for Journals by Title or ISSN
for Articles by Keywords
  Subjects -> COMPUTER SCIENCE (Total: 1993 journals)
    - ANIMATION AND SIMULATION (29 journals)
    - AUTOMATION AND ROBOTICS (100 journals)
    - COMPUTER ARCHITECTURE (9 journals)
    - COMPUTER ENGINEERING (9 journals)
    - COMPUTER GAMES (16 journals)
    - COMPUTER PROGRAMMING (24 journals)
    - COMPUTER SCIENCE (1157 journals)
    - COMPUTER SECURITY (46 journals)
    - DATA BASE MANAGEMENT (13 journals)
    - DATA MINING (32 journals)
    - E-BUSINESS (22 journals)
    - E-LEARNING (27 journals)
    - IMAGE AND VIDEO PROCESSING (40 journals)
    - INFORMATION SYSTEMS (104 journals)
    - INTERNET (91 journals)
    - SOCIAL WEB (50 journals)
    - SOFTWARE (33 journals)
    - THEORY OF COMPUTING (8 journals)

COMPUTER SCIENCE (1157 journals)                  1 2 3 4 5 6 | Last

Showing 1 - 200 of 872 Journals sorted alphabetically
3D Printing and Additive Manufacturing     Full-text available via subscription   (Followers: 13)
Abakós     Open Access   (Followers: 3)
Academy of Information and Management Sciences Journal     Full-text available via subscription   (Followers: 69)
ACM Computing Surveys     Hybrid Journal   (Followers: 22)
ACM Journal on Computing and Cultural Heritage     Hybrid Journal   (Followers: 9)
ACM Journal on Emerging Technologies in Computing Systems     Hybrid Journal   (Followers: 13)
ACM Transactions on Accessible Computing (TACCESS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Algorithms (TALG)     Hybrid Journal   (Followers: 16)
ACM Transactions on Applied Perception (TAP)     Hybrid Journal   (Followers: 6)
ACM Transactions on Architecture and Code Optimization (TACO)     Hybrid Journal   (Followers: 9)
ACM Transactions on Autonomous and Adaptive Systems (TAAS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Computation Theory (TOCT)     Hybrid Journal   (Followers: 11)
ACM Transactions on Computational Logic (TOCL)     Hybrid Journal   (Followers: 4)
ACM Transactions on Computer Systems (TOCS)     Hybrid Journal   (Followers: 18)
ACM Transactions on Computer-Human Interaction     Hybrid Journal   (Followers: 13)
ACM Transactions on Computing Education (TOCE)     Hybrid Journal   (Followers: 3)
ACM Transactions on Design Automation of Electronic Systems (TODAES)     Hybrid Journal   (Followers: 1)
ACM Transactions on Economics and Computation     Hybrid Journal  
ACM Transactions on Embedded Computing Systems (TECS)     Hybrid Journal   (Followers: 4)
ACM Transactions on Information Systems (TOIS)     Hybrid Journal   (Followers: 20)
ACM Transactions on Intelligent Systems and Technology (TIST)     Hybrid Journal   (Followers: 8)
ACM Transactions on Interactive Intelligent Systems (TiiS)     Hybrid Journal   (Followers: 3)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP)     Hybrid Journal   (Followers: 10)
ACM Transactions on Reconfigurable Technology and Systems (TRETS)     Hybrid Journal   (Followers: 7)
ACM Transactions on Sensor Networks (TOSN)     Hybrid Journal   (Followers: 8)
ACM Transactions on Speech and Language Processing (TSLP)     Hybrid Journal   (Followers: 11)
ACM Transactions on Storage     Hybrid Journal  
ACS Applied Materials & Interfaces     Full-text available via subscription   (Followers: 21)
Acta Automatica Sinica     Full-text available via subscription   (Followers: 3)
Acta Universitatis Cibiniensis. Technical Series     Open Access  
Ad Hoc Networks     Hybrid Journal   (Followers: 11)
Adaptive Behavior     Hybrid Journal   (Followers: 11)
Advanced Engineering Materials     Hybrid Journal   (Followers: 26)
Advanced Science Letters     Full-text available via subscription   (Followers: 7)
Advances in Adaptive Data Analysis     Hybrid Journal   (Followers: 8)
Advances in Artificial Intelligence     Open Access   (Followers: 16)
Advances in Calculus of Variations     Hybrid Journal   (Followers: 2)
