Subjects -> COMPUTER SCIENCE (Total: 2313 journals)
    - ANIMATION AND SIMULATION (33 journals)
    - ARTIFICIAL INTELLIGENCE (133 journals)
    - AUTOMATION AND ROBOTICS (116 journals)
    - CLOUD COMPUTING AND NETWORKS (75 journals)
    - COMPUTER ARCHITECTURE (11 journals)
    - COMPUTER ENGINEERING (12 journals)
    - COMPUTER GAMES (23 journals)
    - COMPUTER PROGRAMMING (25 journals)
    - COMPUTER SCIENCE (1305 journals)
    - COMPUTER SECURITY (59 journals)
    - DATA BASE MANAGEMENT (21 journals)
    - DATA MINING (50 journals)
    - E-BUSINESS (21 journals)
    - E-LEARNING (30 journals)
    - ELECTRONIC DATA PROCESSING (23 journals)
    - IMAGE AND VIDEO PROCESSING (42 journals)
    - INFORMATION SYSTEMS (109 journals)
    - INTERNET (111 journals)
    - SOCIAL WEB (61 journals)
    - SOFTWARE (43 journals)
    - THEORY OF COMPUTING (10 journals)

COMPUTER SCIENCE (1305 journals)                  1 2 3 4 5 6 7 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 27)
Abakós     Open Access   (Followers: 3)
ACM Computing Surveys     Hybrid Journal   (Followers: 29)
ACM Inroads     Full-text available via subscription   (Followers: 1)
ACM Journal of Computer Documentation     Free   (Followers: 4)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 5)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 11)
ACM SIGACCESS Accessibility and Computing     Free   (Followers: 2)
ACM SIGAPP Applied Computing Review     Full-text available via subscription  
ACM SIGBioinformatics Record     Full-text available via subscription  
ACM SIGEVOlution     Full-text available via subscription  
ACM SIGHIT Record     Full-text available via subscription  
ACM SIGHPC Connect     Full-text available via subscription  
ACM SIGITE Newsletter     Open Access   (Followers: 1)
ACM SIGMIS Database: the DATABASE for Advances in Information Systems     Hybrid Journal  
ACM SIGUCCS plugged in     Full-text available via subscription  
ACM SIGWEB Newsletter     Full-text available via subscription   (Followers: 3)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 13)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 3)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)     Hybrid Journal  
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 10)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 11)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 5)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 19)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 15)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 9)
ACM Transactions on Computing for Healthcare     Hybrid Journal  
ACM Transactions on Cyber-Physical Systems (TCPS)     Hybrid Journal   (Followers: 1)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 5)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 11)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Internet of Things     Hybrid Journal   (Followers: 2)
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS)     Hybrid Journal  
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 10)
ACM Transactions on Parallel Computing     Full-text available via subscription  
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 6)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 9)
ACM Transactions on Social Computing     Hybrid Journal  
ACM Transactions on Spatial Algorithms and Systems (TSAS)     Hybrid Journal   (Followers: 1)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 11)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Hybrid Journal   (Followers: 39)
Acta Informatica Malaysia     Open Access  
Acta Universitatis Cibiniensis. Technical Series     Open Access   (Followers: 1)
Ad Hoc Networks     Hybrid Journal   (Followers: 12)
Adaptive Behavior     Hybrid Journal   (Followers: 8)
Additive Manufacturing Letters     Open Access   (Followers: 3)
Advanced Engineering Materials     Hybrid Journal   (Followers: 32)
Advanced Science Letters     Full-text available via subscription   (Followers: 9)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 9)
Advances in Artificial Intelligence     Open Access   (Followers: 31)
Advances in Catalysis     Full-text available via subscription   (Followers: 7)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 20)
Advances in Computer Engineering     Open Access   (Followers: 13)
Advances in Computer Science : an International Journal     Open Access   (Followers: 18)
Advances in Computing     Open Access   (Followers: 3)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 52)
Advances in Engineering Software     Hybrid Journal   (Followers: 26)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 19)
Advances in Human-Computer Interaction     Open Access   (Followers: 19)
Advances in Image and Video Processing     Open Access   (Followers: 20)
Advances in Materials Science     Open Access   (Followers: 19)
Advances in Multimedia     Open Access   (Followers: 1)
Advances in Operations Research     Open Access   (Followers: 13)
Advances in Remote Sensing     Open Access   (Followers: 59)
Advances in Science and Research (ASR)     Open Access   (Followers: 8)
Advances in Technology Innovation     Open Access   (Followers: 5)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 6)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 5)
AI EDAM     Hybrid Journal   (Followers: 2)
Air, Soil & Water Research     Open Access   (Followers: 6)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 5)
Al-Qadisiyah Journal for Computer Science and Mathematics     Open Access   (Followers: 2)
AL-Rafidain Journal of Computer Sciences and Mathematics     Open Access   (Followers: 3)
Algebras and Representation Theory     Hybrid Journal  
Algorithms     Open Access   (Followers: 13)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 8)
American Journal of Computational Mathematics     Open Access   (Followers: 6)
American Journal of Information Systems     Open Access   (Followers: 4)
American Journal of Sensor Technology     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 15)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 4)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 14)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 16)
Annals of Pure and Applied Logic     Open Access   (Followers: 4)
Annals of Software Engineering     Hybrid Journal   (Followers: 12)
Annual Reviews in Control     Hybrid Journal   (Followers: 7)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 3)
Applied and Computational Harmonic Analysis     Full-text available via subscription  
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 17)
Applied Categorical Structures     Hybrid Journal   (Followers: 4)
Applied Clinical Informatics     Hybrid Journal   (Followers: 4)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 16)
Applied Computer Systems     Open Access   (Followers: 6)
Applied Computing and Geosciences     Open Access   (Followers: 3)
Applied Mathematics and Computation     Hybrid Journal   (Followers: 31)
Applied Medical Informatics     Open Access   (Followers: 11)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 4)
Applied Soft Computing     Hybrid Journal   (Followers: 13)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 5)
Applied System Innovation     Open Access   (Followers: 1)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 4)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 97)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 5)
arq: Architectural Research Quarterly     Hybrid Journal   (Followers: 7)
Array     Open Access   (Followers: 1)
Artifact : Journal of Design Practice     Open Access   (Followers: 8)
Artificial Life     Hybrid Journal   (Followers: 7)
Asian Journal of Computer Science and Information Technology     Open Access   (Followers: 3)
Asian Journal of Control     Hybrid Journal  
Asian Journal of Research in Computer Science     Open Access   (Followers: 4)
Assembly Automation     Hybrid Journal   (Followers: 2)
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 6)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 13)
Automatika : Journal for Control, Measurement, Electronics, Computing and Communications     Open Access  
Automation in Construction     Hybrid Journal   (Followers: 8)
Balkan Journal of Electrical and Computer Engineering     Open Access  
Basin Research     Hybrid Journal   (Followers: 7)
Behaviour & Information Technology     Hybrid Journal   (Followers: 32)
BenchCouncil Transactions on Benchmarks, Standards, and Evaluations     Open Access   (Followers: 3)
Big Data and Cognitive Computing     Open Access   (Followers: 5)
Big Data Mining and Analytics     Open Access   (Followers: 10)
Biodiversity Information Science and Standards     Open Access   (Followers: 1)
Bioinformatics     Hybrid Journal   (Followers: 216)
Bioinformatics Advances : Journal of the International Society for Computational Biology     Open Access   (Followers: 1)
Biomedical Engineering     Hybrid Journal   (Followers: 11)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 11)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 43)
British Journal of Educational Technology     Hybrid Journal   (Followers: 93)
Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics     Open Access  
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 1)
Cadernos do IME : Série Informática     Open Access  
CALCOLO     Hybrid Journal  
CALICO Journal     Full-text available via subscription   (Followers: 1)
Calphad     Hybrid Journal  
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 14)
Catalysis in Industry     Hybrid Journal  
CCF Transactions on High Performance Computing     Hybrid Journal  
CCF Transactions on Pervasive Computing and Interaction     Hybrid Journal  
CEAS Space Journal     Hybrid Journal   (Followers: 6)
Cell Communication and Signaling     Open Access   (Followers: 3)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 4)
CERN IdeaSquare Journal of Experimental Innovation     Open Access  
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 1)
Chaos, Solitons & Fractals : X     Open Access   (Followers: 1)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 13)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 8)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
Chip     Full-text available via subscription   (Followers: 2)
Ciencia     Open Access  
CIN : Computers Informatics Nursing     Hybrid Journal   (Followers: 11)
Circuits and Systems     Open Access   (Followers: 16)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Clinical eHealth     Open Access  
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 2)
Cognitive Computation and Systems     Open Access  
COMBINATORICA     Hybrid Journal  
Combinatorics, Probability and Computing     Hybrid Journal   (Followers: 4)
Combustion Theory and Modelling     Hybrid Journal   (Followers: 18)
Communication Methods and Measures     Hybrid Journal   (Followers: 12)
Communication Theory     Hybrid Journal   (Followers: 29)
Communications in Algebra     Hybrid Journal   (Followers: 1)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 2)
Communications of the ACM     Full-text available via subscription   (Followers: 59)
Communications of the Association for Information Systems     Open Access   (Followers: 15)
Communications on Applied Mathematics and Computation     Hybrid Journal   (Followers: 1)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 4)
Complex & Intelligent Systems     Open Access   (Followers: 1)
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 8)
Computación y Sistemas     Open Access  
Computation     Open Access   (Followers: 1)
Computational and Applied Mathematics     Hybrid Journal   (Followers: 3)
Computational and Mathematical Methods     Hybrid Journal  
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 1)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 1)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 11)
Computational Astrophysics and Cosmology     Open Access   (Followers: 6)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 13)
Computational Biology Journal     Open Access   (Followers: 6)
Computational Brain & Behavior     Hybrid Journal   (Followers: 1)
Computational Chemistry     Open Access   (Followers: 3)
Computational Communication Research     Open Access   (Followers: 1)
Computational Complexity     Hybrid Journal   (Followers: 5)
Computational Condensed Matter     Open Access   (Followers: 1)

