such a type of feedback control based on the discrete-time observations of both state and mode to stabilize the given hybrid stochastic differential equations (SDEs) in the sense of mean-square exponential stability. Moreover, a numerical example is given to illustrate our results.
      PubDate: 2017-04-26T17:50:58.567335-05:
      DOI: 10.1002/asjc.1515
       
  • A Game Theory-Based Coordination and Optimization Control Methodology for
           a Wind Power-Generation Hybrid Energy Storage System
    • Authors: Xiaojuan Han; Xiaoling Yu, Yubo Liang, Jianlin Li, Zekun Zhao
      Abstract: The installation of an energy storage system to smooth the fluctuations of wind power output at a certain wind farm can improve the electric quality of wind power connected to the grid. In order to reduce the capacity of the energy storage system and the loss of the battery and make full use of the advantages of the super-capacitor, a game theory-based coordination and optimization control methodology for a wind power-generation and storage system (WPGSS) is presented in this paper. Aiming to maximize the WPGSS's overall profit, the methodology, taking the smoothing effect of the active power, the cost of the hybrid energy storage system (HESS), and the earnings of wind power connected to grid into consideration, builds a coordination and optimization control model based on the ensemble empirical mode decomposition (EEMD) algorithm combined with game theory. In the model, the low-pass filtering signal obtained by the EEMD is used to smooth the fluctuations of wind power output, and the band-pass filtering signal and high-pass filtering signal obtained by the EEMD are used to achieve energy distribution among the HESS. Cooperative game theory is introduced to determine the filter order of the EEMD according to the state of charge (SOC) of the HESS and to achieve the coordination and optimization control of the WPGSS taking the maximization of the WPGSS's overall profit as the game's goal constraint conditions. The genetic algorithm (GA) and particle swarm optimization (PSO) are adopted to solve the model's optimal solution, and the simulation tests were realized to verify the effectiveness of the proposed method, which can provide a theoretical basis for the coordination and optimization control of the WPGSS.
      PubDate: 2017-04-26T10:35:58.743744-05:
      DOI: 10.1002/asjc.1518
       
  • Performance Improvement of Fuel Cells Using Perturbation-Based Extremum
           Seeking and Model Reference Adaptive Control
    • Authors: Reza Dadkhah Tehrani; Faridoon Shabani
      Abstract: Nowadays, fuel cells (FCs) are considered suitable alternative sources for electrical energy applications. One major challenge encountered in FCs is relevant to the performance of the maximum power point tracking (MPPT) under FC parameter changes and load variations. This challenge is due to the nonlinearity and time-varying dynamics of FC systems. In this paper, the MPPT is studied in a system composed of a FC and a DC-DC converter. To improve the performance of the MPPT, application of perturbation-based extremum seeking (PES) and model reference adaptive control (MRAC) is proposed. This control scheme can efficiently handle the uncertainties in the FC as well as the load, through two control levels. The first level is PES utilized to adjust the duty cycle of the DC-DC converter; and the second level is MRAC employed to achieve the desired dynamic response. Using the proposed control strategy, design and analysis of the control levels can be realized independently, which results in easy implementation. This is achieved due to considerable differences between the time constants of the control levels. The simulation results are utilized to confirm the effectiveness of the proposed scheme in response to the variations of FC parameters and load. Also, comparative studies with a combination of PES and PID controller are provided in the simulation.
      PubDate: 2017-04-26T10:35:52.254896-05:
      DOI: 10.1002/asjc.1519
       
  • Disturbance Observer-Based Elegant Anti-Disturbance Control for Stochastic
           Systems with Multiple Disturbances
    • Authors: Linqing Zhang; Xinjiang Wei, Huifeng Zhang
      Abstract: Disturbance observer-based elegant anti-disturbance control (DOBEADC) scheme is proposed for a class of stochastic systems with nonlinear dynamics and multiple disturbances. The stochastic disturbance observer based on pole placement is constructed to estimate disturbance which is generated by an exogenous system. Then, composite DOBC and H∞ controller is designed to guarantee the composite system is mean-square stable and its H∞performance satisfies a prescribed level. Finally, simulations on an A4D aircraft model show the effectiveness of the proposed approaches.
      PubDate: 2017-04-21T07:52:55.441863-05:
      DOI: 10.1002/asjc.1514
       
  • Adaptive Backstepping Control of Six-Phase PMSM Using Functional Link
           Radial Basis Function Network Uncertainty Observer
    • Authors: Faa-Jeng Lin; Shih-Gang Chen, I-Fan Sun
      Abstract: An adaptive backstepping control (ABSC) using a functional link radial basis function network (FLRBFN) uncertainty observer is proposed in this study to construct a high-performance six-phase permanent magnet synchronous motor (PMSM) position servo drive system. The dynamic model of a field-oriented six-phase PMSM position servo drive is described first. Then, a backstepping control (BSC) system is designed for the tracking of the position reference. Since the lumped uncertainty of the six-phase PMSM position servo drive system is difficult to obtain in advance, it is very difficult to design an effective BSC for practical applications. Therefore, an ABSC system is designed using an adaptive law to estimate the required lumped uncertainty in the BSC system. To further increase the robustness of the six-phase PMSM position servo drive, an FLRBFN uncertainty observer is proposed to estimate the lumped uncertainty of the position servo drive. In addition, an online learning algorithm is derived using Lyapunov stability theorem to learn the parameters of the FLRBFN online. Finally, the proposed position control system is implemented in a 32-bit floating-point DSP, TMS320F28335. The effectiveness and robustness of the proposed intelligent ABSC system are verified by some experimental results.
      PubDate: 2017-04-21T06:39:15.318482-05:
      DOI: 10.1002/asjc.1521
       
  • Rapid Exponential Stabilization of a 1-D Transmission Wave Equation with
           In-domain Anti-damping
    • Authors: Fathi Hassine
      Abstract: We consider the problem of pointwise stabilization of a one-dimensional wave equation with an internal spatially varying anti-damping term. We design a feedback law based on the backstepping method and prove exponential stability of the closed-loop system with a desired decay rate.
      PubDate: 2017-04-21T06:22:14.769849-05:
      DOI: 10.1002/asjc.1509
       
  • Synchronization of A Class of Uncertain Chaotic Systems with Lipschitz
           Nonlinearities Using State-Feedback Control Design: A Matrix Inequality
           Approach
    • Authors: Saleh Mobayen; Fairouz Tchier
      Abstract: This paper proposes a new state-feedback stabilization control technique for a class of uncertain chaotic systems with Lipschitz nonlinearity conditions. Based on Lyapunov stabilization theory and the linear matrix inequality (LMI) scheme, a new sufficient condition formulated in the form of LMIs is created for the chaos synchronization of chaotic systems with parametric uncertainties and external disturbances on the slave system. Using Barbalat's lemma, the suggested approach guarantees that the slave system synchronizes to the master system at an asymptotical convergence rate. Meanwhile, a criterion to find the proper feedback gain vector F is also provided. A new continuous-bounded nonlinear function is introduced to cope with the disturbances and uncertainties and obtain a desired control performance, i.e. small steady-state error and fast settling time. Several criteria are derived to guarantee the asymptotic and robust stability of the uncertain master–slave systems. Furthermore, the proposed controller is independent of the order of the system's model. Numerical simulation results are displayed with an expected satisfactory performance compared to the available methods.
      PubDate: 2017-04-19T09:58:10.881521-05:
      DOI: 10.1002/asjc.1512
       