Advances in Catalysis     Full-text available via subscription   (Followers: 5)
Advances in Computational Mathematics     Hybrid Journal   (Followers: 15)
Advances in Computer Science : an International Journal     Open Access   (Followers: 13)
Advances in Computing     Open Access   (Followers: 2)
Advances in Data Analysis and Classification     Hybrid Journal   (Followers: 54)
Advances in Engineering Software     Hybrid Journal   (Followers: 25)
Advances in Geosciences (ADGEO)     Open Access   (Followers: 10)
Advances in Human-Computer Interaction     Open Access   (Followers: 20)
Advances in Materials Sciences     Open Access   (Followers: 16)
Advances in Operations Research     Open Access   (Followers: 11)
Advances in Parallel Computing     Full-text available via subscription   (Followers: 7)
Advances in Porous Media     Full-text available via subscription   (Followers: 4)
Advances in Remote Sensing     Open Access   (Followers: 37)
Advances in Science and Research (ASR)     Open Access   (Followers: 6)
Advances in Technology Innovation     Open Access   (Followers: 1)
AEU - International Journal of Electronics and Communications     Hybrid Journal   (Followers: 8)
African Journal of Information and Communication     Open Access   (Followers: 6)
African Journal of Mathematics and Computer Science Research     Open Access   (Followers: 4)
Air, Soil & Water Research     Open Access   (Followers: 7)
AIS Transactions on Human-Computer Interaction     Open Access   (Followers: 6)
Algebras and Representation Theory     Hybrid Journal   (Followers: 1)
Algorithms     Open Access   (Followers: 11)
American Journal of Computational and Applied Mathematics     Open Access   (Followers: 4)
American Journal of Computational Mathematics     Open Access   (Followers: 4)
American Journal of Information Systems     Open Access   (Followers: 7)
American Journal of Sensor Technology     Open Access   (Followers: 4)
Anais da Academia Brasileira de Ciências     Open Access   (Followers: 2)
Analog Integrated Circuits and Signal Processing     Hybrid Journal   (Followers: 7)
Analysis in Theory and Applications     Hybrid Journal   (Followers: 1)
Animation Practice, Process & Production     Hybrid Journal   (Followers: 5)
Annals of Combinatorics     Hybrid Journal   (Followers: 3)
Annals of Data Science     Hybrid Journal   (Followers: 9)
Annals of Mathematics and Artificial Intelligence     Hybrid Journal   (Followers: 6)
Annals of Pure and Applied Logic     Open Access   (Followers: 2)
Annals of Software Engineering     Hybrid Journal   (Followers: 12)
Annual Reviews in Control     Hybrid Journal   (Followers: 6)
Anuario Americanista Europeo     Open Access  
Applicable Algebra in Engineering, Communication and Computing     Hybrid Journal   (Followers: 2)
Applied and Computational Harmonic Analysis     Full-text available via subscription   (Followers: 2)
Applied Artificial Intelligence: An International Journal     Hybrid Journal   (Followers: 14)
Applied Categorical Structures     Hybrid Journal   (Followers: 2)
Applied Clinical Informatics     Hybrid Journal   (Followers: 2)
Applied Computational Intelligence and Soft Computing     Open Access   (Followers: 12)
Applied Computer Systems     Open Access   (Followers: 1)
Applied Informatics     Open Access  
Applied Mathematics and Computation     Hybrid Journal   (Followers: 33)
Applied Medical Informatics     Open Access   (Followers: 10)
Applied Numerical Mathematics     Hybrid Journal   (Followers: 5)
Applied Soft Computing     Hybrid Journal   (Followers: 16)
Applied Spatial Analysis and Policy     Hybrid Journal   (Followers: 4)
Architectural Theory Review     Hybrid Journal   (Followers: 3)
Archive of Applied Mechanics     Hybrid Journal   (Followers: 5)
Archive of Numerical Software     Open Access  
Archives and Museum Informatics     Hybrid Journal   (Followers: 124)