        1 2 3 4 5 6 7 | Last

Similar Journals
Journal Cover
Applied Computational Intelligence and Soft Computing
Number of Followers: 16  

  This is an Open Access Journal Open Access journal
ISSN (Print) 1687-9724 - ISSN (Online) 1687-9732
Published by Hindawi Homepage  [339 journals]
  • Classifying the Mortality of People with Underlying Health Conditions
           Affected by COVID-19 Using Machine Learning Techniques

    • Abstract: The COVID-19 pandemic has greatly affected populations worldwide and has posed a significant challenge to medical systems. With the constant increase in the number of severe COVID-19 infections, an essential area of research has been directed towards predicting the mortality rate of these patients, in order to make informed medical decisions about the necessary healthcare priorities. Although a large amount of research has attempted to predict the mortality rate of COVID-19 patients, the association between the mortality rate of COVID-19 patients and their underlying health conditions has been given significantly less attention. Meanwhile, patients with underlying conditions often face a worse COVID-19 prognosis. Therefore, the goal of this study was to classify the mortality rate of patients diagnosed with COVID-19, who also suffer from underlying health conditions or comorbidities. To achieve our goal, we applied machine learning (ML) models on a new publicly available dataset, not investigated by any existing literature. The dataset provides detailed information on 582 COVID-19 patients and facilitates a robust forecasting model of the mortality rate. The dataset was analysed using seven ML classifiers, namely, Bagging, J48, logistic regression (LR), random forest (RF), support vector machine (SVM), naïve Bayes (NB), and threshold selector. A comparative analysis was performed across the seven ML techniques, and their performance was assessed based on evaluation parameters including classification accuracy, true-positive rate, and false-positive rate. The best performance was demonstrated by the Bagging algorithm with an accuracy of 83.55% when using all the dataset features. The findings are intended to assist researchers and physicians in the early identification of at-risk COVID-19 patients and to make the appropriate intensive care decisions.
      PubDate: Tue, 17 May 2022 11:35:02 +000
       