  • Hybrid Adaptive Type-2 Fuzzy Tracking Control of Chaotic Oscillation
           Damping of Power Systems
    • Authors: Majid Moradi Zirkohi; Tufan Kumbasar, Tsung-Chih Lin
      Abstract: In this paper a novel hybrid direct/indirect adaptive fuzzy neural network (FNN) moving sliding mode tracking controller for chaotic oscillation damping of power systems is developed. The proposed approach is established by providing a tradeoff between the indirect and direct FNN controllers. It is equipped with a novel moving sliding surface (MSS) to enhance the robustness of the controller against the present system uncertainties and unknown disturbances. The major contribution of the paper arises from the new simple tuning idea of the sliding surface slope and intercept of the MSS. This study is novel because the approach adopted tunes the sliding surface slope and intercept of MSS using two simple rules simultaneously. One advantage of the proposed approach is that the restriction of knowing the bounds of uncertainties is also removed due to the adaptive mechanism. Moreover, the stability of the control system is also presented. The proposed controller structure is successfully employed to damp the complicated chaotic oscillations of an interconnected power system, when such oscillations can be made by load perturbation of a power system working on its stability edges. Comparative simulation results are presented, which confirm that the proposed hybrid adaptive type-2 fuzzy tracking controller shows superior tracking performance.
      PubDate: 2017-04-11T11:05:59.908523-05:
      DOI: 10.1002/asjc.1454
       
  • A Numerical Approximation-Based Controller for Mobile Robots with Velocity
           Limitation
    • Authors: Mario E. Serrano; Sebastián A. Godoy, Santiago Rómoli, Gustavo J.E. Scaglia
      Abstract: In this paper the problem of trajectory tracking considers that the values of the control actions do not exceed a maximum allowable value and the zero convergence of tracking errors is demonstrated. The control law is based on a linear algebra approach. First, the desired trajectories of some state variables are determined by analyzing the conditions for a system of linear equations to have an exact solution. Therefore, the control signals are obtained by solving the system of linear equations. The optimal controller parameters are selected through nonlinear programming so as to prevent the saturation of the control actions. Experimental results are presented and discussed, demonstrating the controller's good performance. Finally, the performance of the proposed controller is compared with a fuzzy controller, and all the results are validated through experimental laboratory tests.
      PubDate: 2017-04-11T11:05:49.629631-05:
      DOI: 10.1002/asjc.1522
       
  • Design and Implementation of The Plug&Play Enabled Flexible Modular
           Wireless Sensor and Actuator Network Platform
    • Authors: Konstantin Mikhaylov; Juha Petäjäjärvi
      Abstract: In this paper we address the problem of increasing the flexibility of the contemporary wireless sensor and actuator networks (WSANs) in regard to the design of the nodes. For this we propose the concept of a Plug&Play enabled modular WSAN node platform. According to our concept, the new WSAN nodes with desired functionalities can be built by stacking together the different hardware modules encapsulating power sources, processing units, wired and wireless transceivers, sensors and actuators, or even sets of these. Once a node is built, it automatically discovers and identifies all the connected hardware modules, obtains required software and tunes its own operation taking into account the node's structure, available resources and active applications. In this paper we first present the concept and then report the developed hardware and software architectures and the most critical mechanisms enabling implementation. Also we discuss the practical implementations and report the evaluation results for the prototyped solution. Our results show that the developed platform is much more feature and resource rich than the existing ones, which is achieved at a cost of increased consumption and size. We believe that the unique features of the proposed platform have the potential to drastically change the procedure of WSAN development, especially when it comes to experimenting and developing dynamic WSANs with a heterogeneous structure. In this respect the hardware identification and reconfiguration capabilities conceived in the platform can be utilized in full and may drastically increase the performance of WSANs, if combined with novel control and optimization schemes yet to be developed.
      PubDate: 2017-04-04T07:12:34.113006-05:
      DOI: 10.1002/asjc.1492
       
  • Synchronization control for a swarm of unicycle robots: analysis of
           different controller topologies
    • Authors: H. Gutiérrez; A. Morales, H. Nijmeijer
      Abstract: This paper proposes a nonlinear synchronization controller for a swarm of unicycle robots performing a cooperative task, i.e., following a desired trajectory per robot while maintaining a prescribed formation. The effect of communication between robots is analyzed and several network topologies are investigated, e.g., all-to-all, ring type, undirected, among others. The stability analysis of the closed loop system is provided using the Lyapunov method. Experiments with four unicycle robots are presented to validate the control law and communication analysis. Accumulated errors over the experiment time are presented in order to determine which topology is most efficient.
      PubDate: 2017-04-04T07:12:20.66807-05:0
      DOI: 10.1002/asjc.1497
       
  • On The Modeling of Twin Rotor MIMO System Using Chirp Inputs as Test
           Signals
    • Authors: Parthish Kumar Paul; Jeevamma Jacob
      Abstract: This paper addresses the modeling problem for the twin rotor multi input multi output system. To develop experimental data, this popular commercial laboratory model of a helicopter from Feedback Instruments Ltd is excited with band limited chirp inputs. The conclusions drawn in this paper lead to four significant achievements: 1) derivation of a linear nominal model for Twin Rotor MIMO System, TRMS in short, from its equivalent nonlinear mathematical representation; 2) dynamic modeling of TRMS; 3) determination of non-minimum phase dynamics; and 4) determination of linear operating region. The work considers systematic study of the system dynamics of TRMS and analytical treatment of its identified data leading to derivation of the RHP zero dynamics followed by pictorial illustrations indicating resonant modes associated with the plant. The method used in the present paper can be essentially used in modeling of 2 × 2 plants exhibiting non-minimum phase dynamics and model uncertainties.
      PubDate: 2017-04-04T07:06:32.932912-05:
      DOI: 10.1002/asjc.1502
       
  • Stability Analysis in a Curved Road Traffic Flow Model Based on Control
           Theory
    • Authors: Xiang Pei Meng; Li Ying Yan
      Abstract: In the paper, a novel traffic flow model is proposed to describe the behavior of vehicles moving on a curved road with a slope. We investigate the related influences on uniform traffic jam analytically and numerically. Based on control theory, the condition for no traffic jam is obtained analytically. Finally, simulations are carried out to verify the new traffic flow model. The theoretical and numerical results show that the related factors including the friction coefficient, radius of curvature, slope of the curved road and the parameter λ have major effects on the stability of traffic flow respectively.
      PubDate: 2017-04-04T07:01:26.150105-05:
      DOI: 10.1002/asjc.1505
       
  • Adaptive Robust Output Tracking Control of Uncertain Nonlinear Cascade
           Systems with Disturbance and Multiple Uknown Time-Varying Delays
    • Authors: Hossein Chehardoli; Ali Ghasemi
      Abstract: In this paper, an adaptive robust controller is designed for a class of uncertain nonlinear cascade systems with multiple time-varying delays under external disturbance. It is assumed that multiple time-varying delays are not exactly known and, therefore, the delayed terms must not appear in the adaptation and control laws. Accordingly, by using a Lyapunov-Krasovskii function, delays are deleted from the adaptation and control laws. A controller based on an adaptive backstepping approach is designed to assure the global asymptotic tracking of the desired output and boundedness of the other states. The proposed controller is proved to be robust against unknown time-varying delays and external disturbances applying to the system. Simulation results are provided to show the effectiveness of the proposed approach.
      PubDate: 2017-04-04T07:01:06.931632-05:
      DOI: 10.1002/asjc.1504
       