Archives of Computational Methods in Engineering     Hybrid Journal   (Followers: 4)
Artifact     Hybrid Journal   (Followers: 2)
Artificial Life     Hybrid Journal   (Followers: 6)
Asia Pacific Journal on Computational Engineering     Open Access  
Asia-Pacific Journal of Information Technology and Multimedia     Open Access   (Followers: 1)
Asian Journal of Computer Science and Information Technology     Open Access  
Asian Journal of Control     Hybrid Journal  
Assembly Automation     Hybrid Journal   (Followers: 2)
at - Automatisierungstechnik     Hybrid Journal   (Followers: 1)
Australian Educational Computing     Open Access  
Automatic Control and Computer Sciences     Hybrid Journal   (Followers: 3)
Automatic Documentation and Mathematical Linguistics     Hybrid Journal   (Followers: 5)
Automatica     Hybrid Journal   (Followers: 9)
Automation in Construction     Hybrid Journal   (Followers: 6)
Autonomous Mental Development, IEEE Transactions on     Hybrid Journal   (Followers: 8)
Basin Research     Hybrid Journal   (Followers: 5)
Behaviour & Information Technology     Hybrid Journal   (Followers: 52)
Bioinformatics     Hybrid Journal   (Followers: 311)
Biomedical Engineering     Hybrid Journal   (Followers: 16)
Biomedical Engineering and Computational Biology     Open Access   (Followers: 13)
Biomedical Engineering, IEEE Reviews in     Full-text available via subscription   (Followers: 17)
Biomedical Engineering, IEEE Transactions on     Hybrid Journal   (Followers: 31)
Briefings in Bioinformatics     Hybrid Journal   (Followers: 46)
British Journal of Educational Technology     Hybrid Journal   (Followers: 125)
Broadcasting, IEEE Transactions on     Hybrid Journal   (Followers: 10)
c't Magazin fuer Computertechnik     Full-text available via subscription   (Followers: 2)
CALCOLO     Hybrid Journal  
Calphad     Hybrid Journal  
Canadian Journal of Electrical and Computer Engineering     Full-text available via subscription   (Followers: 14)
Catalysis in Industry     Hybrid Journal   (Followers: 1)
CEAS Space Journal     Hybrid Journal  
Cell Communication and Signaling     Open Access   (Followers: 1)
Central European Journal of Computer Science     Hybrid Journal   (Followers: 5)
CERN IdeaSquare Journal of Experimental Innovation     Open Access  
Chaos, Solitons & Fractals     Hybrid Journal   (Followers: 3)
Chemometrics and Intelligent Laboratory Systems     Hybrid Journal   (Followers: 15)
ChemSusChem     Hybrid Journal   (Followers: 7)
China Communications     Full-text available via subscription   (Followers: 7)
Chinese Journal of Catalysis     Full-text available via subscription   (Followers: 2)
CIN Computers Informatics Nursing     Full-text available via subscription   (Followers: 12)
Circuits and Systems     Open Access   (Followers: 16)
Clean Air Journal     Full-text available via subscription   (Followers: 2)
CLEI Electronic Journal     Open Access  
Clin-Alert     Hybrid Journal   (Followers: 1)
Cluster Computing     Hybrid Journal   (Followers: 1)
Cognitive Computation     Hybrid Journal   (Followers: 4)
COMBINATORICA     Hybrid Journal  
Combustion Theory and Modelling     Hybrid Journal   (Followers: 13)
Communication Methods and Measures     Hybrid Journal   (Followers: 11)
Communication Theory     Hybrid Journal   (Followers: 20)
Communications Engineer     Hybrid Journal   (Followers: 1)
Communications in Algebra     Hybrid Journal   (Followers: 3)
Communications in Partial Differential Equations     Hybrid Journal   (Followers: 3)
Communications of the ACM     Full-text available via subscription   (Followers: 53)
Communications of the Association for Information Systems     Open Access   (Followers: 18)
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering     Hybrid Journal   (Followers: 3)
Complex & Intelligent Systems     Open Access  
Complex Adaptive Systems Modeling     Open Access  