  • Forecasting Electricity Power Generation of Pawan Danavi Wind Farm, Sri
           Lanka, Using Gene Expression Programming

    • Abstract: This paper presents the development of a wind power forecasting model based on gene expression programming (GEP) for one of the major wind farms in Sri Lanka, Pawan Danavi. With the ever-increasing demand for renewable power generation, Sri Lanka has started harnessing electricity from wind power. Though the initial establishment cost of wind farms is high, the analyses clearly showcased the economic sustainability of wind power generation in long term. In this context, forecasting the wind power generation at Sri Lankan wind farms is important in many ways. However, limited research has been carried out in Sri Lanka to predict the wind power generation against the changing climate. Therefore, to overcome this research gap, a model was developed to forecast wind power generation against two climatic factors, viz. on-site wind speed and ambient temperature. The results showcased the robustness and accuracy of the proposed GEP-based forecasting model (with R2 = 0.92, index of agreement = 0.98, and RMSE = 259 kW). Moreover, the results of the study were compared against three different forecasting models and found comparable in terms of the model accuracy. The GEP-based model is advantageous over machine learning techniques due to its capability in deriving a mathematical expression. As an acceptable relationship was found between wind power generation and climatic factors, the proposed model facilitates the future projection of wind power generations with forecasted climatic factors. Though the application of GEP in the field of wind power generation is reported in a few research publications, this is the first research in which GEP is employed to model the power generation with respect to weather indices. The proposed prediction model is advantageous than machine learning models as the relationship between the wind power and the weather indices can be expressed.
      PubDate: Mon, 16 May 2022 04:20:01 +000
       
  • A Novel Smart Method for State Estimation in a Smart Grid Using Smart
           Meter Data

    • Abstract: Smart grids have brought new possibilities in power grid operations for control and monitoring. For this purpose, state estimation is considered as one of the effective techniques in the monitoring and analysis of smart grids. State estimation uses a processing algorithm based on data from smart meters. The major challenge for state estimation is to take into account this large volume of measurement data. In this article, a novel smart distribution network state estimation algorithm has been proposed. The proposed method is a combined high-gain state estimation algorithm named adaptive extended Kalman filter (AEKF) using extended Kalman filter (EKF) and unscented Kalman filter (UKF) in order to achieve better intelligent utility grid state estimation accuracy. The performance index and the error are indicators used to evaluate the accuracy of the estimation models in this article. An IEEE 37-node test network is used to implement the state estimation models. The state variables considered in this article are the voltage module at the measurement nodes. The results obtained show that the proposed hybrid algorithm has better performance compared to single state estimation methods such as the extended Kalman filter, the unscented Kalman filter, and the weighted least squares (WLS) method.
      PubDate: Tue, 10 May 2022 10:35:01 +000
       
  • Robust Spectral Clustering via Low-Rank Sample Representation

    • Abstract: Traditional clustering methods neglect the data quality and perform clustering directly on the original data. Therefore, their performance can easily deteriorate since real-world data would usually contain noisy data samples in high-dimensional space. In order to resolve the previously mentioned problem, a new method is proposed, which builds on the approach of low-rank representation. The proposed approach first learns a low-rank coefficient matrix from data by exploiting the data’s self-expressiveness property. Then, a regularization term is introduced to ensure that the representation coefficient of two samples, which are similar in original high-dimensional space, is close to maintaining the samples’ neighborhood structure in the low-dimensional space. As a result, the proposed method obtains a clustering structure directly through the low-rank coefficient matrix to guarantee optimal clustering performance. A wide range of experiments shows that the proposed method is superior to compared state-of-the-art methods.
      PubDate: Fri, 29 Apr 2022 02:50:02 +000
       
  • Parameter Estimation for Dynamical Systems Using a Deep Neural Network

    • Abstract: The deep neural network (DNN) was applied for estimating a set of unknown parameters of a dynamical system whose measured data are given for a set of discrete time points. We developed a new vectorized algorithm that takes the number of unknowns (state variables) and number of parameters into consideration. The algorithm, first, trains the network to determine weights and biases. Next, the algorithm solves the systems of algebraic equations to estimate the parameters of the system. If the right hand side function of the system is smooth and the system have equal numbers of unknowns and parameters, the algorithm solves the algebraic equation at the discrete point where absolute error between the neural network solutions and the measured data is minimum. This improves the accuracy and reduces computational time. Several tests were carried out in linear and non-linear dynamical systems. Last, we showed that the DNN approach is more successful in terms of computational time as the number of hidden layers increases.
      PubDate: Wed, 27 Apr 2022 10:05:01 +000
       
  • Rapid Detection of Hybrid Maize Parental Lines Using Stacking Ensemble
           Machine Learning