  • Three-Axis Global Magnetic Attitude Control of Earth-Pointing Satellites
           in Circular Orbit
    • Authors: Dipak Giri; Bijoy Mukherjee, Bidul T N, Manoranjan Sinha
      Abstract: This paper addresses the controllability and global stability issues of a magnetically actuated satellite in the geomagnetic field. The variation of the geomagnetic field along the orbit, which is time varying in nature, makes the dynamics of the satellite time varying also. Sufficient conditions for controllability of such a time varying magnetic attitude control system are given. As a major contribution, it is proven that the three-axis controllability of the spacecraft actuated by the magnetic actuators is possible and it does not depend on the initial angular velocity of the spacecraft. Global controllability is a precursor to global stability. Therefore, exponential stability for an arbitrarily high initial angular velocity and an arbitrary initial orientation is proven next for a proportional-derivative control law using averaging theory. It is also proven that even an iso-inertial satellite can be stabilized using the time invariant feedback control, which was hitherto not possible, even using time variant conventional control. Simulation results are presented under different initial orientations and angular velocities of the satellite in the presence of favorable and unfavorable gravity gradient torques to validate the proposed control method.
      PubDate: 2017-03-31T09:25:36.605094-05:
      DOI: 10.1002/asjc.1506
       
  • Minimum Energy Control of Fractional Descriptor Discrete-Time Linear
           Systems with Bounded Inputs Using The DRAZIN Inverse
    • Authors: Tadeusz Kaczorek
      Abstract: The Drazin inverse of matrices is applied to solve the minimum energy control problem of fractional descriptor discrete-time linear systems with bounded inputs. Necessary and sufficient conditions for the reachability of fractional descriptor linear systems are established. The minimum energy control problem for the fractional descriptor systems with bounded inputs is formulated and solved. A procedure for the computation of the optimal inputs sequence and the minimal value of the performance index is proposed.
      PubDate: 2017-03-29T12:15:33.309721-05:
      DOI: 10.1002/asjc.1510
       
  • Attitude Tracking Control of A Quad-Rotor with Partial Loss of Rotation
           Effectiveness
    • Authors: Zhankui Song; Kaibiao Sun
      Abstract: This paper investigates the attitude control problem of a quad-rotor unmanned helicopter. In response to adverse factors, including the lumped disturbance, inertia parameter uncertainties, and the partial loss of rotation effectiveness, an adaptive compensation control strategy combining the terminal sliding mode technique and the input shaping method is proposed. Specifically, a group of updating laws using an adaptive mechanism is added to adjust the control strategy in a manner conductive to attitude stability and performance preservation in the presence of adverse factors. The key features of the proposed control strategy are that it is independent from the knowledge of actuator faults, and adaptive compensation control is achieved without the need for online identification of rotor failure. The finite time convergence and stability of the attitude tracking errors are proved by using Lyaponov's method. Finally, the simulation results demonstrate the effectiveness of the proposed control strategy.
      PubDate: 2017-03-29T09:50:37.342996-05:
      DOI: 10.1002/asjc.1495
       
  • Consensus Control of Fractional-Order Systems Based on Delayed State
           Fractional Order Derivative
    • Authors: Xueliang Liu; Zhi Zhang, Huazhu Liu
      Abstract: In this paper, the delayed state fractional order derivative (DSFOD) is introduced into the existing traditional consensus protocol aiming to improve the robustness of fractional-order multi-agent systems against communication time delay. Both of communication channels with time-delay and without time-delay cases are considered. Based on the frequency-domain analysis and algebraic graph theory, it is shown that properly choosing the intensity of DSFOD can improve the robustness of fractional-order multi-agent systems against communication delay. Finally, a simulated example with simulations is presented to confirm the correctness and effectiveness of the theoretical results.
      PubDate: 2017-03-29T09:45:36.366043-05:
      DOI: 10.1002/asjc.1493
       
  • Active DIsturbance Rejection Control of Surface Vessels Using Composite
           Error Updated Extended State Observer
    • Authors: Tairen Sun; Jun Zhang, Yongping Pan
      Abstract: In this paper, a composite-errors-based active disturbance rejection control law is proposed for surface vessels with exogeneous disturbances. The low-frequency disturbances from wind, wave and ocean currents are estimated by a novel composite-errors-based extended state observer (ESO). Since the composite errors are composed of trajectory tracking errors and estimation errors, the disturbance rejection control is feedforward-feedback composite control. The advantages of feedforward control and feedback control are exploited to reject system disturbances. Compared with conventional ESO-based active disturbance rejection control, smaller estimation errors and smaller tracking errors can be achieved by the proposed disturbance compensation control. The effectiveness and superiority of the designed control law are illustrated by theoretical analysis and simulation results.
      PubDate: 2017-03-22T09:22:52.276078-05:
      DOI: 10.1002/asjc.1489
       
  • Fault Diagnosis for Discrete Event Systems Modeled By Bounded Petri Nets
    • Authors: Ning Ran; Shouguang Wang, Hongye Su, Chengying Wang
      Abstract: Fault diagnosis is an important problem in the manufacturing industry. It has been extensively studied in the past few decades both in time-driven systems and discrete event systems. This paper presents a Petri net diagnoser for online fault diagnosis of discrete event systems modeled by bounded labeled Petri nets. First, we present the concept and some properties of an extended basis reachability graph. Next, based on such a graph, we construct a Petri net diagnoser that is used to determine if a fault has occurred. Finally, an example is given to illustrate the application of the proposed diagnoser.
      PubDate: 2017-03-21T02:21:16.091276-05:
      DOI: 10.1002/asjc.1500
       
  • Fault Detection and Isolation Method Based on H−/H∞ Unknown Input
           Observer Design in Finite Frequency Domain
    • Authors: Meng Zhou; Zhenhua Wang, Yi Shen
      Abstract: This paper proposes an actuator fault detection and isolation strategy based on a bank of unknown input observers with finite frequency specifications. In order to deal with actuator fault diagnosis problem, a bank of H−/H∞ unknown input observers are designed to generate residuals, which are insensitive to the corresponding faults but sensitive to the other actuators faults, and meanwhile robust against the unknown disturbances. In this paper, the actuator faults and unknown disturbances are considered to belong to finite frequency domains, and two finite frequency performance indices are used to measure the fault sensitivity and the disturbance robustness of the residuals. Furthermore, some parameters for extra design of freedom are introduced in the H−/H∞ unknown input observers design. Based on the generalised Kalman-Yakubovich-Popov (GKYP) lemma, the design conditions of the H−/H∞ unknown input observer are derived and formulated as linear matrix inequalities (LMIs). Finally, a VTOL aircraft model is used to demonstrate the performance of the proposed fault diagnosis scheme.
      PubDate: 2017-03-20T04:55:38.184746-05:
      DOI: 10.1002/asjc.1490
       
  • Stabilization of a heat-ODE system cascaded at a boundary point and an
           intermediate point
    • Authors: Zhiyuan Zhen; Shu-Xia Tang, Zhongcheng Zhou
      Abstract: This paper considers the stabilization of a heat-ODE system cascaded at a boundary point and an intermediate point. The stabilizing feedback control law is designed by the backstepping method. Based on a novel transformation, we prove that all the kernel functions in the forward and inverse transformations are of the class C2. Moreover, the effectiveness of controller design is shown with a numerical simulation. Finally, we show the coherence between the controllability assumption of the main theorem in this paper and the known one for a special case with λ=0.
      PubDate: 2017-03-20T04:55:33.181111-05:
      DOI: 10.1002/asjc.1501
       