Complex Analysis and Operator Theory     Hybrid Journal   (Followers: 2)
Complexity     Hybrid Journal   (Followers: 6)
Complexus     Full-text available via subscription  
Composite Materials Series     Full-text available via subscription   (Followers: 9)
Computación y Sistemas     Open Access  
Computation     Open Access  
Computational and Applied Mathematics     Hybrid Journal   (Followers: 2)
Computational and Mathematical Methods in Medicine     Open Access   (Followers: 2)
Computational and Mathematical Organization Theory     Hybrid Journal   (Followers: 2)
Computational and Structural Biotechnology Journal     Open Access   (Followers: 2)
Computational and Theoretical Chemistry     Hybrid Journal   (Followers: 9)
Computational Astrophysics and Cosmology     Open Access   (Followers: 1)
Computational Biology and Chemistry     Hybrid Journal   (Followers: 12)
Computational Chemistry     Open Access   (Followers: 2)
Computational Cognitive Science     Open Access   (Followers: 2)
Computational Complexity     Hybrid Journal   (Followers: 4)
Computational Condensed Matter     Open Access  
Computational Ecology and Software     Open Access   (Followers: 9)
Computational Economics     Hybrid Journal   (Followers: 9)
Computational Geosciences     Hybrid Journal   (Followers: 14)
Computational Linguistics     Open Access   (Followers: 23)
Computational Management Science     Hybrid Journal  
Computational Mathematics and Modeling     Hybrid Journal   (Followers: 8)
Computational Mechanics     Hybrid Journal   (Followers: 4)
Computational Methods and Function Theory     Hybrid Journal  
Computational Molecular Bioscience     Open Access   (Followers: 2)
Computational Optimization and Applications     Hybrid Journal   (Followers: 7)
Computational Particle Mechanics     Hybrid Journal   (Followers: 1)
Computational Research     Open Access   (Followers: 1)
Computational Science and Discovery     Full-text available via subscription   (Followers: 2)
Computational Science and Techniques     Open Access  
Computational Statistics     Hybrid Journal   (Followers: 13)
Computational Statistics & Data Analysis     Hybrid Journal   (Followers: 31)
Computer     Full-text available via subscription   (Followers: 84)
Computer Aided Surgery     Hybrid Journal   (Followers: 3)
Computer Applications in Engineering Education     Hybrid Journal   (Followers: 6)
Computer Communications     Hybrid Journal   (Followers: 10)
Computer Engineering and Applications Journal     Open Access   (Followers: 5)
Computer Journal     Hybrid Journal   (Followers: 7)
Computer Methods in Applied Mechanics and Engineering     Hybrid Journal   (Followers: 22)
Computer Methods in Biomechanics and Biomedical Engineering     Hybrid Journal   (Followers: 10)
Computer Methods in the Geosciences     Full-text available via subscription   (Followers: 1)
Computer Music Journal     Hybrid Journal   (Followers: 16)
Computer Physics Communications     Hybrid Journal   (Followers: 6)
Computer Science - Research and Development     Hybrid Journal   (Followers: 7)
Computer Science and Engineering     Open Access   (Followers: 17)
Computer Science and Information Technology     Open Access   (Followers: 11)
Computer Science Education     Hybrid Journal   (Followers: 12)
Computer Science Journal     Open Access   (Followers: 20)
Computer Science Master Research     Open Access   (Followers: 10)
Computer Science Review     Hybrid Journal   (Followers: 10)

        1 2 3 4 5 6 | Last

Journal Cover Assembly Automation
  [SJR: 0.657]   [H-I: 26]   [2 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 0144-5154
   Published by Emerald Homepage  [335 journals]
  • Genetic algorithm-based compliant robot path planning: an improved
           Bi-RRT-based initialization method
    • Pages: 261 - 270
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 261-270, August 2017.