    • Abstract: Hybrid maize seed production is a relatively complex task due to the coexistence of three distinct types of maize plants in the field: female, male, and contaminant/off-type plants. Female and contaminant/off-type plants’ tassels should be removed immediately following flowering initiation, while male tassels should be retained to allow cross-pollination between male and female plants. Therefore, development of an intelligent tassel classification system is deemed critical for hybrid purity decision-making. The research’s primary contribution is the integration of two widely used transfer learning architectures, Inception V3 and SqueezeNet, with stacking ensemble machine learning using four algorithms (logistic regression, support vector machine, random forest, and k-nearest neighbors) for rapid classification of tassel images. Tenfold cross-validation was used to evaluate the model performance. Cloud computing was also investigated using EfficientNet to compare the predictive performance of the models. The models’ performance was assessed using four metrics: accuracy, AUC, precision, and recall. The results depicted an appropriate developed model that properly distinguished male, female, and contaminant plants. The integration of the model with machine learnings (logistic regression, SVM, random forest, and KNNs) enables rapid recognition of off-type plants even though it is operated by personnel with limited skills of seed technology on ideotype recognition. Among all the evaluated CNN architecture and stacking models, Inception V3-embedded images with logistic regression metaclassifier outperformed other models with accuracy of about 98%. SqueezeNet and EfficientNet provided comparable results for consistent tassel classification with slightly lower performance measures. The model was also subjected to a multidimensional scaling (MDS) analysis to investigate and comprehend misclassification. Male and female plants are clearly distinguished by MDS, but female and off-type/contamination plants are ambiguous. This indicates that the prediction errors were caused by highly similar data features among female and off-type images. The developed modern plant phenotyping model can be used to assist breeders/technicians in maintaining the quality of large-scale hybrid maize seed production activities in Indonesia.
      PubDate: Tue, 26 Apr 2022 11:20:01 +000
       
  • Hybrid Machine Learning Model for Electricity Consumption Prediction Using
           Random Forest and Artificial Neural Networks

    • Abstract: Predicting electricity consumption is notably essential to provide a better management decision and company strategy. This study presents a hybrid machine learning model by integrating dimensionality reduction and feature selection algorithms with a backpropagation neural network (BPNN) to predict electricity consumption in Thailand. The predictive models are developed and tested using an actual dataset with related predictor variables from public sources. An open geospatial data gathered from a real service as well as geographical, climatic, industrial, household information are used to train, evaluate, and validate these models. Machine learning methods such as principal component analysis (PCA), stepwise regression (SWR), and random forest (RF) are used to determine the significant predictor variables. The predictive models are constructed using the BPNN with all available variables as baseline for comparison and selected variables from dimensionality reduction and feature selection methods. Along with creating a predictive model, the most related predictors of energy consumption are also selected. From the comparison, the hybrid model of RF with BPNN consistently outperforms the other models. Thus, the proposed hybrid machine learning model presented from this study can predict electricity consumption for planning and managing the energy demand.
      PubDate: Thu, 21 Apr 2022 08:20:01 +000
       
  • Modelling Customs Revenue in Ghana Using Novel Time Series Methods

    • Abstract: Governments across the world rely on their Customs Administration to provide functions that include border security, intellectual property rights protection, environmental protection, and revenue mobilisation amongst others. Analyzing the trends in revenue being collected from Customs is necessary to direct government policies and decisions. Models that can capture the trends being purported from the nominal (nonreal) tax values with respect to the trade volumes (value) over the period are indispensable. Predominant amongst the existing models are the econometric models (the GDP-based model, the monthly receipts model, and the microsimulation model), which are laborious and sometimes unreliable when studying trends in time series data. In this study, we modelled monthly revenue data obtained from the Ghana Revenue Authority-Customs Division (GRA-CD) for the period January 2010 to December 2019 using two traditional time series models, ARIMA model and ARIMA Error Regression Model (ARIMAX), and two machine learning time series models, Bayesian Structural Time Series (BSTS) model and a Neural Network Autoregression model. The Neural Network Autoregression model of the form NNAR (1, 3) provided the best forecasts with the least Mean Squared Error (MSE) of 53.87 and relatively lower Mean Absolute Percentage Error (MAPE) of 0.08. Generally, the machine learning models (NNAR (1, 3) and BSTS) outperformed the traditional time series models (ARIMA and ARIMAX models). The forecast values from the NNAR (1, 3) indicated a potential decline in revenue and this emphasizes the need for relevant authorities to institute measures to improve revenue generation in the immediate future.
      PubDate: Mon, 18 Apr 2022 11:20:02 +000
       
  • Effective Fuzzy Soft Set Theory and Its Applications

    • Abstract: Fuzzy soft set is the most powerful and effective extension of soft sets which deals with parameterized values of the alternative. It is an extended model of soft set and a new mathematical tool that has great advantages in dealing with uncertain information and is proposed by combining soft sets and fuzzy sets. Many fuzzy decision making algorithms based on fuzzy soft sets were given. However, these do not consider the external effective on the decision it depends on the parameters without considering any external effective. In order to solve these problems, in this paper, we introduce the concept of effective fuzzy soft set and its operation and study some of its properties. We also give an application of this concept in decision making (DM) problem. Finally, we give an application of this theory to medical diagnosis (MD) and exhibit the technique with a hypothetical case study.
      PubDate: Fri, 15 Apr 2022 14:35:02 +000
       
  • Application of Optimized Convolution Neural Network Model in Mural
           Segmentation

    • Abstract: To address the problems of blurred target boundaries and inefficient image segmentation in ancient mural image segmentation, a multi-classification image segmentation model MC-DM (Multi-class DeeplabV3+ MobileNetV2) that fuses lightweight convolutional neural networks is proposed. The model combines the Deeplabv3+ structure and MobileNetV2 network and adopts the unique spatial pyramid structure of DeeplabV3+ to process convolutional features for multi-scale fusion, which reduces the loss of detail in the mural segmentation images. Firstly, the features calculated at any resolution in MobileNetV2 network are extracted by hole convolution, the input step is expressed as the ratio between the input image resolution and the final resolution, and the density of encoder features is controlled according to the budget of computing resources. Then, the spatial pyramid pool structure is used to fuse the previously calculated features at multiple scales to enrich the semantic information of the feature image. Finally, the same convolution network is used to reduce the number of channels and filter the density feature map. The filtered features are fused with the features after multi-scale fusion again to obtain the final output. In total, 1000 scanned images of murals were adopted as datasets for testing under the JetBrains PyCharm Community Edition 2019 environment. The obtained experimental results indicate that MC-DM improves the training accuracy by 1 percentage point compared with the conventional SegNet-based image segmentation model, and by 2 percentage points compared with the PspNet network-based image segmentation model. The PSNR (peak signal-to-noise ratio) of the MC-DM model is improved by 3–8 dB on average compared with the experimental model. This confirms the effectiveness of the model in mural segmentation and provides a novel method for ancient mural image segmentation.
      PubDate: Thu, 14 Apr 2022 03:05:01 +000
       