  • Observer-based Fault Estimators Using Iterative Learning Scheme for Linear
           Time-delay Systems with Intermittent Faults
    • Authors: Li Feng; Ke Zhang, Yi Chai, Zhimin Yang, Shuiqing Xu
      Abstract: This paper deals with the fault estimation problem for a class of linear time-delay systems with intermittent fault and measurement noise. Different from existing observer-based fault estimation schemes, in the proposed design, an iterative learning observer is constructed by using the integrated errors composed of state predictive error and tracking error in the previous iteration. First of all, Lyapunov function including the information of time delay is proposed to guarantee the convergence of system output. Subsequently, a novel fault estimation law based on iterative learning scheme is presented to estimate the size and shape of various fault signals. Upon system output convergence analysis, we proposed an optimal function to select appropriate learning gain matrixes such that tracking error converges to zero, simultaneously to ensure the robustness of the proposed iterative learning observer which is influenced by measurement noise. Note that, an improved sufficient condition for the existence of such an estimator is established in terms of the linear matrix inequality (LMI) by the Schur complements and Young relation. In addition, the results are both suit for the systems with time-varying delay and the systems with constant delay. Finally, three numerical examples are given to illustrate the effectiveness of the proposed methods and two comparability examples are provided to prove the superiority of the algorithm.
      PubDate: 2017-03-20T04:50:51.890483-05:
      DOI: 10.1002/asjc.1491
       
  • Distributed Adjacency Weight Design for Second-order Consensus in Wireless
           Sensor and Actuator Networks
    • Authors: Zhenping Chen; Yourui Huang, Dequan Li, Chaoli Tang
      Abstract: The energy supply for sensors in wireless sensor and actuator networks (WSANs) is usually limited, we therefore focus on how to design the adjacency weights for achieving second-order consensus with less communication energy consumption in a distributed way, and investigate this issue from both the viewpoints of the rate of convergence and the sparsity of the network. We also derived the conditions on the consensus control parameter and the updating period for the proposed consensus protocol to ensure the convergence. It is shown that, by removing some properly chosen links, the sparsity of the resulting network can produce a positive effect on the energy efficiency of WSANs. Finally, simulation results are presented to verify the effectiveness of the proposed algorithm.
      PubDate: 2017-03-20T04:47:08.431288-05:
      DOI: 10.1002/asjc.1498
       
  • Synthesis of Mixed Objective Output Feedback Robust Model Predictive
           Control
    • Authors: Wei Jiang; Hongli Wang, Jinghui Lu, Weiwei Qin, Guangbin Cai
      Abstract: Aiming at the constrained polytopic uncertain system with energy-bounded disturbance and unmeasurable states, a novel synthesis scheme to design the output feedback robust model predictive control(MPC)is put forward by using mixed H2/H∞ design approach. The proposed scheme involves an offline design of a robust state observer using linear matrix inequalities(LMIs)and an online output feedback robust MPC algorithm using the estimated states in which the desired mixed objective robust output feedback controllers are cast into efficiently tractable LMI-based convex optimization problems. In addition, the closed-loop stability and the recursive feasibility of the proposed robust MPC are guaranteed through an appropriate reformulation of the estimation error bound (EEB). A numerical example subject to input constraints illustrates the effectiveness of the proposed controller.
      PubDate: 2017-03-20T04:46:03.799864-05:
      DOI: 10.1002/asjc.1494
       
  • Taylor polynomial Approximation and Adaptive Passivity-Based Control
           Applied to the Level Regulation of a Conical Tank
    • Authors: Juan Carlos Travieso-Torres; Manuel A. Duarte-Mermoud, Orlando Beytía-Cancino
      Abstract: The techniques of Taylor polynomial approximation (TPA) and adaptive passivity-based controller (APBC) are combined in this study and applied to the level regulation of a conical tank. The design and comparative experimental results with a classical PI controller are presented. After combining these two approaches a robust adaptive controller named TPA–APBC, which is simpler than the classical APBC and PI controller, is obtained. This new TPA–APBC preserves the stability of the overall system after assuming that the nonlinear system is unknown and that it can be suitably represented by a first-order linear model with unknown parameters.
      PubDate: 2017-03-10T10:32:33.038358-05:
      DOI: 10.1002/asjc.1496
       
  • L-Step Reachability and Observability of Networked Control Systems with
           Bandwidth Limitations: Feasible Lower Bounds on Communication Periods
    • Authors: Mohammad Mahdi Share Pasand; Mosen Montazeri
      Abstract: Conditions for l-step reachability and observability of a networked control system subject to bandwidth limitations are given. Short feasible lower bounds for a communication sequence period resulting in a l-step reachable (observable) networked control system are derived without assuming any condition on the plant eigenvalues/eigenvectors. Though larger than some previously reported results, the established lower bounds do not require additional constraints on system eigenvalues. The proposed results cover systems with bandwidths equal to or greater than unity. Some further remarks on short feasible lower bounds in the case of non-invertible state matrices, the relation between admissibility of communication sequences and structural properties of the zero order hold system state space description, and the connection between observability in zero order hold and reset to zero cases are drawn as well. A numerical example is included for clarification and comparison.
      PubDate: 2017-03-08T05:45:35.827526-05:
      DOI: 10.1002/asjc.1476
       
  • On Convergence of Volterra Series Expansion of a Class of Nonlinear
           Systems
    • Authors: Xingjian Jing; Zhenlong Xiao
      Abstract: A fundamental issue in conducting the analysis and design of a nonlinear system via Volterra series theory is how to ensure the excitation magnitude and/or model parameters will be in the appropriate range such that the nonlinear system has a convergent Volterra series expansion. To this aim, parametric convergence bounds of Volterra series expansion of nonlinear systems described by a NARX model, which can reveal under what excitation magnitude or within what parameter range a given NARX system is able to have a convergent Volterra series expansion subject to any given input signal, are investigated systematically in this paper. The existing bound results often are given as a function of the maximum input magnitude, which could be suitable for single-tone harmonic inputs but very conservative for complicated inputs (e.g. multi-tone or arbitrary inputs). In this study, the output response of nonlinear systems is expressed in a closed form, which is not only determined by the input magnitude but also related to the input energy or waveform. These new techniques result in more accurate bound criteria, which are not only functions of model parameters and the maximum input magnitude but also consider a factor reflecting the overall input energy or wave form. This is significant to practical applications, since the same nonlinear system could exhibit chaotic behavior subject to a simple single-tone input but might not with respect to other different input signals (e.g. multi-tone inputs) of the same input magnitude. The results provide useful guidance for the application of Volterra series-based theory and methods from an engineering point of view. The Duffing equation is used as a benchmark example to show the effectiveness of the results.
      PubDate: 2017-03-08T05:40:48.529618-05:
      DOI: 10.1002/asjc.1485
       
  • Discrete-Time Super-Twisting Guidance Law with Actuator Faults
           Consideration
    • Authors: Shaoming He; Wei Wang, Jiang Wang
      Abstract: This paper proposes a robust fault-tolerant guidance law against unknown maneuvering targets based on discrete-time sliding mode control theory. To address this problem, a time-delay observer is designed to estimate the lumped disturbance, which includes target maneuver as well as actuator faults. A robust discrete-time guidance law is then synthesized based on the discrete-time super-twisting algorithm. Due to the principle of the super-twisting algorithm, the presented guidance law is a naturally chattering-free formulation. Detailed stability analysis shows that the line-of-sight angular rate under the proposed guidance law can be stabilized in a small region around zero. Simulation results are also provided to verify the effectiveness of the proposed approach.
      PubDate: 2017-03-08T05:37:01.685123-05:
      DOI: 10.1002/asjc.1499
       