      Purpose The purpose of this paper is to improve the performance of the genetic algorithm-based compliant robot path planning (GACRPP) in complex dynamic environment by proposing an improved bidirectional rapidly exploring random tree (Bi-RRT)-based population initialization method. Design/methodology/approach To achieve GACRPP in complex dynamic environment with high performance, an improved Bi-RRT-based population initialization method is proposed. First, the grid model is adopted to preprocess the working space of mobile robot. Second, an improved Bi-RRT is proposed to create multi-cluster connections between the starting point and the goal point. Third, the backtracking method is used to generate the initial population based on the multi-cluster connections generated by the improved Bi-RRT. Subsequently, some comparative experiments are implemented where the performances of the improved Bi-RRT-based population initialization method are compared with other population initialization methods, and the comparison results of the improved genetic algorithm (IGA) combining with the different population initialization methods are shown. Finally, the optimal path is further smoothed with the help of the technique of quadratic B-spline curves. Findings It is shown in the experiment results that the improved Bi-RRT-based population initialization method is capable of deriving a more diversified initial population with less execution time and the IGA combining with the proposed population initialization method outperforms the one with other population initialization methods in terms of the length of optimal path and the execution time. Originality/value In this paper, the Bi-RRT is introduced as a population initialization method into the GACRPP problem. An improved Bi-RRT is proposed for the purpose of increasing the diversity of initial population. To characterize the diversity of initial population, a new notion of breadth is defined in terms of Hausdorff distance between different paths.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:54Z
      DOI: 10.1108/AA-12-2016-173
  • Fixed-time compliant motion/force control of robotic manipulators with
           environmental constraints
    • Pages: 271 - 277
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 271-277, August 2017.
      Purpose The purpose of this paper is to design a new compliant motion/force control strategy for robotic manipulators with environmental constraints in the sense of fixed-time stability. Design/methodology/approach This paper investigates a novel compliant motion/force control strategy for robotic manipulators with environmental constraints. By using the Lyapunov theory and fixed-time stability theory, a non-singular terminal sliding mode manifold is first established. Then, the compliant motion/force controller is designed, and relevant conditions are given for guaranteeing that the robotic manipulator can track the prescribed constrained trajectory while exerting a desired force to the environment in fixed-time. An illustrative example is presented to show the effectiveness of our proposed control strategy. Findings Based on fixed-time stability theory, the desired compliant motion/force controller for robotic manipulators with environmental constraints is developed. Originality/value Compared with most existing literature, the proposed fixed-time compliant motion/force control strategy can provide the upper bound of the settling time independent of the initial conditions in designing procedure and is more practical for the real-world applications.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:52Z
      DOI: 10.1108/AA-11-2016-158
  • Feature fusion using Extended Jaccard Graph and word embedding for robot
    • Pages: 278 - 284
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 278-284, August 2017.
      Purpose Robot vision is a fundamental device for human–robot interaction and robot complex tasks. In this paper, the authors aim to use Kinect and propose a feature graph fusion (FGF) for robot recognition. Design/methodology/approach The feature fusion utilizes red green blue (RGB) and depth information to construct fused feature from Kinect. FGF involves multi-Jaccard similarity to compute a robust graph and word embedding method to enhance the recognition results. Findings The authors also collect DUT RGB-Depth (RGB-D) face data set and a benchmark data set to evaluate the effectiveness and efficiency of this method. The experimental results illustrate that FGF is robust and effective to face and object data sets in robot applications. Originality/value The authors first utilize Jaccard similarity to construct a graph of RGB and depth images, which indicates the similarity of pair-wise images. Then, fusion feature of RGB and depth images can be computed by the Extended Jaccard Graph using word embedding method. The FGF can get better performance and efficiency in RGB-D sensor for robots.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:25:00Z
      DOI: 10.1108/AA-01-2017-005
  • Insertion force analysis of compliantly supported peg-in-hole assembly
    • Pages: 285 - 295
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 285-295, August 2017.