  • Rule-Based Classification Based on Ant Colony Optimization: A
           Comprehensive Review

    • Abstract: The Ant Colony Optimization (ACO) algorithms have been well-studied by the Operations Research community for solving combinatorial optimization problems. A handful of researchers in the Data Science community have successfully implemented various ACO methodologies for rule-based classification. This family of ACO algorithms is referred to as AntMiner algorithms. Due to the flexibility of the framework, and the availability of alternative strategies at the modular level, a systematic review on the AntMiner algorithms can benefit the broader community of researchers and practitioners interested in highly interpretable classification techniques. In this paper, we provided a comprehensive review of each module of the AntMiner algorithms. Our motivation is to provide insight into the current practices and future research scope in the context of the rule-based classification. Our discussions address ACO methodologies, rule construction strategies, candidate selection metrics, rule quality evaluation functions, rule pruning strategies, methods to address continuous attributes, parameter selection, and experimental settings. This review also reports a summary of real-life implementations of the rule-based classifiers in diverse domains including medical, genetics, portfolio analysis, geographic information system (GIS), human-machine interaction (HMI), autonomous driving, ICT, quality, and reliability engineering. These implementations demonstrate the potential application domains that can be benefitted from the methodological contributions to the rule-based classification technique.
      PubDate: Fri, 08 Apr 2022 18:20:01 +000
       
  • Enhanced Connectivity Validity Measure Based on Outlier Detection for
           Multi-Objective Metaheuristic Data Clustering Algorithms

    • Abstract: Data clustering algorithms experience challenges in identifying data points that are either noise or outlier. Hence, this paper proposes an enhanced connectivity measure based on the outlier detection approach for multi-objective data clustering problems. The proposed algorithm aims to improve the quality of the solution by utilising the local outlier factor method (LOF) with the connectivity validity measure. This modification is applied to select the neighbour data point’s mechanism that can be modified to eliminate such outliers. The performance of the proposed approach is assessed by applying the multi-objective algorithms to eight real-life and seven synthetic two-dimensional datasets. The external validity is evaluated using the F-measure, while the performance assessment matrices are employed to assess the quality of Pareto-optimal sets like the coverage and overall non-dominant vector generation. Our experimental results proved that the proposed outlier detection method has enhanced the performance of the multi-objective data clustering algorithms.
      PubDate: Mon, 28 Mar 2022 06:50:01 +000
       
  • Enhanced Image Processing and Fuzzy Logic Approach for Optimizing Driver
           Drowsiness Detection

    • Abstract: Driver drowsiness is a severe problem that usually causes traffic accidents, classified as more dangerous. The record of the National Safety Council reported that drowsy driving is caused by 9.5% of all crashes (100,000 cases). Therefore, preventing and minimizing driver fatigue is a significant research area. This study aims to design a nonintrusive real-time drowsiness system based on image processing and fuzzy logic techniques. It is an enhanced approach for Viola–Jones to examine different visual signs to detect the driver's drowsiness level. It extracted eye blink duration and mouth features to detect driver drowsiness based on the desired facial feature image in a specific driver video frame. The size and orientation of the captured features were tracked and handled for determining image features such as brightness, shadows, and clearness. Lastly, the fuzzy control system provides different alert sounds based on the tracked information from the face, eyes, and mouth in separate cases, such as race, wearing glasses or not, gender, and various illumination backgrounds. The experiments’ results show that the proposed approach achieved high accuracy of 94.5% in detecting driver status compared with other studies. Also, the fuzzy logic controller efficiently issued the required alert signal of the drowsy driver status that helps to save the driver's life.
      PubDate: Sat, 19 Mar 2022 15:35:01 +000
       
  • An Efficient Method for Diagnosing Brain Tumors Based on MRI Images Using
           Deep Convolutional Neural Networks

    • Abstract: This paper proposes a system to effectively identify brain tumors on MRI images using artificial intelligence algorithms and ADAS optimization function. This system is developed with the aim of assisting doctors in diagnosing one of the most dangerous diseases for humans. The data used in the study is patient image data collected from Bach Mai Hospital, Vietnam. The proposed approach includes two main steps. First, we propose the normalization method for brain MRI images to remove unnecessary components without affecting their information content. In the next step, Deep Convolutional Neural Networks are used and then we propose to apply ADAS optimization function to build predictive models based on that normalized dataset. From there, the results will be compared to choose the most optimal method. Those results of the evaluated algorithms through the coefficient F1-score are greater than 94% and the highest value is 97.65%.
      PubDate: Tue, 15 Mar 2022 12:05:01 +000
       