  • Robust control design of an air-breathing engine for a supersonic vehicle
           using backstepping and UKF
    • Authors: Arnab Maity; Radhakant Padhi
      Abstract: This paper presents an efficient robust control design approach for an air-breathing engine for a supersonic vehicle using the Lyapunov stability theory based nonlinear backstepping control, augmented with unscented Kalman filter (UKF). The primary objective of the control design is to ensure that the thrust produced by the engine tracks the commanded thrust by regulating the fuel flow to the combustion chamber. Moreover, as the engine operates in a supersonic range, an important secondary objective is to manage the shock wave location in the intake for maximum pressure recovery with adequate safety margin by varying the throat area of the nozzle simultaneously. To estimate the states and parameters as well as to filter out the process and sensor noises, a UKF has been incorporated for robust output feedback control computation. Furthermore, independent control designs for the actuators have been carried out to assure satisfactory performance of the engine. Additionally, a guidance loop is designed to generate a typical flight trajectory of the representative vehicle using a nonlinear suboptimal input constrained model predictive static programming formulation for testing the performance of the engine. Simulation results clearly indicate quite successful robust performance of the engine during both climb and cruise phases.
      PubDate: 2017-03-06T08:55:37.59831-05:0
      DOI: 10.1002/asjc.1488
       
  • Adaptive Leader-Following Consensus for Uncertain Nonlinear Multi-Agent
           Systems
    • Authors: Xinglong Niu; Yungang Liu, Yongchao Man
      Abstract: This paper is concerned with the adaptive leader-following consensus for first- and second-order uncertain nonlinear multi-agent systems (NMASs) with single- and double-integrator leader, respectively. Remarkably, the control coefficients of the followers need not belong to any known finite interval, which makes the systems in question essentially different from those in the related works. Moreover, parameterized unknowns exist in the nonlinearities of the followers, and unknown control input is imposed on the leader, which make the problems difficult to solve. To compensate for these uncertainties/unknowns, the leader-following consensus protocols are constructed by employing adaptive technique for the first-order and the second-order NMASs. Under the designed adaptive consensus protocols and the connected graph, the leader-following consensus is achieved. Finally, two examples are given to show the effectiveness of the proposed leader-following consensus protocols.
      PubDate: 2017-03-02T08:45:57.892424-05:
      DOI: 10.1002/asjc.1455
       
  • A Packet Loss Tolerant Rendezvous Algorithm for Wireless Networked Robot
           Systems
    • Authors: Sabato  Manfredi; Enrico Natalizio, Claudio Pascariello, Nicola Roberto Zema
      Abstract: This paper studies the coordination problem for a wireless networked robot (WNR) system. The objective is to drive the robots to keep a desired formation through local exchange of information. Nevertheless, packet losses may occur during communications among robots, thus preventing the system to reach its specific target. Specifically, the effects of an unreliable channel on the WNR performance are analyzed by considering the simulation of a corrective consensus algorithm into a network simulator. The use of a packet-loss-tolerant protocol is suggested to cope with heavy communication disruption. Network Simulator (NS-3) simulation results validate the effectiveness of the proposed approach.
      PubDate: 2017-02-24T09:10:50.250115-05:
      DOI: 10.1002/asjc.1470
       
  • Statistical Analysis of Power System Sensitivity Under Random Penetration
           of Photovoltaic Generation
    • Authors: Yu Li; Masato Ishikawa
      Abstract: In this paper, we aim to analyze the characteristics of feeder voltage variation in power systems due to random allocation of solar photovoltaic systems from a data-driven approach, search the dangerous photovoltaic system allocation patterns along a specific power system. We conducted the investigation on benchmark radial distribution circuits with a random integration of certain amount of photovoltaic systems. Severe voltage deviation occurs along the tail part of each circuit line, and the connecting nodes between feeder and lateral circuit lines tend to be vulnerable to the integration of photovoltaic systems. Different allocation patterns of photovoltaic systems resulted in a data set of voltage variation in the distribution system, k-Medoids clustering algorithm was proposed in this study to partition this data set into several clusters, which would contribute to the search of photovoltaic system allocation patterns with similar voltage deviation response.
      PubDate: 2017-02-21T12:56:45.853911-05:
      DOI: 10.1002/asjc.1483
       
  • A Sequential Algebraic Parametric Identification Approach for Nonlinear
           Vibrating Mechanical Systems
    • Authors: F. Beltran-Carbajal; G. Silva-Navarro, L. G. Trujillo-Franco
      Abstract: A systematic on-line algebraic parametric identification method in time domain is proposed for active vibration control on nonlinear vibrating mechanical systems. The identification is performed iteratively, to reduce the computational effort of the parameter estimation process, for finite or infinite dimensional large flexible structures into an interest bandwidth. Position signals are only required to algebraically and quickly estimate the parameters of multiple degrees-of-freedom nonlinear vibrating mechanical systems. Then, an adaptive-like output feedback tracking dynamic control scheme is introduced to assess the efficiency and effectiveness of the closed-loop parameter estimation algorithms. Some simulation results are included to provide evidence of the efficient dynamic performance of the proposed parametric identification approach combined with asymptotic trajectory tracking control.
      PubDate: 2017-02-21T12:56:38.155322-05:
      DOI: 10.1002/asjc.1474
       
  • Variable Gain Output Feedback Control of A Networked Temperature Control
           System Based on Online Delay Estimation
    • Authors: Chhavi Suryendu; Sandip Ghosh, Bidyadhar Subudhi
      Abstract: In this paper, a gradient descent method based delay estimator is proposed for use with a variable gain control strategy for networked control systems. The delay estimator is developed in such a way that its boundedness is ensured. The performance of the estimator with variable gain controller is evaluated on a temperature control plant with network in the feedback loop.
      PubDate: 2017-02-21T12:56:26.929871-05:
      DOI: 10.1002/asjc.1465
       
  • Almost Sure Practical Exponential Stability of Nonlinear Disturbed
           Stochastic Systems with Guaranteed Decay Rate
    • Authors: Asma Barbata; Michel Zasadzinski, Ridha Chatbouri, Harouna Souley Ali, Hassani Messaoud
      Abstract: In this paper, we consider nonlinear stochastic differential equations driven by multiplicative noises and affected by exogenous disturbances. Sufficient conditions are investigated for almost sure practical exponential stability of the non trivial solutions of these equations. A lower bound of the decay rate of these solutions is guaranteed.
      PubDate: 2017-02-17T09:10:44.498833-05:
      DOI: 10.1002/asjc.1472
       
  • Reachable Set Estimation for Discrete-Time Singular Systems
    • Authors: Jiangrong Li; Zhiguang Feng, Changzhu Zhang
      Abstract: This paper is concerned with the problem of reachable set estimation for discrete-time singular systems with bounded input disturbances. Based on the Lyapunov method, a new sufficient condition is established in terms of linear matrix inequality (LMI) to guarantee that the reachable set of discrete-time singular system is bounded by the intersection of ellipsoids. Then the result is extended to the problem for discrete-time singular systems with time-varying delay by utilizing the delay-dependent approach and free weighting matrices. Two numerical examples are provided to demonstrate the effectiveness of the obtained results proposed in this paper.
      PubDate: 2017-02-17T09:05:33.721898-05:
      DOI: 10.1002/asjc.1484
       
  • Fractional Order PI-PD Control of Liquid Level in Coupled Two Tank System
           and its Experimental Validation
    • Authors: Prasanta Roy; Biprajeet Kar, Binoy Krishna Roy
      Abstract: This paper presents a level control problem of a coupled two tank single input single output (SISO) system. A cascade control strategy is adopted having a fractional order proportional integral (FOPI) controller and fractional order proportional derivative (FOPD) controller in the outer and the inner loops, respectively. Cascaded integer order proportional integral (IOPI) and integer order proportional derivative (IOPD) controllers are also designed to compare the performances. A frequency domain approach is followed to design all the controllers. It is mathematically shown that the FOPI and FOPD controllers can achieve less steady state error and consume less energy than that of the IOPI and IOPD controllers while meeting the same phase margin and gain crossover frequency. All propositions are validated on an experimental setup.
      PubDate: 2017-02-16T02:25:49.811047-05:
      DOI: 10.1002/asjc.1487
       