      Purpose This paper aims to estimate the required insertion force and to analyze the influence of damping in a compliantly supported chamfered peg-in-hole assembly under dynamic conditions. Design/methodology/approach A mathematical model of the insertion process, including damping coefficient and stiffness of the compliance, insertion speed, mass, inertia and friction coefficient, has been developed. Computer aided design (CAD) model of the peg-in-hole assembly environment with passive compliance is created. The dynamic insertion force of the modeled environment is analyzed using multibody dynamics numerical solver. Findings The damping property of the viscoelastic materials used in the passive compliances suppresses the vibration caused due to the impulses in the transition of the peg in hole. It also increases the insertion force required for the peg insertion at the initial stage. Research limitations/implications As the search strategies are not considered in this work, it is assumed that the initial contact is ensured between the chamfer and the peg of the assembly. A constant insertion speed is maintained throughout the insertion. Otherwise, it could have been varied at different stages of the insertion for reducing the assembly time. Practical implications The developed assembly model can be used for predicting the insertion forces of a chamfered peg-in-hole assembly and for designing/selecting the compliance device for the required assembly environment. Originality/value The proposed insertion model has considered the damping and elastic property of the compliance material as a parallel arrangement of spring and dashpot. This approach aids in modeling an insertion process closer to real-time assembly process.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:38Z
      DOI: 10.1108/AA-12-2016-167
  • Impedance control of a cable-driven SEA with mixed H2/H∞ synthesis
    • Pages: 296 - 303
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 296-303, August 2017.
      Purpose This paper aims to present an impedance control method with mixed H2/H∞ synthesis and relaxed passivity for a cable-driven series elastic actuator to be applied for physical human–robot interaction. Design/methodology/approach To shape the system’s impedance to match a desired dynamic model, the impedance control problem was reformulated into an impedance matching structure. The desired competing performance requirements as well as constraints from the physical system can be characterized with weighting functions for respective signals. Considering the frequency properties of human movements, the passivity constraint for stable human–robot interaction, which is required on the entire frequency spectrum and may bring conservative solutions, has been relaxed in such a way that it only restrains the low frequency band. Thus, impedance control became a mixed H2/H∞ synthesis problem, and a dynamic output feedback controller can be obtained. Findings The proposed impedance control strategy has been tested for various desired impedance with both simulation and experiments on the cable-driven series elastic actuator platform. The actual interaction torque tracked well the desired torque within the desired norm bounds, and the control input was regulated below the motor velocity limit. The closed loop system can guarantee relaxed passivity at low frequency. Both simulation and experimental results have validated the feasibility and efficacy of the proposed method. Originality/value This impedance control strategy with mixed H2/H∞ synthesis and relaxed passivity provides a novel, effective and less conservative method for physical human–robot interaction control.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:49Z
      DOI: 10.1108/AA-11-2016-150
  • Learning control of flexible manipulator with unknown dynamics
    • Pages: 304 - 313
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 304-313, August 2017.
      Purpose The purpose of this paper is to study the controller design of flexible manipulator. Flexible manipulator system is a nonlinear, strong coupling, time-varying system, which is introduced elastodynamics in the study and complicated to control. However, due to the flexible manipulator, system has a significant advantage in response speed, control accuracy and load weight ratio to attract a lot of researchers. Design/methodology/approach Since the order of flexible manipulator system is high, designing controller process will be complex, and have a large amount of calculation, but this paper will use the dynamic surface control method to solve this problem. Findings Dynamic surface control method as a controller design method which can effectively solve the problem with the system contains nonlinear and reduced design complexity. Originality/value The authors assume that the dynamic parameters of flexible manipulator system are unknown, and use Radial Basis Function neural network to approach the unknown system, combined with the dynamic surface control method to design the controller.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:36Z
      DOI: 10.1108/AA-11-2016-148
  • Development and control of a robotic arm for percutaneous surgery
    • Pages: 314 - 321
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 314-321, August 2017.
      Purpose The purpose of this paper is to propose a robotic system for percutaneous surgery. The key component in the system, a robotic arm that can manipulate a puncture needle is presented. The mechanical design, the motion control and the force control method of the robotic arm are discussed in the paper. Design/methodology/approach The arm with an arc mechanism placed on a 3D Cartesian stage is developed as a puncture needle manipulator to locate the position of the needle tip, tune the needle’s posture and actuate the puncture motion under the visual guidance of two orthogonal X-ray images of a patient by a surgeon. A focusing method by using two laser spots is proposed to automatically move the needle tip to a surgery entry point on the skin. A dynamics model is developed to control the position of the needle mechanism and an explicit force control strategy is utilized to perform the needle insertion. Findings With the surgical system, a surgeon can easily perform puncture operation by taking two orthogonal real-time X-ray images as a visual feedback and accurately navigating the needle insertion. The laser-guided focusing method is efficient in placement of the needle tip. The explicit force control strategy is proved to be effective for holding constant and stable puncture force in experiments. Originality/value The robotic arm has an advantage in easy redirection of the needle because the rotation and the translation are decoupled in the mechanism. By adopting simple laser pens and a well-developed kinematics model, the system can handle the entry point, locating task automatically. The focusing method and the force control method proposed in the paper are useful for the present system and could be intuitive for similar surgical robots.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:51Z
      DOI: 10.1108/AA-12-2016-179
  • Viscoelastic model based bilateral teleoperation for robotic-assisted
    • Pages: 322 - 334
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 322-334, August 2017.