  • A Robust Approach for Speaker Identification Using Dialect Information

    • Abstract: The present research is an effort to enhance the performance of voice processing systems, in our case the speaker identification system (SIS) by addressing the variability caused by the dialectical variations of a language. We present an effective solution to reduce dialect-related variability from voice processing systems. The proposed method minimizes the system’s complexity by reducing search space during the testing process of speaker identification. The speaker is searched from the set of speakers of the identified dialect instead of all the speakers present in system training. The study is conducted on the Pashto language, and the voice data samples are collected from native Pashto speakers of specific regions of Pakistan and Afghanistan where Pashto is spoken with different dialectal variations. The task of speaker identification is achieved with the help of a novel hierarchical framework that works in two steps. In the first step, the speaker’s dialect is identified. For automated dialect identification, the spectral and prosodic features have been used in conjunction with Gaussian mixture model (GMM). In the second step, the speaker is identified using a multilayer perceptron (MLP)-based speaker identification system, which gets aggregated input from the first step, i.e., dialect identification along with prosodic and spectral features. The robustness of the proposed SIS is compared with traditional state-of-the-art methods in the literature. The results show that the proposed framework is better in terms of average speaker recognition accuracy (84.5% identification accuracy) and consumes 39% less time for the identification of speaker.
      PubDate: Mon, 07 Mar 2022 11:35:01 +000
       
  • Corrigendum to “A Client-Server and Web-Based Graphical User Interface
           

    • PubDate: Mon, 28 Feb 2022 04:35:01 +000
       
  • Grey Wolf Optimizer-Based ANNs to Predict the Compressive Strength of
           Self-Compacting Concrete

    • Abstract: Ever since their presentation in the late 80s, self-compacting concrete (SCC) has been well received by researchers. SCC can flow under their weight and exhibit high workability. Nonetheless, their nonlinear behavior has made the prediction of their mix properties more demanding. Furthermore, the complex relationship between mixed proportions and rheological and mechanical properties of SCC renders their behavior prediction challenging. Soft computing approaches have been shown to optimize and reduce uncertainties, and therefore in this paper, we aim to address these challenges by employing artificial neural network (ANN) models optimized using the grey wolf optimizer (GWO) algorithm. The optimized model proved to be more accurate than genetic algorithms and multiple linear regression models. The results indicate that the four most influential parameters on the compressive strength of SCC are the cement content, ground granulated blast furnace slag, rice husk ash, and fly ash.
      PubDate: Thu, 17 Feb 2022 04:20:02 +000
       
  • An Effective Hybrid Algorithm Based on Particle Swarm Optimization with
           Migration Method for Solving the Multiskill Resource-Constrained Project
           Scheduling Problem

    • Abstract: The paper proposed a new algorithm to solve the Multiskill Resource-Constrained Project Scheduling Problem (MS-RCPSP), a combinational optimization problem proved in NP-Hard classification, so it cannot get an optimal solution in polynomial time. The NP-Hard problems can be solved using metaheuristic methods to evolve the population over many generations, thereby finding approximate solutions. However, most metaheuristics have a weakness that can be dropping into local extreme after a number of evolution generations. The new algorithm proposed in this paper will resolve that by detecting local extremes and escaping that by moving the population to new space. That is executed using the Migration technique combined with the Particle Swarm Optimization (PSO) method. The new algorithm is called M-PSO. The experiments were conducted with the iMOPSE benchmark dataset and showed that the M-PSO was more practical than the early algorithms.
      PubDate: Tue, 15 Feb 2022 10:20:00 +000
       
  • Maximal Soft Compact and Maximal Soft Connected Topologies

    • Abstract: In various articles, it is said that the class of all soft topologies on a common universe forms a complete lattice, but in this paper, we prove that it is a complete lattice. Some soft topologies are maximal, and some are minimal with respect to specific soft topological properties. We study the properties of soft compact and soft connected topologies that are maximal. Particularly, we prove that a maximal soft compact topology has identical families of soft compact and soft closed sets. We further show that a maximal soft compact topology is soft , while a maximal soft connected topology is soft . Lastly, we establish that each soft connected relative topology to a maximal soft connected topology is maximal.
      PubDate: Tue, 08 Feb 2022 08:05:00 +000
       
  • Intelligent Model for Brain Tumor Identification Using Deep Learning

    • Abstract: Brain tumors can be a major cause of psychiatric complications such as depression and panic attacks. Quick and timely recognition of a brain tumor is more effective in tumor healing. The processing of medical images plays a crucial role in assisting humans in identifying different diseases. The classification of brain tumors is a significant part that depends on the expertise and knowledge of the physician. An intelligent system for detecting and classifying brain tumors is essential to help physicians. The novel feature of the study is the division of brain tumors into glioma, meningioma, and pituitary using a hierarchical deep learning method. The diagnosis and tumor classification are significant for the quick and productive cure, and medical image processing using a convolutional neural network (CNN) is giving excellent outcomes in this capacity. CNN uses the image fragments to train the data and classify them into tumor types. Hierarchical Deep Learning-Based Brain Tumor (HDL2BT) classification is proposed with the help of CNN for the detection and classification of brain tumors. The proposed system categorizes the tumor into four types: glioma, meningioma, pituitary, and no-tumor. The suggested model achieves 92.13% precision and a miss rate of 7.87%, being superior to earlier methods for detecting and segmentation brain tumors. The proposed system will provide clinical assistance in the area of medicine.
      PubDate: Fri, 21 Jan 2022 07:50:05 +000
       
  • Ensemble Classifiers for Arabic Sentiment Analysis of Social Network
           (Twitter Data) towards COVID-19-Related Conspiracy Theories

    • Abstract: Sentiment analysis has recently become increasingly important with a massive increase in online content. It is associated with the analysis of textual data generated by social media that can be easily accessed, obtained, and analyzed. With the emergence of COVID-19, most published studies related to COVID-19’s conspiracy theories were surveys on the people's sentiments and opinions and studied the impact of the pandemic on their lives. Just a few studies utilized sentiment analysis of social media using a machine learning approach. These studies focused more on sentiment analysis of Twitter tweets in the English language and did not pay more attention to other languages such as Arabic. This study proposes a machine learning model to analyze the Arabic tweets from Twitter. In this model, we apply Word2Vec for word embedding which formed the main source of features. Two pretrained continuous bag-of-words (CBOW) models are investigated, and Naïve Bayes was used as a baseline classifier. Several single-based and ensemble-based machine learning classifiers have been used with and without SMOTE (synthetic minority oversampling technique). The experimental results show that applying word embedding with an ensemble and SMOTE achieved good improvement on average of F1 score compared to the baseline classifier and other classifiers (single-based and ensemble-based) without SMOTE.
      PubDate: Thu, 13 Jan 2022 16:50:02 +000
       