  • Intermittent and Successive ILC for Stochastic Nonlinear Systems with
           Random Data Dropouts
    • Authors: Dong Shen; Chao Zhang, Yun Xu
      Abstract: The iterative learning control (ILC) problem is addressed in this paper for stochastic nonlinear systems with random data dropouts. The data dropout is modeled by the conventional Bernoulli random variable to describe the successful transmission or loss. Both intermittent and successive ILC are considered, where the former stops updating if no information is received, while the latter keeps updating based on the latest available data. It is strictly proved the almost sure convergence of both algorithms. The simulations on a mechanical model are provided to show the comparisons and effectiveness of the proposed algorithms.
      PubDate: 2017-02-16T02:20:45.362037-05:
      DOI: 10.1002/asjc.1480
       
  • Mixing Adaptive Fault Tolerant Control of Quadrotor UAV
    • Authors: Kemal Büyükkabasakal; Barış Fi̇dan, Aydoğan Savran
      Abstract: In this paper, a multiple model adaptive fault tolerant control scheme is proposed based on mixing of the control signals generated by a set of linear quadratic state feedback controllers. Each of these controllers are designed considering closed loop system performance for a particular range of fault. Stability analysis of the proposed scheme is provided. The paper further presents specific design and implementation for motion control of quadrotor unmanned aerial vehicles (UAVs). The designed mixing adaptive controller is tested via real-time experiments on Quanser Qball-X4 UAVs. The experimental results verify the efficiency of the proposed scheme.
      PubDate: 2017-02-14T09:45:49.995546-05:
      DOI: 10.1002/asjc.1479
       
  • Finite-Time Consensus Problem for Second-Order Multi-Agent Systems Under
           Switching Topologies
    • Authors: Fang Wang; Xin Chen, Yong He, Min Wu
      Abstract: This paper investigates the finite-time consensus problem for multi-agent systems with second-order individual dynamics under switching topologies. A distributed continuous-time protocol is designed to guarantee finite-time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time-varying but stepwise jointly-connected. In particular, it introduces a distributed continuous-time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.
      PubDate: 2017-02-14T09:20:33.754575-05:
      DOI: 10.1002/asjc.1486
       
  • Networked Iterative Learning Control Design for Nonlinear Systems with
           Stochastic Output Packet Dropouts
    • Authors: Jian Liu; Xiaoe Ruan
      Abstract: This paper develops two proportional-type (P-type) networked iterative learning control (NILC) schemes for a class of discrete-time nonlinear systems whose stochastic output packet dropouts are modeled as 0-1 Bernoulli stochastic sequences. In constructing the NILC schemes, two kinds of compensation algorithm of the dropped outputs are given. One is to replace the instant-wise dropped output data with the synchronous desired output data; the other is to substitute the dropped data with the consensus-instant output data used at the previous iteration. By adopting the lifting technique, it is derived that under certain conditions the expectations of the tracking errors incurred by the proposed NILC schemes converge to zero along the iteration axis. Numerical experiments are carried out for validity and effectiveness.
      PubDate: 2017-02-14T03:55:37.133475-05:
      DOI: 10.1002/asjc.1457
       
  • Active Disturbance Rejection in Affine Nonlinear Systems Based on
           Equivalent-Input-Disturbance Approach
    • Authors: Fang Gao; Min Wu, Jinhua She, Weihua Cao
      Abstract: This paper presents a disturbance rejection method for an affine nonlinear system. The control system is constructed based on the equivalent-input-disturbance (EID) approach. An affine nonlinear state observer is used to reconstruct the state of the affine nonlinear system and to estimate an EID. The well-known differential mean value theorem enables us to describe the closed-loop system in the state space as a linear-parameter-varying system. This makes it easy to derive sufficient conditions of global uniform ultimate boundedness in term of linear matrix inequalities (LMIs) by using a Lyapunov function and convexity theory. Controllers are designed based on the LMIs. A numerical example is used to illustrate the design of the control system. And a comparison between the EID-based control and the sliding-mode control demonstrates the effectiveness and advantages of the EID-based control method.
      PubDate: 2017-02-10T12:10:56.859912-05:
      DOI: 10.1002/asjc.1463
       
  • A New High-Order Adaptive Robust Control for Constraint Following of
           Mechanical Systems
    • Authors: Xiuye Wang; Han Zhao, Qinqin Sun, Ye-Hwa Chen
      Abstract: A mechanical system is to follow a class of prescribed holonomic or nonholonomic constraints. The system contains time-varying bounded uncertainty. However, the bound is unknown. The objective is to design a control which renders constraint following. A new high-order adaptive robust control is proposed. The control guarantees uniform boundedness and uniform ultimate boundedness even in the presence of the uncertainty. Significant advantages of this new control are demonstrated both analytically and numerically. It is shown that the system performance, including the finite entering time, constraint-following error, and control magnitude, can be improved by tuning the control order.
      PubDate: 2017-02-10T12:10:53.481128-05:
      DOI: 10.1002/asjc.1478
       
  • Slow Sampling Control of Singularly Perturbed Systems Subject to Actuator
           Saturation and L2 Disturbance
    • Authors: Lei Ma; Chenxiao Cai, Xiaoping Ma
      Abstract: This paper is concerned with the slow sampling control problem for singularly perturbed systems with actuator saturation and L2 disturbance. Convex hull is utilized to deal with the actuator saturation. A sufficient condition is proposed such that the boundedness of all the state trajectories will be guaranteed for any singular perturbation parameter less than or equal to a predefined upper bound in the presence of L2 disturbance. Then, two convex optimization problems are formulated to estimate the capability of disturbance tolerance/rejection based on this condition. Finally, an example is presented to demonstrate the effectiveness of the main results of this paper.
      PubDate: 2017-02-10T11:05:49.523376-05:
      DOI: 10.1002/asjc.1482
       
  • Optimal Modified Tracking Performance of Time-Delay Systems with Packet
           Dropouts Constraint
    • Authors: Xi-Sheng Zhan; Zhu-Jun Zhou, Jie Wu, Tao Han
      Abstract: This paper investigates the optimal modified tracking performance of networked time-delay systems with packet dropout constraint. A novel modified tracking performance index of networked time-delay systems is proposed which prevents variations in the tracking error from leading to invalid data when there is no integrator in the plant. Some explicit expressions are obtained by using spectral decomposition. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles and time-delay. Furthermore, the modified factor and packet dropout probability affect the optimal modified tracking performance of the networked time-delay systems. The optimal modified tracking performance with the channel input power constraint is obtained by searching through all stabilizing one-parameter compensators. Finally, the efficiency of the result is verified using some typical examples.
      PubDate: 2017-02-08T09:25:40.137079-05:
      DOI: 10.1002/asjc.1467
       
  • Stochastic Point-to-Point Iterative Learning Control Based on Stochastic
           Approximation
    • Authors: Yun Xu; Dong Shen, Xiao-Dong Zhang
      Abstract: An iterative learning control algorithm with iteration decreasing gain is proposed for stochastic point-to-point tracking systems. The almost sure convergence and asymptotic properties of the proposed recursive algorithm are strictly proved. The selection of learning gain matrix is given. An illustrative example shows the effectiveness and asymptotic trajectory properties of the proposed approach.
      PubDate: 2017-02-06T03:10:46.839145-05:
      DOI: 10.1002/asjc.1481
       