      Purpose The purpose of this paper is to design a model-based bilateral teleoperation method to improve the feedback force and velocity/position tracking for robotic-assisted tasks (such as palpation, etc.) under constant and/or varying time delay with environment dynamic property. Time delay existing in bilateral teleoperation easily destabilizes the system. Proper control strategies are able to make the system stable, but at the cost of compromised performance. Model-based bilateral teleoperation is designed to achieve enhanced performance of this time-delayed system, but an accurate model is required. Design/methodology/approach Viscoelastic model has been used to describe the robot tool-soft tissue interaction behavior. Kevin-Boltzmann (K-B) model is selected to model the soft tissue behavior due to its good accuracy, transient and linearity properties among several viscoelastic models. In this work, the K-B model is designed at the master side to generate a virtual environment of remote robotic tool-soft tissue interaction. In order to obtain improved performance, a self perturbing recursive least square (SPRLS) algorithm is developed to on-line update the necessary parameters of the environment with varying dynamics. Findings With fast and optimal on-line estimation of primary parameters of the K-B model, the reflected force of the model-based bilateral teleoperation at the master side is improved as well as the position/velocity tracking performance. This model-based design in the bilateral teleoperation avoids the stability issue caused by time delay in the communication channel since the exchanged information become position/velocity and estimated parameters of the used model. Even facing with big and varying time delay, the system keeps stably and enhanced tracking performance. Besides, the fast convergence of the SPRLS algorithm helps to track the time-varying dynamic of the environment, which satisfies the surgical applications as the soft tissue properties usually are not static. Originality/value The originality of this work lies in that an enhanced perception of bilateral teleoperation structure under constant/varying time delay that benefits robotic assisted tele-palpation (time varying environment dynamic) tasks is developed. With SPRLS algorithm to on-line estimate the main parameters of environment, the feedback perception of system can be enhanced with stable velocity/position tracking. The superior velocity/position and force tracking performance of the developed method makes it possible for future robotic-assisted tasks with long-distance communication.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:43Z
      DOI: 10.1108/AA-12-2016-163
  • Development of a novel paediatric surgical assist robot for tissue
           manipulation in a narrow workspace
    • Pages: 335 - 348
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 335-348, August 2017.
      Purpose Paediatric congenital esophageal atresia surgery typically requires delicate and dexterous operations in a narrow and confined workspace. This study aims to develop a novel robot assisted surgical system to address these challenges. Design/methodology/approach The proposed surgical robot consists of two symmetrical slave arms with nine degree of freedoms each. Each slave arm uses a rigid-dexterous configuration and consists of a coarse positioning manipulator and a distal fine operation manipulator. A small Selective Compliance Assembly Robot Arm (SCARA) mechanism was designed to form the main component of the coarse positioning unit, ensuring to endure large forces along the vertical direction and meet the operational demands. The fine positioning manipulator applied the novel design using flexible shafts and universal joints to achieve delicate operations while possessing a high rigidity. The corresponding kinematics has been derived and then was validated by a co-simulation that was performed based on the combined use of Adams and MATLAB with considering the real robot mass information. Experimental evaluations for the tip positioning accuracy and the ring transfer tasks have been performed. Findings The simulation was performed to verify the correctness of the derived inverse kinematics and demonstrated the robot’s flexibility. The experimental results illustrated that the end-effector can achieve a positioning accuracy within 1.5 mm in a confined 30 × 30 × 30 mm workspace. The ring transfer task demonstrated that the surgical robot is capable of providing a solution for dexterous tissue intervention in a narrow workspace for paediatric surgery. Originality/value A novel and compact surgical assist robot is developed to support delicate operations by using the dexterous slave arm. The slave arm consists of a SCARA mechanism to avoid experiencing overload in the vertical direction and a tool manipulator driven by flexible shafts and universal joints to provide high dexterity for operating in a narrow workspace.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:45Z
      DOI: 10.1108/AA-12-2016-162
  • Compliant training control of ankle joint by exoskeleton with human
           EMG-torque interface
    • Pages: 349 - 355
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 349-355, August 2017.