  • Mental Health Prediction Using Machine Learning: Taxonomy, Applications,
           and Challenges

    • Abstract: The increase of mental health problems and the need for effective medical health care have led to an investigation of machine learning that can be applied in mental health problems. This paper presents a recent systematic review of machine learning approaches in predicting mental health problems. Furthermore, we will discuss the challenges, limitations, and future directions for the application of machine learning in the mental health field. We collect research articles and studies that are related to the machine learning approaches in predicting mental health problems by searching reliable databases. Moreover, we adhere to the PRISMA methodology in conducting this systematic review. We include a total of 30 research articles in this review after the screening and identification processes. Then, we categorize the collected research articles based on the mental health problems such as schizophrenia, bipolar disorder, anxiety and depression, posttraumatic stress disorder, and mental health problems among children. Discussing the findings, we reflect on the challenges and limitations faced by the researchers on machine learning in mental health problems. Additionally, we provide concrete recommendations on the potential future research and development of applying machine learning in the mental health field.
      PubDate: Wed, 05 Jan 2022 12:05:10 +000
       
  • Proposing Algorithm Using YOLOV4 and VGG-16 for Smart-Education

    • Abstract: In this paper, we propose an algorithm to identify and solve systems of high-order equations. We rely on traditional solution methods to build algorithms to solve automated equations based on deep learning. The proposal method includes two main steps. In the first step, we use YOLOV4 (Kumar et al. 2020; Canu, 2020) to recognize equations and letters associated with the VGG-16 network (Simonyan and Zisserman, 2015) to classify them. We then used the SymPy model to solve the equations in the second step. Data are images of systems of equations that are typed and designed by ourselves or handwritten from other sources. Besides, we also built a web-based application that helps users select an image from their devices. The results show that the proposed algorithm is set out with 95% accuracy for smart-education applications.
      PubDate: Wed, 29 Dec 2021 07:05:07 +000
       
  • Novel Metaheuristic Based on Iterated Constructive Stochastic Heuristic:
           Dhouib-Matrix-3 (DM3)

    • Abstract: This paper presents a new metaheuristic named Dhouib-Matrix-3 (DM3) inspired by our recently developed constructive stochastic heuristic Dhouib-Matrix-TSP2 (DM-TSP2) and characterized by only one parameter: the number of iterations. The proposed metaheuristic DM3 is an iterative algorithm in which every iteration is based on two relay hybridization techniques. At first, the constructive stochastic heuristic DM-TSP2 starts by generating a different initial basic feasible solution and then each solution is intensified by the novel procedure Far-to-Near which exchanges far cities by closer ones using three perturbation techniques: insertion, exchange, and 2-opt. Experimental results carried out on the classical travelling salesman problem using the well-known TSP-LIB benchmark instances demonstrate that our approach DM3 outclasses the simulated annealing algorithm, the genetic algorithm, and the cellular genetic algorithm. Furthermore, the proposed DM3 is statistically concurrent to the hybrid simulated annealing cellular genetic algorithm. Nevertheless, DM3 is easier to implement and needs only one parameter to identify (the maximum number of iterations).
      PubDate: Mon, 27 Dec 2021 09:35:02 +000
       
  • Multi-Attribute Decision-Support System Based on Aggregations of
           Interval-Valued Complex Neutrosophic Hypersoft Set

    • Abstract: Hypersoft set is an emerging field of study that is meant to address the insufficiency and the limitation of existing soft-set-like models regarding the consideration and the entitlement of multi-argument approximate function. This type of function maps the multi-subparametric tuples to the power set of the universe. It focuses on the partitioning of each attribute into its attribute-valued set that is missing in existing soft-set-like structures. This study aims to introduce novel concepts of complex intuitionistic fuzzy set and complex neutrosophic set under the hypersoft set environment with interval-valued settings. Two novel structures, that is, interval-valued complex intuitionistic hypersoft set (IV-CIFHS-set) and interval-valued complex neutrosophic hypersoft set (IV-CNHS-set), are developed via employing theoretic, axiomatic, graphical, and algorithmic approaches. After conceptual characterization of essential elementary notions of these structures, decision-support systems are presented with the proposal of algorithms to assist the decision-making process. The proposed algorithms are validated with the help of real-world applications. A comprehensive inter-cum-intra comparison of proposed structures is discussed with the existing relevant models, and their generalization is elaborated under certain evaluating features.
      PubDate: Sat, 25 Dec 2021 12:05:01 +000
       
  • Model Calibration and Validation for the Fuzzy-EGARCH-ANN Model

    • Abstract: This work shown as the fuzzy-EGARCH-ANN (fuzzy-exponential generalized autoregressive conditional heteroscedastic-artificial neural network) model does not require continuous model calibration if the corresponding DE algorithm is used appropriately, but other models such as GARCH, EGARCH, and EGARCH-ANN need continuous model calibration and validation so they fit the data and reality very well up to the desired accuracy. Also, a robust analysis of volatility forecasting of the daily S&P 500 data collected from Yahoo Finance for the daily spanning period 1/3/2006 to 20/2/2020. To our knowledge, this is the first study that focuses on the daily S&P 500 data using high-frequency data and the fuzzy-EGARCH-ANN econometric model. Finally, the research finds that the best performing model in terms of one-step-ahead forecasts based on realized volatility computed from the underlying daily data series is the fuzzy-EGARCH-ANN (1,1,2,1) model with Student’s t-distribution.
      PubDate: Fri, 24 Dec 2021 14:20:02 +000
       