  • Adaptive Non-Linear Control of UPFC for Stability Enhancement in a
           Multimachine Power System Operating with a DFIG Based Wind Farm
    • Authors: S.K. Routray; R.K. Patnaik, P.K. Dash
      Abstract: An instantaneous converter power based adaptive second order sliding mode control for the Unified Power Flow Controller (UPFC) in a multimachine power system penetrated with a doubly fed induction generator (DFIG) based wind farm is proposed in this paper. Instead of controlling the direct and quadrature-axis currents of the series voltage source converter (VSC) of the UPFC, the instantaneous active and reactive power outputs are used as control variables. This mode of control dispenses the unmodelled dynamics of the VSC phase-locked loop (PLL) system and produces a robust control for the active–reactive power, and DC voltage excursions. However, the PLL is used only to obtain the frequency component needed to generate the Pulse Width Modulation (PWM) signal. In comparison to the first order sliding surface, the second order sliding surface provides very good robustness features, finite reaching time, and chattering free sliding mode behavior. Further, the proposed controller gains of the UPFC are chosen in accordance with the various constraints imposed by the second order sliding mode approach to provide significantly superior and robust performance for a number of diverse operating conditions of the network in comparison to the conventional sliding mode controller.
      PubDate: 2017-02-06T03:05:40.816164-05:
      DOI: 10.1002/asjc.1473
       
  • Semi-Global Exquisite Disturbance Attenuation Control for Perturbed
           Uncertain Nonlinear Systems
    • Authors: Jun Yang; Chuanlin Zhang, Shihua Li, Xitong Niu
      Abstract: Motivated by the design of disturbance observers with active elimination of the adverse effects caused by system uncertainties and disturbances, the problem of semi-global exquisite disturbance attenuation control for a class of perturbed nonlinear systems is investigated in this paper. A feedback domination technique is utilized to integrate with the disturbance observer design and then a general composite active anti-disturbance control law is proposed. With a recursive design procedure, the mismatched lumped disturbances are compensated in a novel step-by-step way while the non-vanishing nonlinearities are treated via a feedback domination approach, rather than utilizing the straightforward feedback linearization method. The closed-loop control performance and disturbance rejection ability now can be improved. A rigorous stability analysis assures the effectiveness of the proposed strategy. Numerical simulation results affirm the improved control and disturbance rejection performances with respect to several related existing results.
      PubDate: 2017-02-06T03:01:09.058054-05:
      DOI: 10.1002/asjc.1475
       
  • Event-triggered PCS Based Trajectory Tracking Control of Systems with
           Perturbation
    • Authors: Chengcheng Song; Haoping Wang, Yang Tian, Nicolai Christov
      Abstract: This paper is aimed at reducing network load for saving bandwidth by designing appropriate trigger signals that decide when the transmission should be done. An event-triggered piecewise continuous systems (PCS) based control for time-varying trajectory tracking is proposed. By designing the sensor system and controller system, the communication between them is reduced while still retaining a satisfactory closed-loop behavior of the whole system. The major idea behind a designed sensor system is the use of a Luenberger observer and planning of event-triggered mechanism (ETM). The main principle behind the designed controller system is the proposal of a new event-triggered PCS based controller. The development is motivated by consideration of variable network induced time delays. Tracking error is proved to be norm-bounded in both the original and developed case. Finally, to show the proposed method's performance, we present the simulation results for a mobile cart.
      PubDate: 2017-02-01T07:15:52.567806-05:
      DOI: 10.1002/asjc.1462
       
  • Chattering Attenuation Sliding Mode Approach for Nonlinear Systems
    • Authors: Hamidreza Nemati; Mai Bando, Shinji Hokamoto
      Abstract: This study introduces a new robust nonlinear control scheme based on the theory of nonsingular terminal sliding mode control (NTSMC). Since conventional NTSMC utilizes a discontinuous switching function, a significant flaw called chattering can occur. The main purpose of this study is to design a new switching function based upon Lyapunov stability in order to alleviate this drawback over time. There are many approaches to mitigate the chattering drawback in SMC such as utilizing a smooth approximation of the switching element, or employing higher order sliding mode control (HOSMC) strategy. However, the use of a continuous approximation affects the system's performance and a finite reaching time to the sliding manifold, and in HOSMC the estimation of high-order derivatives of states is usually difficult and it still exhibits chattering in the presence of parasitic dynamics. In this study by employing a new sliding manifold including a time function, the chattering is attenuated as well as keeping the robustness. Finally, a second-order nonlinear dynamical system subject to disturbance is simulated to highlight the validity and applicability of the proposed method.
      PubDate: 2017-02-01T07:15:44.085912-05:
      DOI: 10.1002/asjc.1477
       
  • Bayesian Sensor Fault Detection in a Markov Jump System
    • Authors: Hamed Habibi; Ian Howard, Reza Habibi
      Abstract: In this paper, the fault detection of a latent fault in a sensor for a Markov jump system is studied. It is equivalent to detecting a change point in a coefficient vector of a measurement equation in the state space representation of a system. Indeed, the fault detection procedure is evaluated as detecting this change point and the time that the change point has occurred. To this end, first, the recursive least square (RLS) filter is proposed and under Yao's Prior setting, the Bayesian fault detection algorithm is proposed. The Smith-Gelfand re-sampling method is applied to approximate the posterior distribution. The performance of the Bayesian method is studied under the null and alternative hypotheses. The delay in diagnosis of the fault is measured. To study the effect of the fault time point in the performance of the Bayesian method, the sensitivity analysis is studied. The probability of the fault is studied and the Martingale approach is used to obtain the lower and upper bounds for this probability. The fault detection in integrated systems is studied and a Kalman filter, as a parallel filter, is considered to estimate the state and the effect of the unknown coefficient jump on state estimation is also studied.
      PubDate: 2017-02-01T07:08:06.272955-05:
      DOI: 10.1002/asjc.1458
       
  • H∞ Preview Control of A Class of Uncertain Discrete-Time Systems
    • Authors: Li Li; Fucheng Liao, Jiamei Deng
      Abstract: This paper investigates the problem of H∞ preview tracking control with robust performance for uncertain discrete-time systems. In order to avoid applying the difference operator to the time-varying matrix, by taking advantage of the difference between the system state variables, input variables, and the corresponding auxiliary variables, instead of the usual difference between system states, an augmented error system including previewed information is constructed, which converts the tracking problem into a regulator problem. A sufficient condition based on the free-weighting matrices technique and the Lyapunov stability theory is derived for the robust asymptotic stability of uncertain systems. Moreover, a state feedback control law with preview action design method is obtained via the linear matrix inequality approach. Based on these, a state observer for preview control systems is formulated. Previewable reference signals are fully utilized through reformulation of the output equation while designing the state observer. The proposed construction method of augmented error system is applicable to uncertain discrete-time systems in which the uncertainties are general. Also an integrator is introduced to ensure the closed-loop system tracking performance with no static error. The numerical results also show the effectiveness of the preview control law for uncertain systems in the paper.
      PubDate: 2017-01-27T05:21:00.315188-05:
      DOI: 10.1002/asjc.1466
       