      Purpose The purpose of this paper is to make compliant training control of exoskeleton for ankle joint with electromyograph (EMG)-torque interface. Design/methodology/approach A virtual compliant mapping which is modeled by mass-spring-damper system is incorporated into the whole system at the reference input. The EMG-torque interface contains both data acquisition and torque estimator/predictor, and extreme learning machine is utilized for joint torque estimation/prediction from multiple channels of EMG signals. Findings The reference ankle joint angle to follow is produced from the compliance mapping whose input is the measured/predicted torque on healthy subjects. The control system works well with the desired angle to track. In the actuation level, the input torque to drive the ankle exoskeleton is less than the actual torque of the subject(s). This may have positive influence on diminishing overshoot of input torque from motors and protect the actuators. The torque prediction and final tracking control performance demonstrate the efficiency of the presented architecture. Originality/value This work can be beneficial to compliant training of ankle exoskeleton system for pilots and enhance current training control module in rehabilitation.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:41Z
      DOI: 10.1108/AA-12-2016-161
  • Active compliance control of the hydraulic actuated leg prototype
    • Pages: 356 - 368
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 356-368, August 2017.
      Purpose Legged robots are inevitably to interact with the environment while they are moving. This paper aims to properly handle these interactions. It works to actively control the joint torques of a hydraulic-actuated leg prototype and achieve compliant motion of the leg. Design/methodology/approach This work focuses on the modelling and controlling of a hydraulic-actuated robot leg prototype. First, the design and kinematics of the leg prototype is introduced. Then the linearlized model for the hydraulic actuator is built, and a model-based leg joint torque controller is presented. Furthermore, the virtual model controller is implemented on the prototype leg to achieve active compliance of the leg. Effectiveness of the controllers are validated through the experiments on the physical platform as well as the results from simulations. Findings The hydraulic joint torque controller presented in this paper shows good torque tracking performance. And the actively compliant leg successfully emulates the performance of virtual passive components under dynamic situations. Originality/value The main contribution of this paper is that it proposed a model-based active compliance controller for the hydraulic-actuated robot leg. It will be helpful for those robots that aim to achieve versatile and safe motions.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:58Z
      DOI: 10.1108/AA-11-2016-160
  • Deep Spatial-Temporal Model for rehabilitation gait: optimal trajectory
           generation for knee joint of lower-limb exoskeleton
    • Pages: 369 - 378
      Abstract: Assembly Automation, Volume 37, Issue 3, Page 369-378, August 2017.
      Purpose Lower-limb exoskeleton is widely used for assisting walk in rehabilitation field. One key problem for exoskeleton control is to model and predict suitable gait trajectories for wearer. Design/methodology/approach In this paper, the authors propose a Deep Spatial-Temporal Model (DSTM) for generating knee joint trajectory of lower-limb exoskeleton, which first leverages Long-Short Term Memory framework to learn the inherent spatial-temporal correlations of gait features. Findings With DSTM, the pathological knee joint trajectories can be predicted based on subject’s other joints. The energy expenditure is adopted for verifying the effectiveness of new recovery gait pattern by monitoring dynamic heart rate. The experimental results demonstrate that the subjects have less energy expenditure in new recovery gait pattern than in others’ normal gait patterns, which also means the new recovery gait is more suitable for subject. Originality/value Long-Short Term Memory framework is first used for modeling rehabilitation gait, and the deep spatial–temporal relationships between joints of gait data can obtained successfully.
      Citation: Assembly Automation
      PubDate: 2017-09-07T06:24:50Z
      DOI: 10.1108/AA-11-2016-155
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016