  • A Generalized Method for Sentiment Analysis across Different Sources

    • Abstract: Sentiment analysis is widely used in a variety of applications such as online opinion gathering for policy directives in government, monitoring of customers, and staff satisfactions in corporate bodies, in politics and security structures for public tension monitoring, and so on. In recent times, the field met with new set of challenges where new algorithms have to contend with highly unstructured sources for sentiment expressions emanating from online social media fora. In this study, a rule and lexical-based procedure is proposed together with unsupervised machine learning to implement sentiment analysis with an improved generalization ability across different sources. To deal with sources devoid of syntactic and grammatical structure, the approach incorporates a ruled-based technique for emoticon detection, word contraction expansion, noise removal, and lexicon-based text preprocessing using lexical features such as part of speech (POS), stop words, and lemmatization for local context analysis. A text is broken into number of tokens with each representing a sentence and then lexicon-dependent features are extracted from each token. The features are merged together using a combining function for a given text before being used to train a machine learning classifier. The proposed combining functions leverage on averaging and information gain concepts. Experimental results with different machine leaning classifiers indicate that improved performance with great deal of generalization capacity across both structured and nonstructured sources can be realized. The finding shows that carefully designed lexical features reinforce learning process in unsupervised learning more than using word embeddings alone as the features. Obtained experimental results from movie review dataset (recall = 74.9%, precision = 70.9%, F1-score = 72.9%, and accuracy = 72.0%) and twitter samples’ datasets (recall = 93.4%, precision = 89.5%, F1-score = 91.4%, and accuracy = 91.1%) show the efficacy of the proposed approach in comparison with other state-of-the-art research studies.
      PubDate: Sat, 18 Dec 2021 08:35:01 +000
       
  • A Decision-Making Approach for Ranking Tertiary Institutions’ Service
           Quality Using Fuzzy MCDM and Extended HiEdQUAL Model

    • Abstract: The attainment of excellence in institutions is maintained through the institutions’ adherence to its core values and efficient service delivery. These factors are very important in facilitating global development of a country and determining the world ranking of an institution. To this effect, this study presents an effective approach for evaluating and ranking quality of services in a higher institution, taking four higher institutions in Nigeria as case studies. Service quality consists of different attributes and many of them are intangible and difficult to measure, which means that using the previously known measurement approach will be insufficient. Therefore, a fuzzy method was proposed to resolve the ambiguity of the concepts and intra-uncertainty, which are associated with human judgments in decision-making. This study adopted a contextualized service quality model for educational domain called HiEdQUAL with some extended criteria in order to evaluate the perception of service quality by respondents from the selected higher institutions: two private universities and two public universities from the south-west region of Nigeria. Four Multi-Criteria Decision-Making (MCDM) methods: TOPSIS, Yager’s min-max, Compensatory AND, and Ordered Weighted Averaging are applied to comparatively evaluate the quality of services in the four higher institutions. The MCDM methods are engaged independently to validate the reliability of the ranking results. The importance weight of each performance criterion is found with Fuzzy Analytical Hierarchy Process (FAHP) algorithm. This study has been able to practically establish Ext-HiEdQUAL as a new service quality model for higher education with six concepts and 33 criteria. The output of the Fuzzy MCDM ranking recommends institution B as the best institution to students based on the Ext-HiEdQUAL measures. Also, findings from the sensitivity analysis showed that Yager’s min-max outperform the other investigated methods in this study by being consistent and exceptionally tolerant in most instances when there is significant deviation in criteria weights.
      PubDate: Mon, 29 Nov 2021 08:35:01 +000
       
  • Comparative Study on Heart Disease Prediction Using Feature Selection
           Techniques on Classification Algorithms

    • Abstract: Heart disease is recognized as one of the leading factors of death rate worldwide. Biomedical instruments and various systems in hospitals have massive quantities of clinical data. Therefore, understanding the data related to heart disease is very important to improve prediction accuracy. This article has conducted an experimental evaluation of the performance of models created using classification algorithms and relevant features selected using various feature selection approaches. For results of the exploratory analysis, ten feature selection techniques, i.e., ANOVA, Chi-square, mutual information, ReliefF, forward feature selection, backward feature selection, exhaustive feature selection, recursive feature elimination, Lasso regression, and Ridge regression, and six classification approaches, i.e., decision tree, random forest, support vector machine, K-nearest neighbor, logistic regression, and Gaussian naive Bayes, have been applied to Cleveland heart disease dataset. The feature subset selected by the backward feature selection technique has achieved the highest classification accuracy of 88.52%, precision of 91.30%, sensitivity of 80.76%, and f-measure of 85.71% with the decision tree classifier.
      PubDate: Mon, 01 Nov 2021 06:20:03 +000
       
  • An Improved EDAS Method Based on Bipolar Neutrosophic Set and Its
           Application in Group Decision-Making

    • Abstract: The bipolar neutrosophic set is a suitable instrument to tackle the information with vagueness, complexity, and uncertainty. In this study, we improved the original EDAS (the evaluation based on distance from average solution) with bipolar neutrosophic numbers (BNNs) for a multiple-criteria group decision-making (MCGDM) problem. We calculated the average solution under all the criteria by two existing aggregation operators of BNNs. Then, we computed the positive distance and the negative distance from each alternative to the average ideal solution and determined the appraisal score of alternatives. Based on these scores, we obtained the ranking result. Finally, we demonstrated the practicability, stability, and capability of the improved EDAS method by analyzing the influence parameters and comparing results with an extended VIKOR method.
      PubDate: Fri, 15 Oct 2021 11:50:01 +000
       
 
JournalTOCs
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Email: journaltocs@hw.ac.uk
Tel: +00 44 (0)131 4513762
 


Your IP address: 35.172.111.71
 
Home (Search)
API
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-