  • Adaptive Impulsive Observers for a Class of Switched Nonlinear Systems
           with Unknown Parameter
    • Authors: Jinghan Li; Ruicheng Ma, Georgi M. Dimirovski
      Abstract: This work investigates and solves the design of adaptive impulsive observers for a class of uncertain switched nonlinear systems with unknown parameter. Sufficient conditions are derived for designing such observers for each subsystem to reconstruct asymptotically and update system states in real time. The state observer is represented in terms of impulsive differential equations. The parameter estimation law is modelled by an impulse-free, time-varying differential equation associated with the impulse time sequence in order to determine when the observer estimated state is updated. The asymptotic convergence to zero of the observation errors is established by applying the method of multiple time-varying Lyapunov functions. Sufficient conditions are derived that guarantee the convergence of parameter estimation. An example of switched Lorenz system along with numeric and simulation results is presented to demonstrate the effectiveness of the proposed method.
      PubDate: 2017-01-23T02:25:48.088156-05:
      DOI: 10.1002/asjc.1464
       
  • Pattern Recognition Based Dynamics Description of Production Processes in
           Metric Spaces
    • Authors: Mushu Wang; Zhengguang Xu, Lingli Guo
      Abstract: A new type of modeling method is put forward based on pattern recognition (PR) technology for some industrial production processes. The proposed method is a pure data-driven modeling method since the model is independent of the controlled plant, and it is based on the measured input and output (I/O) data of the controlled plant in a closed loop. Different from the traditional modeling method, the system dynamics is described by I/O classes, which are obtained from raw I/O data through partitioning of the data space respectively and I/O orders of the model resort to the conditional entropy. The covering algorithm based pattern classification (PC) is used to establish the mapping between input and output of the proposed model in metric spaces. The experimental results illustrate the feasibility of the modeling method.
      PubDate: 2017-01-20T13:40:36.578572-05:
      DOI: 10.1002/asjc.1471
       
  • Output Feedback Robust MPC Based on Off-line Observer for LPV Systems via
           Quadratic Boundedness
    • Authors: Xubin Ping
      Abstract: For the linear parameter varying (LPV) system with available scheduling parameter and bounded disturbance, a synthesis approach to output feedback robust model predictive control (OFRMPC) is considered. By applying the technique of quadratic boundedness, the on-line method with the refreshment of the bounds of estimation error guarantees the robust stability of the augmented closed-loop system. For reducing the on-line computational burden, the look-up table that stores off-line optimized control laws and the corresponding regions of attraction is constructed. The on-line control law is searched based on the bounds of estimation error set and the region of attraction with the closest containment of the real-time estimated state. A continuous stirred tank reactor (CSTR) model is given to illustrate the effectiveness of the method.
      PubDate: 2017-01-20T13:30:37.222195-05:
      DOI: 10.1002/asjc.1469
       
  • Weighted Pseudo Anti-Periodic Solutions for Cellular Neural Networks with
           Mixed Delays
    • Authors: Qiyuan Zhou
      Abstract: A model of cellular neural networks with mixed delays is proposed. Applying contraction mapping fixed point theorem and differential inequality technique, several sufficient conditions are derived to ensure the existence and exponential stability of weighted pseudo anti-periodic solutions for the proposed neural networks. Finally, a numerical simulation example is given to illustrate the effectiveness of the obtained results.
      PubDate: 2017-01-20T13:30:28.280442-05:
      DOI: 10.1002/asjc.1468
       
  • Approximation Optimal Vibration for Networked Nonlinear Vehicle Active
           Suspension with Actuator Time Delay
    • Authors: Shi-Yuan Han; Cheng-Hui Zhang, Gong-You Tang
      Abstract: This paper is concerned with the modelling and vibration control problem for networked nonlinear vehicle active suspension (NNVAS) with actuator time delay. Inserting in-vehicle communication network to active suspension, a novel model for NNVAS is established based on the Takagi-Sugeno fuzzy fusion technology first. By introducing a transformation vector, NNVAS with actuator time delay is reformed as a delay-free nonlinear system. Then, an approximation optimal vibration controller (AOVC) is proposed by using an iterative algorithm, which consists of suspension state item, a road disturbance state item, and a compensated item for nonlinear response. Dependant on the control performance in each iteration, the computability of proposed AOVC is realized. A reduced-order observer is designed to solve the physical unrealizable problem of road disturbances. Finally, compared with the open-loop system and H∞ control scheme without network setting, the capability of improving control performance under AOVC is illustrated.
      PubDate: 2017-01-20T13:25:34.969238-05:
      DOI: 10.1002/asjc.1419
       
  • Stable Delayed Bilateral Teleoperation of Mobile Manipulators
    • Authors: Diego D. Santiago; Emanuel Slawiñski, Vicente A. Mut
      Abstract: This paper proposes a control scheme for a stable teleoperation of non-holonomic mobile manipulator robots. This configuration presents high-coupled dynamics and motion redundancy. The problem approached in this work is the teleoperation of the end effector velocity of the Mobile Manipulator, while system redundancy is used to achieve secondary control objectives. We considered variable asymmetric time delays as well as non-passive models of operator and environment. From this study, it is possible to infer the control parameters, depending on the time delay, in order to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through simulations of human-in-the-loop internet teleoperation.
      PubDate: 2017-01-20T06:06:08.380029-05:
      DOI: 10.1002/asjc.1461
       
  • ZD, ZG and IOL Controllers and Comparisons for Nonlinear System Output
           Tracking with DBZ Problem Conquered in Different Relative-Degree Cases
    • Authors: Jian Li; Mingzhi Mao, Yunong Zhang, Dechao Chen, Yonghua Yin
      Abstract: This paper considers the output tracking control of general-form single-input single-output (SISO) nonlinear system, which may encounter the problem of division by zero (DBZ). First, via the Zhang dynamics (ZD) method, a ZD controller is proposed. Then, based on the ZD controller with the aid of gradient dynamics (GD) method, a Zhang-gradient (ZG) controller is proposed. For comparison, the conventional input-output linearization (IOL) controller is presented. The ZD, ZG and IOL controllers are compared in different relative-degree cases (i.e., the standard relative-degree case, the loose relative-degree case and the DBZ relative-degree case). Note that the ZG controller is valid in three relative-degree cases, while the ZD and IOL controllers are valid only in the standard relative-degree case and the loose relative-degree case. In addition, performances of ZD and ZG controllers are guaranteed via theoretical analyses and computer simulations for the output tracking of general-form nonlinear system with the DBZ problem conquered.
      PubDate: 2017-01-13T10:00:53.393602-05:
      DOI: 10.1002/asjc.1460
       
  • Crossed Synchronization of Multiple Subnets Complex Network System with
           Time-Varying Delay
    • Authors: Zhou Bi-feng; Lou Yi-ping, Zhong Yao-xiang
      Pages: 606 - 613
      Abstract: A dual-time varying delay complex network system is formed by a plurality of sub-networks. This paper discusses the crossed synchronization stability of such systems on the basis of crossed synchronization definition between the sub-nets. By the Lyapunov stability theory with the Zero Theorem, we obtained a sufficient condition that a synchronization exponentially stable controller exists in the complex network system, with characteristic variable delay. The relationship between the complex network nodes are discussed, and the two nodes must be connected and can interact with each other so it has the actual coupling strength. Finally, combining the given conditions, a numerical simulation illustrates its effectiveness.
      PubDate: 2017-01-06T04:45:29.151383-05:
      DOI: 10.1002/asjc.1421
       
  • Issue Information
    • Pages: 820 - 820
      Abstract: No abstract is available for this article.
      PubDate: 2017-03-06T10:56:37.537837-05:
      DOI: 10.1002/asjc.1404
       
 
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
 
Home (Search)
Subjects A-Z
Publishers A-Z
Customise
APIs
Your IP address: 54.80.236.48
 
About JournalTOCs
API
Help
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016